

169 BULLS

SOUTHERN AUTUMN BULL SALE

ON PROPERTY MORTLAKE, VICTORIA

Wednesday I March 2017 Sale Starts 12 noon

I believe Te Mania is the leading genetics for Angus cattle.

MATTHEW SHEA BARFOLD ANGUS, KYNETON VIC

The **bull sale** will be interfaced with **AuctionsPlus** and will be conducted live online in real time, with live audio. For those not able to attend the bull sale, you must register within 48 hours prior to the sale in order to bid. For further information contact Peter Rollason on 0419 600 323 or peter.rollason@elders.com.au

ENQUIRIES:

Hamish & Amanda McFarlane | T 03 5264 1606 | M 0427 641606 | E hamish@temania.com.au Tom & Lucy Gubbins | T 03 5599 7240 | M 0429 952197 | E tom@temania.com.au

Ross Milne 0408 057558 | Clarke Roycroft 0409 677281

Welcome

This is a truly exciting time to be a part of the Australian beef industry.

Prices for steers and heifers never seen before, with good rains in most areas and ideal growing conditions for cereal and fodder crops are providing good returns to cattle producers.

This buoyant market provides the ideal environment to ensure you gain maximum profitability for your beef cattle enterprise.

With export and domestic beef processors such as Teys Brothers on the cusp of rewarding producers with value-based payment systems, buying the best genetics is even more crucial.

This means that traits that affect a processor's profitability are going to start to have an impact on the price that commercial producers can expect to achieve for their product.

Now is the time to act to ensure that commercial herds have the genetic characteristics to increase the value of the processor outcomes.

Over the last two years, almost 15,000 Te Mania Angus progeny have been recorded on Angus Breedplan. The analysis of this data fine tunes early genetic predictions of sires and improves the accuracy of all the sires within the breeding herd.

The collection and analysis of data is crucial to breeding bulls that will provide commercial producers with a premium for their product.

Fertility, structure, growth and carcase quality are all key profit drivers which when measured, assessed and used as selection tools, have an enormous effect on the bottom line. The focus on testing and proving Te Mania Angus sires throughout Australian commercial herds, adds to the consistency in EBVs and the brand recognition throughout the wider industry.

It enables commercial producers to more accurately make trait selections to improve their herds and to meet the specifications of their markets, whether they be breeder markets, backgrounding or feeder markets.

Value based marketing will be driven by meat quality and yield. Meat quality is correlated very significantly with Marbling, which has high consideration in the value based system. The Intramuscular Fat (IMF%) EBV is an indication of Marbling.

Retail Beef Yield which gives the processor more product per kilogram of live weight, will also be a key driver in the value based system. This is understood and predicted in the RBY% EBV.

Using proven, Te Mania Angus genetics which have a focus on retail beef yield (RBY%) and marbling ensures that you, our clients, can profit from this industry-wide, value based system.

We are passionate about breeding quiet cattle with good temperament while meeting expectations for all the economic traits.

- 90% of the sale bulls are in the top 25% of the breed for the Heavy Grain \$Index.
- 90% of the sale bulls are in the top 30% of the breed for marbling (IMF%)
- \$150 is the average Heavy Grain \$Index for the sale bulls (breed \$110)
- +3.0 is the average IMF% for the sale bulls (breed +1.6)

Te Mania Angus is a family owned and run business which began over 87 years ago.

We pride ourselves on the partnerships that we have formed with our clients and we focus on assisting then to improve their profitability.

We look forward to seeing you on sale day and also remind you the Team Te Mania Online Commercial Female Sale, will be conducted live on Auctionsplus straight after the bull sale at 3 pm.

This year Team Te Mania members will be offering over 600+ quality commercial females.

The cows stay on the vendor's property but are available for viewing by appointment.

More information is available on the Te Mania Angus web site and the final catalogue will be on auctionsplus.com.au one week prior to the sale.

HOW SALE DAY WORKS

All the sale bulls will be penned and available for viewing from 7.30 am on sale day.

The bulls will be sold by open-cry auction, with video footage displayed on large, closed-circuit screens inside the woolshed.

Buyers have the option of bidding from the woolshed, from the bullpens or through AuctionsPlus.

This system was introduced at the 2010 Autumn on property Bull Sale and has received positive feedback from both purchasers and their agents.

Join us for breakfast on sale morning from 7 am. Bacon and eggs will again be cooked by the Southern Cross Genetics crew for all to enjoy.

PHYSICAL OWNERSHIP AND SEMEN INTERESTS

Aligned with our commitment to deliver the highest quality genetics to our clients, we need to protect our access to all genetics sold into the market place.

Te Mania Angus retains the right to collect semen from all bulls sold. This is strictly for Te Mania's own use, and/or for progeny testing within Team Te Mania commercial herds. If the right to collect semen is exercised, Te Mania Angus will consult with the new owner of the bull to arrange a convenient time for collection, with the cost of collection being paid for by Te Mania Angus.

In the case of syndication, which may be arranged at or after the sale, the joint owners of the bull must be nominated to Te Mania Angus within three months from the date of sale. Semen may only be used within the nominated owners' herds and may not be on-sold to outside parties.

If the bull is on-sold at a later date, these conditions carry forward.

