LAMBPRO 2015 SELECTION DAY

POLL DORSET/TRADIE 3PM THURSDAY 5TH NOVEMBER PRIMELINE MATERNAL 10.30 AM FRIDAY 6TH NOVEMBER 'KINROSS' 649 WAGGA ROAD HOLBROOK NSW

I AMBPRO RAM SELECTION DAY

'KINROSS' WAGGA ROAD HOLBROOK POLL DORSET/ TRADIE

THURSDAY 5 NOVEMBER 3pm Lunch & Dinner provided

PRIMELINE MATERNAL FRIDAY 6 NOVEMBER 10.30am Breakfast & lunch provided

AUCTIONSPLUS

PHYSICAL SALE INTERFACED LIVE WITH AUCTIONSPLUS. ALL BUYERS WILL NEED TO BE REGISTERED PRIOR BY CONTACTING TIM WRIGHT ELDERS.

SELLING AGENTS

TIM WRIGHT - ELDERS HOLBROOK 0429 679 410

RAM HEALTH

- ALL RAMS WILL HAVE INDEPENDENT STRUCTURAL SCORES PROVIDED ON THE DAY.
- OJD MN1 V
- **BRUCELLOSIS ACCREDITED**
- **FOOTROT FREE**
- ALL RAMS VET CHECKED FOR BREEDING SOUNDNESS, AND FEET AND LEG STRUCTURE

THURSDAY NIGHT DINNER INVITATION

Dinner at 'KINROSS' 7pm Please RSVP to Tom Bull 0438 680 585 tom@lambpro.com.au

WELCOME

Welcome to the November 2015 Ram Selection Auction. The sale will be held over two days, with Poll Dorset and Tradie rams sold on Thursday afternoon, and the Primeline Maternal rams sold Friday morning. Both sales will be interfaced with Auctionsplus.

After much talk over the past decade, the red meat boom appears to be emerging. With lamb contracts for peak supply times over \$5.00, the upcoming lamb season looks positive. More importantly at this level, it appears sustainable for all sectors of the supply chain.

The sale rams represent the breeding objectives of the three breeding programs Poll Dorset, Tradie, and Primeline Maternal. This has seen a domestic focus with an emphasis on moderate fat, and high muscle to go with cost of production traits.

The Poll Dorset rams are moderate framed, moderate fat with our characteristic breed leading eye muscle. These traits are right throughout the draft creating better value buying opportunities.

A larger offering of Primeline Maternal rams will be on sale, that are phenotypically the most consistent draft to date. The average age is on sale day will be 120 days with the average weight over 50 kilograms. This has been achieved in a drop of lambs that weaned over 150% and were stocked at 6 ewes/ha.

In 2006 after one of the worst seasons on record we made a conscious effort to change our sheep to become more resilient to dry seasons. This has seen our sheep increase in fat, and reduce frame score. The sheep now store energy (fat) in good seasons, and draw down in feed limited times. This has seen some outstanding productivity in dry times over the past five years.

All rams have been independently structurally assessed, and carry a twelve month death guarantee.

We wish our clients the best for the upcoming lamb season and hope that Eastern Australia receives good finishing rains.

Yours sincerely, Tom Bull

> DISCLAIMER While every care has been taken with the accuracy of this catalogue, no responsibility is accepted for any errors which may have occurred.