Te Mania Angus retain no interest in the physical ownership nor the salvage value of the bull.

SALE INFORMATION

169 BULLS

SOUTHERN AUTUMN BULL SALE

ON-PROPERTY MORTLAKE WEDNESDAY IST MARCH I2 NOON

THE TE MANIA ANGUS GUARANTEE

Any Te Mania Angus bull that proves to be structurally unsound, infertile or incapable of service is guaranteed for up to three years from date of sale.

Under these circumstances Te Mania Angus will:

- I) Replace the bull with a satisfactory substitute if available, or
- 2) Issue a refund equal to the value remaining *see below, less the salvage value.

*The guarantee covers the purchase value of the bull, without interest, cost and damages. The guarantee shall apply providing the bull's incapacity is not caused by injury or disease contracted since leaving Te Mania, the value remaining is calculated on the basis that the guarantee is reduced by one third of the purchase price for each year of service from the sale date. A veterinary certificate must be supplied by the purchaser on request.

If any bull that is purchased does not possess a reasonable fertility, although not totally infertile, any dispute that may arise shall be settled by an arbitrator appointed by the auctioneers and must be lodged within 12 calendar months from date of sale.

We recommend that all purchasers discuss injury insurance of their bulls at the sale with Elders Ltd or their Agent. This guarantee is in addition to the normal terms and conditions governing auction sales.

HEALTH TREATMENTS

All the sale bulls have been ear notched and screened for BVDV (also known as Pestivirus) and have been found to have a high immunity to BVDV and it is therefore not necessary to vaccinate. We recommend that you consult your vet regarding an ongoing BVDV programme for your herd. All the sale bulls are vaccinated for Vibriosis and given a booster. We recommend annual boosters are given to all bulls.

All of our bulls receive 7 in 1 vaccinations at threemonths of age, six weeks later and a booster as a yearling. They are drenched at weaning and periodically according to worm counts.

All Te Mania Angus bulls are examined by a veterinarian prior to sale day which includes palpation of the sexual anatomy and the circumference of the testicles. The jaw is checked for correct bite.

The Te Mania Angus herd is Monitored Negative Two (MN2) Status for Johnes Disease. Certificate Number is VC100.

GENETIC DISORDERS

ALL OUR SALE BULLS ARE TESTED FREE AND/OR PEDIGREE FREE OF:

Arthrogryposis Multiplex (AM), Neuropathic Hydrocephalus (NH) and Contractural Arachnodactyly (CA), formerly known as Fawn Calf Syndrome.

Some sale bulls carry the Developmental Duplications (DD) recessive gene, please refer to each lot for notification.

For more information on AM, NH, CA and DD visit our web site **www.temania.com.au**

FREIGHT ASSISTANCE

Conditions apply, see page 3 for details.

CATERING

Breakfast, morning tea and lunch will be provided at the sale. Please join us after the bull sale for refreshments and the Team Te Mania online Auctionsplus female sale at 3 pm.

PRE SALE INSPECTION

Bulls will be yarded by 7.30 am on the morning of the sale. Inspections are welcome any other time by arrangement.

REBATES

All purchasers will be asked to nominate a settling agent and a 3% rebate will be paid to all settling agents who settle within 7 days of the invoice being received.

GST

Bulls will be sold GST exclusive ie. If the bull is knocked down for \$4,000, you will be charged \$4.400.

AUCTIONSPLUS

The sale is interfaced with AuctionsPlus, with live audio and will be conducted live on line in real time. For those not able to attend the sale, you must register within 24 hours prior to the sale in order to bid.

For further information contact:

Peter Rollason on 0419 600 323 or peter. rollason@elders.com.au

www.auctionsplus.com.au

SELLING AGENTS

Ross Milne: 0408 057 558 Clarke Roycroft: 0409 677 281 Elders Camperdown office: 03 5593 1822 Auctioneer: Brian Leslie

www.temania.com.au

GETTING THERE

Te Mania Angus is 10 minutes from Mortlake in Western Victoria (see the map on the inside back page)

Mortlake is on the Hamilton Highway, between Geelong and Hamilton.

Approximate travel times

From Melbourne 3 hours
From Geelong 2 hours
From Hamilton I hour
From Warrnambool 30 mins

Please note: sale day entrance from Reichmans Lane via rear entrance, please do not enter from Connewarren Lane

Charter flights and transfers

Please contact Te Mania Angus to arrange a group booking, or transfers to Te Mania Angus.

Charter flights are available through Sharp Airlines or Ph I 300 55 66 94 to Warrnambool and Mortlake

ACCOMMODATION

Mortlake

The Stables Motel, 128 Dunlop Street, Mortlake, Ph. 03 5599 2019

Ronolea Gardens Bed & Breakfast, 20 Hyland St, Mortlake, Ph: 0427 153 692

Camperdown

(Distance from Mortlake – 45 kms)

The Camperdown Mill, (4.5 star) 3 – 5 Curdie Street, Camperdown, Ph: 03 5593 2996

Manifold Motor Inn, 295 Manifold Street, Camperdown, Ph: 03 5593 2666

Cascade Motel (3.5 star), 311 Princes Highway, Camperdown, Ph: 03 5593 1144

Timboon House & Stables B&B, 320 Old Geelong Road, Camperdown, Ph: 03 5593 1003

Warrnambool

(Distance from Mortlake - 55kms)

Mantra Deep Blue, (4 star) 16 Pertobe Road, Warrnambool, Ph: 03 5559 2000

Comfort Inn On Raglan, (4 star), 349 Raglan Parade, Warrnambool, Ph: 03 5562 2755

Olde Maritime Motor Inn, (3.5 star), Cnr Banyan & Merri Street, Warrnambool, Ph: 03 5561 1415

Colonial Village Motel, 31 Mortlake Rd Hopkins Hwy Warrnambool, Ph: 03 5562 1455

Hopkins House Motel, Cnr Mortlake Rd & Whites Rd, Warrnambool, Ph: 03 5561 6630

Hotel Warrnambool, Cnr Koroit & Kepler Streets, Warrnambool, Ph 03 5562 2377

FREIGHT ASSISTANCE

Te Mania Angus will provide purchasers from:

VICTORIA

A freight free service direct to Sale and Mansfield, beyond these destinations will be the purchaser's responsibility.

SOUTH AUSTRALIA, WESTERN AUSTRALIA & NORTHERN TERRITORY

A freight free service to Lucindale, South Australia, via major towns on a direct route. All onward freight arrangements for state and interstate destinations from those mentioned above will be the responsibility of the purchaser.

NEW SOUTH WALES & QUEENSLAND

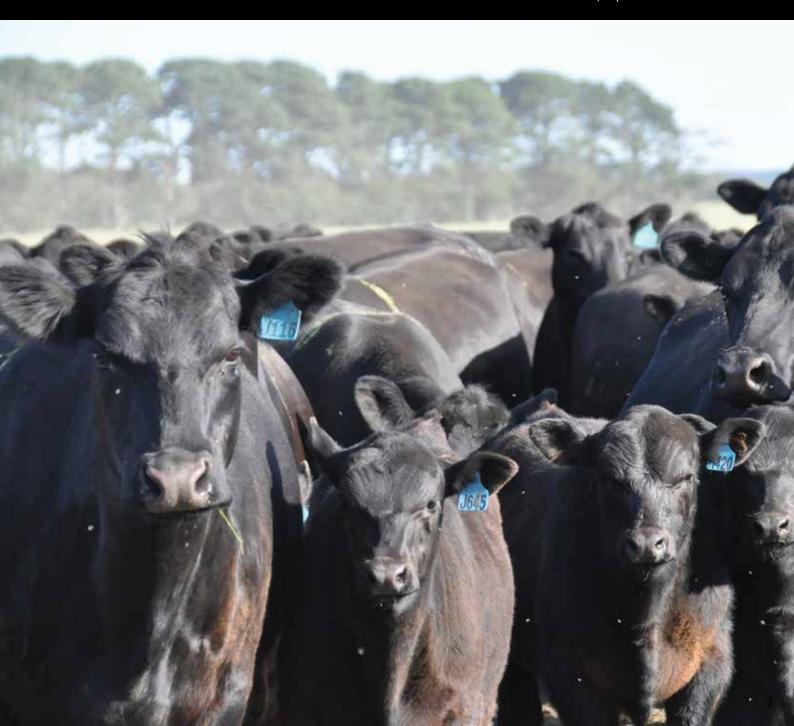
A freight free service between Mortlake, Victoria and Roma, Queensland and through Walgett, NSW, and en route via Dubbo. Onward freight arrangements from Dubbo or intermediate points will be the purchaser's responsibility.

TASMANIA, KING & FLINDERS ISLANDS

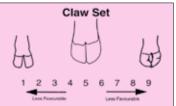
Freight assistance of \$200 per bull purchased.

CONDITIONS

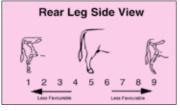
To make use of this offer and service, it is essential purchasers notify Te Mania Angus if they wish to use this service before making any other freight arrangements.

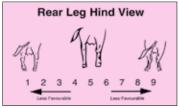

This service cannot be made available to purchasers who have already contracted for freight before talking to Te Mania Angus. All other destinations are arranged at low cost to the purchaser.

CARRIERS


Dick Smith Transport of Dubbo have been invited to attend the sale to coordinate the delivery of stock with the assistance of our Colac based carriers, Kent's Transport.

They can be contacted on:
Dick Smith Transport
02 6882 2463 or 0428 636 236 or
Kent's Transport
03 5233 1306 or 0418 520 721


*Please note freight of any females purchased will be at the cost of the purchaser.



At Te Mania Angus, all cattle are individually assessed by Jim Green. This includes:

- Assessment of all sale bulls
- Annual assessment of all stud females as 2 year-olds, 3 year-olds and 4 year-olds and all donor cows.
- All animals who do not meet the strict criteria at Te Mania Angus are culled from the stud herd.
- All raw structural scores are shown under the EBV's of each bull throughout the catalogue.
 Structural EBV's are no longer trial and have been adopted as an EBV within the full list tabled for each lot.

Structural problems in cattle have a substantial effect on both the reproductive and growth performance of a beef herd. It is widely recognized that structural problems in sires have detrimental effects on conception rates, calving patterns and thus profitability.