Understanding LAMBPLAN Maternal ASBVs

Understanding LAMBPLAN ASBVs

ē	Rams with a n positive wear weight (WWT) on average, pro- lambs that gr quicker to wea This ram will pro- lambs that are average, 0.4kg h than a ram with ASBV for WV	nore hing will, bduce row ning. bduce a, on heavier h a 0 VT.	Rams with more ASBVs for post weight (PWT) lambs that grow and reach targe in a shorter tim ram will produc that are, on av 1.25kg heavier ram with a 0 A PWT.	e positive weaning produce v quicker t weights ne. This he lambs verage, r than a SBV for	Rams with mor ASBVs for eye depth (EMD) lambs that have lean meat yie ram will produ that have a deeper eye mu a ram with a ASBV	re positive e muscle produce e a higher eld. This ce lambs 0.2mm uscle than 0 EMD	Rams with clean fleed (CFW) AS produce prog more wool. T produce pro on average, more wool t with an AS	a higher ce weight BV will eny that cut his ram will geny that, , cut 2.5% han a ram SBV of 0.	Worm eg (WEC) ASB an animal potential fo worm burd WEC AS desirable will, on av progeny tha fewer eggs a ram with of	gg count Vs estimate 's genetic or resisting ens. Lower BVs are This ram erage, sire t have 10% /gram than a an ASBV 0.		Rams with lower weight (BWT) p with lower birth low (lamb surv (lambing diffi weights should	birth bs th h 1.	Rams with m for post wear produce lam and reach shorter tin produce la average, 3 weaning ag a ram wi				
	¥		V		¥		¥		¥			V			¥			
Tra	it WWT (kg)	MWT (kg)	PWT (kg)	FAT (mm)	EMD (mm)	NLW (%)	CFW SC (%) (cm)		WEC (%)	INDEX	Trait	BWT (kg)	WWT (kg)		PWT (kg)	F (
ASE Ac	8V 0.8 c ⁵¹	1.0 53	2.5 61	-0.4 45	0.4 38	4 33	5 37	0.6 44	-10 37	105.6	ASBV Acc	0.3 43	4 63		6.0 71			
Γ	Rams with n positive ASB maternal wea weight (MWT	nore Vs for aning) will	Rams with a negative ASB will produce that are leane	more V for fat lambs r, at the	Rams with a positive nur lambs weane	a more nber of d (NLW)	Rams wit scrotal circu (SC) ASBV	h higher umference /s will sire	An index is the value o particular m with higher	s a guide to f a ram for a narket. Rams indexes will		Rams with a more ASBV for weanin (WWT) will, on a	e positive ng weight average,	Ram negativ weanin	ns with a more re ASBV for po ng fat (PFAT) w	st		
	produce daug which will w heavier lambs ASBV reflec combination o daughter's ab milk and pro	yhters vean s. This sts a of the ility to vide	same weight ram will pro lambs that a average, 0.2mr at the GR site compared to with a FAT AS	t. This duce ire, on m leaner e when a ram BV of 0.	ASBV will sire that wean a percentage of This ram with of 4 will sire d which, on ave wean 2% more	daughters higher f lambs. an ASBV aughters rage, will re lambs.	daughters th average, m	hat are, on ore fertile.	produce are more s particula objective cases the in for materna in \$ 1	ambs that uited to that r breeding e. In many ndexes used al breeds are rerms.		produce lambs the quicker to weaning ram will produce I are 2kg heaving a ram with a 0 for WWT	hat grow ing. This ambs that er than ASBV r.	produc leaner, a This r lambs the 0.75mm site whe ram with	e lambs that an t the same wei am will produce at are, on avera leaner at the (en compared to a FAT ASBV o	re ght. e age, ≩R o a f 0.		
	a better mate environme	nt.							L		L							

• An ASBV of 0 is the average of the 1990 drop.

• Note: A useful rule of thumb for converting ram ASBVs into lamb production differences is to simply halve the ASBV (as rams contribute half the genetics of the lamb).

• Accuracy - published as a percentage, is a reflection of the amount of effective information that is available to calculate the ASBV. All ASBVs are now published with accuracies. The higher the percentage, the closer the ASBV is to the true breeding value of the animal. Breeding values without accuracies are Flock Breeding Values (FBVs) and can only be compared within the flock.

For more information contact Sheep Genetics Ph: 02 6773 2948 Fax: 02 6773 2707 info@sheepgenetics.org.au www.sheepgenetics.org.au

Sheep Genetics is a joint program of Meat & Livestock Australia Limited ABN 39 081 678 364 and Australian Wool Innovation Limited ABN 12 095 165 558

• An ASBV of 0 is the average of the 1990 drop.

 Note: A useful rule of thumb for converting ram ASBVs into lam rams contribute half the genetics of the lamb).

• Accuracy - published as a percentage, is a reflection of the amount of effective information that is available to calculate the ASBV. All ASBVs are now published with accuracies. The higher the percentage, the closer the ASBV is to the true breeding value of the animal. Breeding values without accuracies are Flock Breeding Values (FBVs) and can only be compared within the flock.