Similarly, females with inadequate structural characteristics are more prone to weaning lighter calves or conceiving later in the breeding season than their more functional counterparts. These structural problems are filtered through the supply chain resulting in reduced income for the producer, feedlot and thus reducing the overall productivity of the Australian Beef Industry.

The current trend for improving consistency and quality of product has shifted producers' focus, towards selecting seedstock on carcass and growth genetic traits (EBV's). Whilst, this selection

has been, and will continue to be pivotal in developing the Australian beef industry, we must not forget the fundamentals of livestock breeding.

The Beef Class Structural Assessment System was designed by the MLA, the BIA and several breed societies to address structural problems in the beef industry. Detailed analysis of three thousand animals in genetically linked herds indicated that structural characteristics such as leg and foot structure were moderately to highly heritable. BEEFXCEL now services many seedstock operations in their selection and grading of stock using the Beef Class Structural Assessment System.

Te Mania Angus is continually expanding their structural assessment program in order to optimise soundness and performance in their stock. The program involves an independent assessor from BEEFXCEL analysing the structural composition of the herd on an individual basis. The program used at Te Mania comprises of:

- An annual assessment of all sale bulls;
- An annual assessment of all breeding females and donor cows
- All animals deemed inadequate are culled.

For more information please contact: Jim Green 0402 003 137 or Liam Cardile 0409 572 570

THE BEEF CLASS STRUCTURAL ASSESSMENT SYSTEM

The Beef Class Structural Assessment System uses a 1-9 scoring system for feet and leg structure;

- A score of 5 is ideal;
- A score of 4 or 6 shows slight variation from ideal, but this includes most sound animals.
 - An animal scoring 4 or 6 would be acceptable in any breeding program;
- A score of 3 or 7 shows greater variation but would be acceptable in most commercial programs. However, seedstock producers should be vigilant and understand that this score indicates greater variation from ideal:
- A score of 2 or 8 are low scoring animals and should be looked at cautiously and inspected very closely before purchasing;
- A score of 1 or 9 should not be catalogued and are considered immediate culls.

lim Green

Liam Cardile

YOUR NEW BULL, HIS PAST & FUTURE

The calves are weaned at four months of age. Early weaning was introduced a number of years ago to enhance rumen function and to allow the females a better run through the Autumn and winter.

At Te Mania Angus all calves are weighed and tagged with an NLIS tag and stud tag on the day they are born. They are weighed again at weaning and at 400 days, when they are ultrasound scanned for marbling, fat cover and eye muscle area. Testicle measurements are taken on the bull calves. Heifers are weighed again at 600 days and all this data is submitted to Breedplan.

Cows are weighed at weaning to contribute to the Mature Cow Weight EBV.

All the cowherd mating details are recorded with Group Breedplan, which calculates a gestation length EBV. Short gestation length is a crucial EBV to use along with Birth Weight when selecting young bulls to use over heifers.

All the bulls receive 7 in I vaccinations at three-months of age, six weeks later and a booster as a yearling. They are drenched at weaning and periodically according to worm counts. They will also receive a drench before leaving the property. All Te Mania Angus bulls are examined by a veterinarian immediately prior to sale day. This examination includes palpation of the sexual anatomy and measurements of the circumference of the testicles.

All the sale bulls have been ear notched and screened for BVDV (also known as Pestivirus) and have been found to have a high immunity to BVDV and it is therefore not necessary to vaccinate. We recommend that you consult your vet regarding an ongoing BVDV programme for your herd. All the sale bulls are vaccinated for Vibriosis and given a booster. We recommend annual boosters are given to all bulls.

For information on BVDV go to www.temania.com.au

This is in line with world's best practice, and provides the highest level of protection possible against the terrible losses that Pestivirus can sometimes cause.

Structural assessments are carried out by Jim Green and are provided for each bull throughout the catalogue. This ensures that any bulls not meeting our uncompromising standards for structure are culled by an independent assessor.

When a bull leaves Te Mania Angus, he is leaving the security of a large mob and will arrive at unfamiliar territory at your property. If you can't put him into the bull mob straight away, unload him and make sure he has a steer or cow as a companion.

A young bull can move in with older bulls and settle in well, but remember, being the youngest he will get the last of the feed available because of the pecking order. The paddock needs to be reasonably large so he can keep away from the others and find adequate feed.

Young bulls are still growing fast and need enough feed to maintain their growth pattern and to be able to settle the cows quickly and efficiently.

Te Mania Angus bulls are accustomed to being handled by stockmen on motorbikes and with dogs. Most of the fences are electrified and the bulls treat them with respect. Always be considerate to your bull and handle him with respect and kindness. You will find you will receive these acts of respect back from him.

7 IN I VACCINATION

We recommend bulls be given a 7 in 1 vaccination annually, 2 to 4 weeks prior to joining.

VIBRIOSIS VACCINATION

Vibriosis is a common cause of infertility and is transmitted by bulls from one female to another. It is easily prevented by vaccination. Te Mania sale bulls have been given their primer and booster shots. For future years we recommend your bull be given an annual booster 4 to 6 weeks prior to joining.

BULL:COW RATIO

Under reasonable paddock conditions, a rising 2 year old bull should handle 40 empty cows on his own. An older bull can probably handle slightly more.