For more information contact Sheep Genetics Ph: 02 6773 2948 Fax: 02 6773 2707 info@sheepgenetics.org.au www.sheepgenetics.org.au

Sheep Genetics is a joint program of Meat & Livestock Australia Limited ABN 39 081 678 364 and Australian Wool Innovation Limited ABN 12 095 165 558

• Note: A useful rule of thumb for converting ram ASBVs into lamb production differences is to simply halve the ASBV (as

etics.org.au mited ABN 39 081 678 364

Percentile Report Analysis TERMINAL Dated 15/10/2015

	Bwt	Wwt	PWWt	Ywt	Pfat	Yfat	Pemd	Yemd	Ysc	Hsc	Pfec	Yfec .	MWwt	NLW		LAMB20	120	Trade\$	
Band	kg	kg	kg	kg	mm	mm	mm	mm	cm	cm	%	%	kg	%	Carcase	+	Export\$		SRC
0	-0.80	14.4	22.3	23.2	-2.8	-2.9	5.0	5.0	4.9	4.1	-85	-78	8.7	19	234.7	120.1	117.3	116.7	154.5
-	-0.46	10.8	16.8	17.6	-1.7	-1.8	3.2	3.2	4.2	3.8	-60	-57	5.6	-	209.6	115.6	112.8	113.1	142.9
0	-0.41	10.4	16.2	17.0	-1.5	-1.7	3.0	2.9	4.1	3.7	-54	-51	4.9	10	206.1	114.9	112.2	112.6	141.3
ო	-0.38	10.2	15.9	16.7	-1.5	-1.6	2.8	2.8	3.9	3.6	-51	48	4.5	ი	203.8	114.5	111.9	112.4	140.3
4	-0.36	10.0	15.6	16.4	-1.4	-1.5	2.7	2.7	3.9	3.6	-48	-46	4.2	ი	202.1	114.2	111.6	112.2	139.5
S	-0.32	9.9	15.4	16.2	-1. 4.	-1.5	2.6	2.6	3.8	3.6	-46	-44	4.0	ω	200.8	114.0	111.3	112.0	138.9
10	00.0	9.4	14.6	15.5	-1.2	-1.3	2.3	2.3	3.6	3.4	-40	-38	3.5	7	195.8	113.1	110.5	111.3	136.7
15	0.11	9.1	14.1	15.0	-1.1	-1:2	2.1	2.0	3.5	3.3	-36	-34	3.3	9	192.4	112.6	109.9	110.8	135.3
20	0.16	8.8	13.7	14.6	-1.0		1.9	1.9	3.4	3.2	-33	- 91 91	3.1	Ŋ	189.6	112.1	109.4	110.4	134.2
25	0.20	8.6	13.4	14.2	-0.9	-1.0	1.8	1.7	3.3	3.1	-30	-28	3.0	2	187.0	111.8	108.9	110.0	133.2
30	0.23	8.4	13.0	13.9	-0.8	-0.9	1.7	1.6	3.2	3.0	-28	-25	2.8	4	184.6	111.4	108.5	109.6	132.3
35	0.25	8.2	12.7	13.6	-0.8	6.0-	1.6	1.5	3.1	2.9	-25	-22	2.7	ო	182.3	111.1	108.0	109.3	131.4
40	0.27	8.0	12.4	13.3	-0.7	-0.8	1. 4	1.3	3.1	2.8	-23	-20	2.6	ო	179.9	110.8	107.6	108.9	130.6
45	0.29	7.8	12.1	12.9	-0.7	-0.7	1.3	1.2	3.0	2.7	-20	-18	2.5	2	177.6	110.5	107.2	108.6	129.8
50	0.31	7.6	11.8	12.6	-0.6	-0.7	1.2	1.1	2.9	2.6	-18	-15	2.4	2	175.1	110.1	106.7	108.2	128.9
55	0.33	7.4	11.4	12.3	-0.5	-0.6	1.1	1.0	2.8	2.6	-16	-13	2.3	~	172.6	109.8	106.2	107.9	128.0
09	0.35	7.2	11.1	11.9	-0.5	-0.5	1.0	0.9	2.7	2.5	-13		2.2	~	169.9	109.4	105.6	107.5	127.1
65	0.37	7.0	10.7	11.5	-0.4	-0.5	0.9	0.8	2.6	2.4	<u>-</u>	ထု	2.1	0	167.2	109.1	105.0	107.2	126.1
70	0.39	6.7	10.3	11.1	-0.3	-0.4	0.8	0.7	2.4	2.3	φ	Ϋ́	1.9	0	164.3	108.7	104.2	106.8	125.0
75	0.41	6.4	9.8	10.5	-0.3	-0.3	0.7	0.6	2.3	2.2	4	Ņ	1.8	<u>,</u>	161.3	108.3	103.3	106.4	123.8
80	0.43	6.1	9.3	9.9	-0.2	-0.2	0.6	0.4	2.2	2.0	7	2	1.6	<u>,</u>	158.0	107.9	102.1	105.8	122.3
85	0.45	5.7	8.7	9.2	-0.1	0.0	0.4	0.3	2.0	1.8	Ð	7	1.4	Ņ	154.4	107.4	100.5	105.2	120.6
06	0.49	5.2	8.1	8.3	0.1	0.2	0.2	0.1	1.8	1.6	12	15	<u>-</u>	ကု	150.2	106.8	98.2	104.3	118.7
95	0.53	4.5	7.1	7.0	0.3	0.5	-0.1	-0.2	1.5	1.4	23	27	0.7	ų	144.2	106.0	94.6	102.5	115.9
96	0.55	4.3	6.8	6.7	0.4	0.6	-0.1	-0.3	1. 4	1.3	28	30	0.5	φ	142.4	105.7	93.4	101.9	115.1
97	0.57	4.0	6.5	6.3	0.5	0.7	-0.3	-0.4	1.2	1.2	32	34	0.3	۲-	140.0	105.4	92.0	101.1	114.1
8 6	0.59	3.7	6.1	5.8	0.6	0.8	-0 4	-0.6	1.0	1.0	39	40	0.1	ထု	136.7	105.0	90.1	100.0	112.6
66	0.63	3.1	5.2	5.0	0.8	1.0	-0.7	-0.8	0.8	0.8	48	48	-0.3	-10	130.3	104.0	86.6	98.2	110.0
100	0.98	4.9	-6.2	-5.3	2.7	2.9	-3.2	-2.9	-0.5	0.2	128	104	-2.6	-17	68.7	95.8	27.8	72.4	85.3

SHEEP GENETICS

Percentile Report Analysis MATERNAL Dated 15/10/2015

Animals born in 2014

rade\$	SRC	113.9 147.8	111.5 138.2	110.8 136.3	110.4 135.1	110.1 134.2	109.8 133.4	109.0 130.5	108.5 128.4	108.1 126.7	107.7 125.4	107.4 124.1	107.0 123.0	106.7 122.0	106.4 121.0	106.0 119.9	105.6 118.9	105.2 117.9	104.7 116.7	104.2 115.4	103.6 114.0	103.0 112.6	102.3 110.9	101.3 108.8	99.6 105.9	99.0 105.1	98.1 104.0	96.7 102.9	93.6 100.7	
	- Exports	3 113.7 1	3 110.1 1	7 109.5 1	2 109.1 1	3 108.8 1	5 108.5 1	5 107.6 1	7 106.9 1	3 106.3 1	7 105.7 1	1 105.1 1	104.6 1	5 104.0 1	2 103.5 1	7 102.9 1	5 102.3 1	1 101.6 1	3 100.9 1	3 100.1 1	3 99.2 1	3 98.0 1	7 96.5 1) 94.2 1	90.1	7 88.8	1 86.9) 84.3	79.6	
I AMRO	ILCASE +	16.0 116.8	94.8 113.3	89.2 112.7	85.1 112.2	82.1 111.8	79.7 111.6	72.9 110.6	68.7 109.9	65.5 109.3	62.6 108.9	60.1 108.4	57.8 108.0	55.4 107.6	53.1 107.2	50.8 106.9	48.6 106.5	46.3 106.1	43.8 105.8	40.8 105.3	37.2 104.8	32.6 104.3	27.9 103.7	22.7 103.0	15.4 102.0	13.3 101.7	10.9 101.4	08.1 101.C	03.9 100.5	
///			6	7	7	0	0	4	-	-	-	6	~ _	7	0	0	5 7	4	4	-	-	-	-	-	ы С	5 - -	0	7	9	-
/† NII	6	5	7 19	ы С	4	4	3 16	0	9	7	0 10	ы С	4	с С	2	~	0	, ,	N N	с С	4	D	0 0	ŝ	Ϋ́	Ϋ́	γ ω	4	5- -	
NAVAA	ka	?		-	<u>,</u>	<u>,</u>	~	<u>–</u>	0	ö	0.0	0	ò	0	0	Ö	Ö.	Ϋ́	° P	Ŷ	°. Q	Ŷ	°. P	°,	7	<u>-</u>	7	, , ,		
Vfor	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	-78	-59	-55	-52	-50	-48	4	-37	-33	-30	-27	-24	-21 -21	-19	-16	-13	-10	-7	ကု	~	9	13	22	38	44	49	57	72	
Dfar	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	06-	-71	-67	-63	-61	-59	-51	-45	-41 1	-37	-33 -33	-30	-26	-22	-19	-16	-12	ထု	ကု	ო	10	18	30	47	52	59	69	85	
Hcc	C HO	3.9	2.8	2.6	2.5	2.4	2.4	2.2	2.0	1.9	1.8	1.7	1.6	1.6	1.5	1. 4	1.3	1.2	<u>-</u>	1.0	0.9	0.8	0.7	0.5	0.3	0.2	0.1	0.0	-0.3	
Vcr	5	5.3	3.7	3.5	3.4	3.3	3.2	3.0	2.8	2.7	2.6	2.5	2.4	2.3	2.2	2.1	2.0	1.8	1.7	1.6	۲ 4	1.3	<u>-</u>	0.8	0.5	0.5	0.3	0.2	0.0	
Vamo		4.4	2.4	2.1	1.8	1.7	1.6	1.2	1.0	0.9	0.7	0.6	0.5	0.4	0.3	0.2	0.1	0.0	-0.1	-0.2	-0.3	-0.4	-0.5	-0.7	-0.9	-1.0	-1.0	-1.	-1.3	
Demo		5.2	2.9	2.5	2.2	2.0	1.9	1.5	1.2	1.0	0.9	0.7	0.6	0.5	0. 4	0.3	0.2	0.1	0.0	-0.2	-0.3	-0 4	-0.6	-0.7	-1.0	-1.0	-1.	-1.2	- 4.	