A synchronized AI program can decrease the number of bulls needed, because cows become pregnant to AI, but be aware that if the returns are returning over one week rather than three, then this will increase your bull requirement. Please contact Te Mania Angus for further clarification if required.

BEFORE PUTTING THE BULL OUT

Before mating, cows should be seen cycling in groups with male calves also hanging around. The cows must be on a rising plane of nutrition, before you put the bull out, this ensures they have the optimum chance of cycling.

OBSERVING THE BULL

A bull is most likely to develop a condition or injury that causes infertility AFTER THE JOINING PERIOD HAS STARTED. It is vital that you monitor your bull at least twice weekly to ensure that he is able to mount cows and that he looks physically normal and is not lame.

Towards the end of the mating period, you should spend some time watching the cows to make sure that large numbers of cows are not cycling. Set aside half an hour one afternoon when the cows are at rest to make sure that most of the cycling activity has stopped, and give yourself some peace of mind! Writing down the cows number at service and observing them 21 days later is the most thorough infertility check.

AFTER MATING SEASON

When the season is finished, the bull should be drenched and put away on good feed. Adequate feed will help stop fighting and help the bulls settle into their groups.

UNDERSTANDING ANGUS BREEDPLAN EBVS

WHAT IS ANGUS BREEDPLAN?

Angus BREEDPLAN is the genetic evaluation program adopted by Angus Australia for Angus and Angus influenced beef cattle. Angus BREEDPLAN uses Best Linear Unbiased Prediction (BLUP) technology to produce Estimated Breeding Values (EBVs) of recorded cattle for a range of important production traits (e.g. weight, carcase, fertility).

Angus BREEDPLAN includes pedigree, performance and genomic information from the Angus Australia and New Zealand Angus Association databases to evaluate the genetics of animals across Australia and New Zealand.

Angus BREEDPLAN analyses are conducted by the Agricultural Business Research Institute (ABRI), using software developed by the Animal Genetics and Breeding Unit (AGBU), a joint institute of NSW Agriculture and the University of New England.

Ongoing BREEDPLAN research and development is supported by Meat and Livestock Australia.

WHAT IS AN EBV?

An animal's breeding value can be defined as its genetic merit for each trait. While it is not possible to determine an animal's true breeding value, it is possible to estimate it. These estimates of an animal's true breeding value are called EBVs (Estimated Breeding Values).

USING EBVS TO COMPARE THE GENETICS OF TWO ANIMALS

Angus BREEDPLAN EBVs can be used to estimate the expected difference in the genetics of two animals, with the expected difference equating to half the difference in the EBVs of the animals, all other things being equal (e.g. they are joined to the same animal/s).

For example, a bull with a 200 Day Growth EBV of +60 would be expected to produce progeny that are, on average, 10 kg heavier at 200 days of age than a bull with a 200 Day Growth EBV of +40 kg (i.e. 20 kg difference between the sire's EBVs, then halved as the sire only contributes half the genetics).

Or similarly, a bull with an IMF EBV of ± 3.0 would be expected to produce progeny with on average, 1% more intramuscular fat in a 400 kg carcase than a bull with a IMF EBV of ± 1.0 (i.e. 2% difference between the sire's EBVs, then halved as the sire only contributes half the genetics).

USING EBVS TO BENCHMARK AN ANIMAL'S GENETICS WITH THE BREED

EBVs can also be used to benchmark an animal's genetics relative to the genetics of other Angus or Angus infused animals in Australia and New Zealand.

To benchmark an animal's genetics relative to other Angus animals, an animal's EBV can be compared to:

- the breed average EBV
- the percentile table

The current breed average EBV and percentile table is provided in these explanatory notes.

CONSIDERING ACCURACY

An accuracy value is published in association with each EBV, which is usually displayed as a percentage value immediately below the EBV.

The accuracy value provides an indication of the reliability of the EBV in estimating the animal's genetics (or true breeding value), and is an indication of the amount of information that has been used in the calculation of the EBV.

EBVs with accuracy values below 50% should be considered as preliminary or of low accuracy, 50-74% as of medium accuracy, 75-90% of medium to high accuracy, and 90% or greater as high accuracy.

DESCRIPTION OF ANGUS BREEDPLAN EBVS

EBVs are calculated for a range of traits within Angus BREEDPLAN, covering calving ease, growth, fertility, maternal performance, carcase merit, feed efficiency and structural soundness. A description of each EBV included in this sale catalogue is provided on the following pages.

ANGUS BREEDPLAN EBVS 2017

BIRTH			
Calving Ease Direct	(%)	Genetic differences in the ability of a sire's calves to be born unassisted from 2 year old heifers.	Higher EBVs indicate fewer calving difficulties in 2 year old heifers.
Calving Ease Daughters	(%)	Genetic differences in the ability of a sire's daughters to calve unassisted at 2 years of age.	Higher EBVs indicate fewer calving difficulties in 2 year old heifers.
Gestation Length	days	Genetic differences between animals in the length of time from the date of conception to the birth of the calf.	Lower EBVs indicate shorter gestation length.
Birth Weight	kg	Genetic differences between animals in calf weight at birth.	Lower EBVs indicate lighter birth
GROWTH			
200 Day Growth	kg	Genetic differences between animals in live weight at 200 days of age due to genetics for growth.	Higher EBVs indicate heavier live weight.
400 Day Weight	kg	Genetic differences between animals in live weight at 400 days of age.	Higher EBVs indicate heavier live weight.
600 Day Weight	kg	Genetic differences between animals in live weight at 600 days of age. Higher EBVs indicate heavier live weight.	Lower EBVs indicate shorter gestation length.
Mature Cow Weight	kg	Genetic differences between animals in live weight of cows at 5 years of age.	Higher EBVs indicate heavier mature weight.
Milk	kg	Genetic differences between animals in live weight at 200 days of age due to the maternal contribution of its dam.	Higher EBVs indicate heavier live weight.

ANGUS BREEDPLAN EBVS 2017

FERTILITY			
Days to Calving	kg	Genetic differences between animals in the time from the start of the joining period (i.e. when the female is introduced to a bull) until subsequent calving.	Lower EBVs indicate shorter time to calving.
Scrotal Size	cm	Genetic differences between animals in scrotal circumference at 400 days of age.	Higher EBVs indicate larger scrotal circumference.
CARCASE			
Carcase Weight	kg	Genetic differences between animals in hot standard carcase weight at 750 days of age.	Higher EBVs indicate heavier carcase weight.
Eye Muscle Area	cm2	Genetic differences between animals in eye muscle area at the 12/13th rib site in a 400 kg carcase.	Higher EBVs indicate larger eye muscle area.
Rib Fat	mm	Genetic differences between animals in fat depth at the 12/13th rib site in a 400 kg carcase.	Higher EBVs indicate more fat.
Rump Fat	mm	Genetic differences between animals in fat depth at the P8 rump site in a 400 kg carcase.	Higher EBVs indicate more fat.
Retail Beef Yield	%	Genetic differences between animals in boned out saleable meat from a 400 kg carcase.	Higher EBVs indicate higher yield.
Intramuscular Fat	%	Genetic differences between animals in intramuscular fat (marbling) at the 12/13th rib site in a 400 kg carcase.	Higher EBVs indicate more intramuscular fat.
FEED EFFICIENC	CY		
Net Feed Intake (Post Weaning)	kg/day	Genetic differences between animals in feed intake at a standard weight and rate of weight gain when animals are in a growing phase.	Lower EBVs indicate more feed efficiency.
Net Feed Intake (Feedlot)	kg/day	Genetic differences between animals in feed intake at a standard weight and rate of weight gain when animals are in a feedlot finishing phase.	Lower EBVs indicate more feed efficiency.
TEMPERAMENT			
Docility	%	Genetic differences between animals in temperament.	Higher EBVs indicate better temperament.
STRUCTURE			
Front Feet Angle	%	Genetic differences between animals in desirable front feet angle (strength of pastern, depth of heel).	Higher EBVs indicate more desirable structure.
Front Feet Claw Set	%	Genetic differences between animals in desirable front feet claw set structure (shape and evenness of claw).	Higher EBVs indicate more desirable structure.
Rear Feet Angle	%	Genetic differences between animals in desirable rear feet angle (strength of pastern, depth of heel).	Higher EBVs indicate more desirable structure.
Rear Leg Hind View	%	Genetic differences between animals in desirable rear leg structure when viewed from behind.	Higher EBVs indicate more desirable structure.
Rear Leg Side View	%	Genetic differences between animals in desirable rear leg structure when viewed from the side.	Higher EBVs indicate more desirable structure.
SELECTION INC	DEXES		
Angus Breeding Index	\$	Genetic differences between animals in net profitability per cow joined in a typical commercial self replacing herd using Angus bulls. This selection index is not specific to a particular production system or market end-point, but identifies animals that will improve overall profitability in the majority of commercial grass and grain finishing beef production systems.	Higher selection index values indicate greater profitability.
Domestic Index	\$	Genetic differences between animals in net profitability per cow joined in a commercial self replacing herd targeting the domestic supermarket trade.	Higher selection index values indicate greater profitability.
Heavy Grain Index	\$	Genetic differences between animals in net profitability per cow joined in a commercial self replacing herd targeting pasture grown steers with a 200 day feedlot finishing period for the grain fed high quality, highly marbled markets.	Higher selection index values indicate greater profitability.
Heavy Grass Index	\$	Genetic differences between animals in net profitability per cow joined in a commercial self replacing herd targeting pasture finished steers.	Higher selection index values indicate greater profitability.