Vfat	mm	4.2	1.6	1.3	1.1	0.9	0.8	0.4	0.1	-0.1	-0.2	-0.3	-0.5	-0.6	-0.7	-0.8	-0.9	-0.9	-1.0	۲. ۲	-1:2	-1.4	-1.5	-1.7	-1.9	-2.0	-2.1	-2.3	-2.5	
Dfat	mm	2.8	<u>-</u>	0.9	0.7	0.6	0.5	0.3	0.1	0.0	-0.1	-0.2	-0.3	-0.4	-0 4	-0.5	-0.6	-0.6	-0.7	-0.8	-0.8	-0.9	-1.0	-1.2	- 4.	-1.5	-1.5	-1.7	-1.9	
Ywrt	ka	20.0	15.9	15.3	14.9	14.6	14.4	13.6	13.1	12.7	12.3	11.9	11.6	11.3	10.9	10.5	10.2	9.7	9.3	8.7	8.1	7.4	6.6	5.4	3.6	3.1	2.5	1.8	0.8	
D\///t	ka	18.3	14.1	13.6	13.2	13.0	12.8	12.0	11.5	11.1	10.7	10.4	10.1	9.8	9.5	9.2	8.9	8.5	8.1	7.6	7.1	6.4	5.6	4.6	3.1	2.7	2.4	1.9	1.2	
\//v/t	ka	13.5	9.8	9.4	9.1	8.9	8.8	8.3	7.9	7.6	7.4	7.1	6.9	6.7	6.5	6.3	6.0	5.7	5.4	5.1	4.7	4.2	3.7	3.0	2.0	1.8	1.5	1.2	0.7	
Bunt	ka	-0.50	-0.04	0.02	0.06	0.09	0.11	0.19	0.25	0.30	0.33	0.37	0.39	0.42	0.44	0.46	0.49	0.51	0.53	0.55	0.58	0.60	0.62	0.66	0.70	0.71	0.72	0.74	0.77	
	Band	0	-	2	ო	4	ß	10	15	20	25	30	35	40	45	50	55	60	65	20	75	80	85	06	95	96	97	9 8	66	

TRADE MATERNAL INDEX

TO FINE TUNE BREEDING OBJECTIVE

The current Maternal Dollar Index is a generic index developed over a decade ago for use predominantly in first-cross ewe systems. While small adjustments have been made over time, the main change is the addition of Worm Egg Count as a trait. The index uses parameters related to first cross ewe systems and lacks relevance to market requirements. Many of the top sires ranked on Maternal Dollar Index, are totally unsuitable to the domestic market, and would attract a discount in the market place, which undermines the economic values used. The top ranked sire currently on Maternal Dollar index is -2 for fat and -1.8 for muscle. This highlights the weakness of using generic indexes.

The Maternal Dollar Index doesn't take into consideration expected feed intake of ewes which is common practice in beef, dairy and NZ lamb indexes. This has been limited by a lack of breeders collecting ewe weight. Maternal ewe weight is more of an issue in lamb than beef, as sheep handling is becoming increasingly difficult for the growing number of 100kg ewes in the industry.

The modern, specialist self- replacing lamb industry is totally different to that which was based on the old first-cross ewe. Market suitability is more important to the self-replacing industry and has hampered growth in this sector due to an issue with consistency and carcase quality. In addition ewe efficiency is paramount, and the ability to produce kilograms at low cost, is becoming an exact science.

Most of our clients operate similar systems, based on using a low-cost pasture base predominantly in spring, to produce as many slaughter lambs as possible per hectare. These lambs usually end up in high-end domestic markets. Worms are less of an issue for our clients than they were a decade ago, wool is a smaller consideration, skins remain important but the key traits are growth rate, lambs weaned per hectare and ease of management of the ewe base.

In developing an index we worked on the basic philosophy that less traits means more gains. Wool is important but has negative correlations with skin value, and we register worm susceptibility as our sheep are run under parasite pressure which in turn comes through in trait data. The key traits included in our customised index are three production traits and two market traits (which also impact production).

Our aim is to produce the best trade lambs at the lowest cost of production. The domestic market suitability is paramount, as

it can in many flocks equate to premiums over export prices of up to 40 cents a kilogram. This is over \$8 a head which can have a significant influence on per hectare profitability. Improved muscle, with the right fat drives makes lambs 'first pick' lambs ensuring our clients can access these markets when supply is plentiful.

The key traits used in the new index are weaning weight, adult ewe weight, milk, yearling number of lambs weaned and the number of lambs weaned. The market traits are fat and muscle. These traits have been given a simple economic value. The main difference to the current index is to maintain early growth rate, while applying a cap to adult ewe weight. The use of weaning weight, as opposed to post weaning weight, is more in line with the average slaughter dates of clients' lambs, and more importantly it has a significantly lower correlation with adult ewe weight than post-weaning weight. This allows LAMBPRO to select animals that are high for early growth but have a moderate ewe weight genetically.

Fertility and milking ability are vitally important, and consequently we have increased their weighting in the new index. Achieving a desirable domestic lamb is a combination of getting fat and muscle to an optimum level. We have put a positive dollar weighting on fat, as the main criticism of composite lambs by the domestic market is their excessive leanness, mostly stemming from East Friesian infusions. This positive weighting will attempt to optimise fat at zero. Progeny testing carcase data supports zero as an optimum level. We aim to lift muscle as high as possible, so long as it doesn't impact other traits. Domestic lambs need a minimum 'shape' and we believe the absolute minimum is +1 for PEMD and long term we want it to increase to +2.

Running the index across our flock and other industry animals, a consistent trend appears. The high early growth, moderate ewe weight, high milking, and higher fertility animals with domestic suitability dominate the top rankings. The LAMBPRO sire team ranks extremely highly among its industry peers, due to our long term focus on breeding ewes of this description.

When we analysed our 2014 data, the Trade Maternal Index had a higher correlation with profitability than the maternal dollar index. Due to this fact we are moving all our selection and marketing to the new index. We will, however still provide the Maternal Dollar index to clients for full transparency.

ACCOMMODATION

BYER FOUNTAIN MOTOR INN 164 ALBURY STREET HOLBROOK NSW 2644

02 6036 2077

SKYE MOTEL

142 ALBURY STREET HOLBROOK NSW 2644 02 6036 2333

HOLBROOK SETTLERS MOTEL

11293 HUME HIGHWAY HOLBROOK NSW 2644 02 6036 2855

GLENNDALE PARK MOTEL 61 ALBURYSTREET HOLBROOK NSW 2644

02 6036 2599

DIRECTIONS **'KINROSS' WAGGA ROAD** HOLRBOOK

LAMBPRO SELECTION DAY

THURSDAY 5TH NOVEMBER 12.00pm POLL DORSET / TRADIE **INSPECTION & LUNCH** 3.00pm AUCTION **DRINKS & DINNER** 7.00pm RSVP Tom Bull 0438 680 585 tom@lambpro.com.au

SELLING AGENTS

POLL DORSET AND TRADIE SELLING AGENTS TIM WRIGHT – ELDERS HOLBROOK 0429 679 410

FRIDAY 6TH NOVEMBER 8.00am PRIMELINE INSPECTIONS & BREAKFAST 10.30am AUCTION 12.30pm BBQ LUNCH

SELLING AGENTS POLL DORSET AND TRADIE SELLING AGENTS

ALBURY 1 hour to Holbrook

TIM WRIGHT – ELDERS HOLBROOK 0429 679 410