PERCENTILE BANDS

	(0	GRS	+105			_o	GRS	Greater Profitability	+135	+127	+122	+119	+117	+115	+113	+111	+110	+108	+106	+105	+103	+101	66+	+97	+94	+91	98+	+78	+59	Lower Profitability
	Selection Indexes	GRN	+110			Selection Indexes	GRN	Greater Profitability	+170	+153	+144	+138	+133	+129	+125	+122	+118	+115	+112	+108	+105	+102	+98	+94	68+	+82	+74	+59	+24	Lower Profitability
	ection	DOM	+103			ection	DOM	Greater Profitability	+129	+122	+118	+115	+113	+112	+110	+108	+107	+106	+104	+103	+101	+100	+98	96+	+94	+92	88+	+82	+68	Lower Profitability
	Sel	ABI	+106			Se	ABI	Greater Profitability	+146	+135	+129	+125	+122	+119	+117	+115	+112	+110	+108	+106	+104	+101	66+	96+	+92	+88	+82	+71	+46	Lower Profitability
		RS	-0.1				RS	More Sound	+0.5	+0.5	+0.5	+0.5	+0.5	+0.4	+0.4	+0.4	+0.3	+0.3	+0.2	+0.2	+0.1	+0.0	-0.1	-0.2	-0.3	-0.4	9.0-	-1.9	-4.2	Sesa Sound
	o.	RH	-0.4			o o	RH	More Sound	+3.3	+2.2	+1.6	+1.2	+1.0	+0.7	+0.5	+0.4	+0.3	+0.1	+0.0	-0.2	-0.4	9.0-	-0.8	-1.1	-1.4	-1.7	-2.8	-4.0	-7.4	PunoS
	Structure	RA	-5			Structure	RA	More Sound	+12	6+	+7	45	45	+4	+3	+5	7	우	-1	-5	ကု	4	rὑ	-7	φ	-11	-14	-17	-24	Sound
	St	FC	-1			St	FC	More Sound	+20	+16	+13	+12	+10	%	+7	+2	+2	+3	+5	우	-	ကု	ι'n	φ	-10	-15	-20	-27	-39	punoS
		FA	-1				FA	More Sound	+20	+16	+14	+12	+10	6+	+7	9+	+5	+3	+1	0+	-1	-3	φ	ø	-11	-14	-19	-26	-34	Sound
		рос	+5	ation.			рос	More Docile	+33	+26	+21	+18	+16	+13	+11	+10	8+	9+	+5	+3	+2	9	Ċ.	ကု	-Ċ	-2	6-	-13	-20	Less
	Other	NFI-F	+0.15	genetic evaluation		Other	NFI-F	Greater Feed Efficiency	-0.44	-0.24	-0.15	-0.10	-0.05	-0.01	+0.02	+0.06	+0.09	+0.12	+0.15	+0.18	+0.21	+0.25	+0.28	+0.32	+0.36	+0.41	+0.48	+0.57	+0.74	Lower Feed Effliciency
		NFI-P	+0.09	BREEDPLAN ger			NFI-P	Greater Feed Efficiency	-0.36	-0.21	-0.14	-0.10	-0.06	-0.03	+0.00	+0.02	+0.05	+0.07	+0.09	+0.11	+0.14	+0.16	+0.19	+0.21	+0.24	+0.28	+0.33	+0.40	+0.53	Lower Feed Efficiency
		IMF	+1.6	IS BREEI			IMF	More IMF	+3.8	+3.3	+2.9	+2.7	+2.5	+2.3	+2.1	+2.0	+1.9	+1.7	+1.6	+1.5	+1.4	+1.2	+1.1	6.0+	+0.8	9.0+	+0.4	+0.1	-0.3	Less IMF
Vs		RBY	+0.3	an Angu	ABLE		RBY	Higher Yield	+2.1	+1.6	+1.3	+1.1	+0.9	+0.8	+0.7	+0.6	+0.5	+0.4	+0.3	+0.2	+0.1	+0.0	-0.1	-0.2	-0.3	-0.5	-0.7	-1.0	-1.5	Lower Yield
AVERAGE EBVS	ase	P8	-0.2	ısTasma	BANDS TABLE	ase	P8	More Fat	+2.7	+1.8	+1.3	+1.0	+0.8	+0.6	+0.4	+0.3	+0.1	+0.0	-0.2	-0.3	-0.5	-0.6	-0.8	-0.9	-1.1	-1.4	-1.6	-2.1	-3.0	Less Fat
ERAG	Carcase	∧ RIB	+0.0	17 Trar	BAN	Carcase	N RIB	More Fat	1 +2.6	+1.8	+1.3	+1.1	+0.8	+0.7	+0.5	+0.3	+0.2	+0.1	-0.1	-0.2	-0.3	-0.5	-0.6	-0.8	-0.9	-1.1	-1.4	-1.8	-2.5	Less Fat
		EMA	+4.6	uary 20	TILE		EMA	EMA EMA	+10.1	+8.1	+7.3	+6.7	+6.3	+6.0	+5.7	+5.4	+5.1	+4.9	+4.6	+4.4	+4.1	+3.8	+3.6	+3.2	+2.8	+2.4	+1.9	+1.1	-0.3	Smaller EMA
BREED		CWT	+56	analysed in the January 2017 TransTasman Angus	PERCENTILE		CWT	Heavier Carcase Weight	+79	+72	69+	+67	+65	+64	+62	+61	09+	+58	+57	+56	+54	+53	+51	+49	+47	+44	+40	+34	+23	Lighter Carcase Weight
	tility	DTC	-3.8	analysec		tility	ртс	Shorter Time to Calving	-8.0	-6.9	-6.2	-5.8	-5.4	-5.1	-4.9	-4.6	-4.4	-4.2	-4.0	-3.7	-3.5	-3.3	-3.0	-2.6	-2.2	-1.7	-1.1	-0.1	+1.7	Longer Time to Calving
	Fert	SS	+1.7	2015 drop Angus and Angus influenced animals		Fert	SS	Larger Scrotal Size	+3.4	+2.8	+2.6	+2.4	+2.2	+2.1	+2.0	+1.9	+1.8	+1.7	+1.7	+1.6	+1.5	+1.4	+1.3	+1.2	+1.1	+1.0	+0.8	+0.5	+0.0	Smaller Scrotal Size
		Milk	+15	fluence			Milk	Heavier Live Weight	+24	+21	+20	+19	+18	+17	+17	+16	+16	+15	+15	+14	+14	+13	+13	+12	+12	+11	+10	8+	45	Heavier Live Weight
		MCW	+88	Angus in			MCW	Heavier Mature Weight	+128	+115	+109	+104	+101	+98	96+	+94	+92	06+	+88	98+	+84	+82	+79	+77	+74	+71	+67	09+	+45	Lighter Mature Weight
	Growth	009	+100	gus and A		Growth	009	Heavier Live Weight	+134	+124	+119	+115	+113	+110	+108	+106	+104	+103	+101	66+	+97	+95	+93	+91	+88	+85	+81	+74	+59	Lighter Live Weight
	0	400	+77	drop Aกยู		O	400	eviJ Weight	+101	+94	06+	+88	98+	+84	+83	+81	+80	+79	+78	+76	+75	+74	+72	+71	69+	99+	+63	+59	+48	əviJ JdgiəW
		200	+42	of all 2015			200	Heavier Live Weight Heavier	+56	+52	+50	+49	+48	+47	+46	+45	+44	+43	+43	+42	+41	+40	+39	+38	+37	+35	+33	+30	+23	Lighter Live Weight Lighter
	-	ВМ	+4.3	ge EBV o		-c	BWT	Lighter Birth Weight	+0.9	+1.9	+2.4	+2.8	+3.1	+3.3	+3.5	+3.7	+3.9	+4.1	+4.3	+4.5	+4.6	+4.8	+5.0	+5.2	+5.5	+5.7	+6.1	9.9+	+7.7	Heavier Birth Weight
	Birth	GL	-3.7	the avera		Birth	GL	Shorter Gestation Length	-8.9	-7.1	-6.2	-5.7	-5.2	-4.9	-4.6	-4.3	-4.1	-3.8	-3.6	-3.4	-3.1	-2.9	-2.7	-2.4	-2.1	-1.7	-1.3	9.0-	+1.0	Longer Gestation Length
	g Ease	CEDtrs	+0.1	Breed average represents the average EBV		g Ease	CEDtrs	Less Calving Difficulty	+4.4	+3.4	+2.8	+2.4	+2.0	+1.7	+1.4	+1.1	+0.8	+0.5	+0.3	+0.0	-0.3	9.0-	-0.9	-1.2	-1.6	-2.1	-2.7	-3.6	-5.8	More Calving Difficulty
	Calving Ease	CEDir	+0.0	average		Calving Ease	CEDir	Less Calving Difficulty	+5.1	+4.0	+3.3	+2.8	+2.4	+2.0	+1.6	+1.3	+0.9	+0.6	+0.3	-0.1	-0.4	-0.8	-1.2	-1.6	-2.1	-2.7	-3.6	-4.9	-7.8	More Calving Difficulty
			Brd Avg	* Breed		%	р		1%	2%	10%	15%	70%	25%	30%	32%	40%	45%	20%	22%	%09	%59	%02	75%	%08	82%	%06	82%	%66	

TransTasman Angus BREEDPLAN genetic eval Feed Efficiency Efficiency EBVs across the 2015 drop Angus and Angus influenced animals analysed in the bands represent the distribution of Gestation The percentile

TEAM TE MANIA ONLINE ONLY COMMERCIAL FEMALE SALE

600+ ANGUS FEMALES

Live online on Auctionsplus at 3 pm straight after the bull sale on March 1st

Te Mania Angus bloodlines and/or PTIC to Te Mania Angus bulls from Team Te Mania herds across NSW, Vic and SA.

This is an outstanding opportunity to access some of the leading commercial females in the breed.

All cattle are independently assessed by AuctionsPlus and are held on vendor properties until sold. Interested purchasers are welcome to contact the vendors directly to arrange pre-sale inspections or further details.

FREIGHT ASSISTANCE FOR TEAM TE MANIA FEMALE SALE

Terms and Conditions

A freight subsidy of \$15/head will be paid by Team Te Mania direct to successful purchasers. It will be paid for females purchased during the Team Te Mania Online Female Sale, or within 24 hours of the completion of the sale (by 5pm Wednesday March 2nd). The purchaser should claim the subsidy direct from Team Te Mania, from hamish@temania.com.au.

AUCTIONSPLUS SIMULTANEOUS AUCTION

Online bidding is available only to registered users. You will need to register with AuctionsPlus, at least 48 hours prior to the sale in order to bid. For further information, please contact AuctionsPlus on 02 9262 4222.

Enquiries:

Peter Rollason HaractionsPlus Te 0419 600 323 0

Hamish McFarlane Team Te Mania 0427 641 606

2017 AUTUMN BULL SALE SUMMARY

lus Australia BREEDPLAN	CWT Carcase Intake \$INDEX	750d EMA RID RUMP RBY% IMF% IMF% NFIP NFIF DOC AB D HG G	0 +61 +6.8 +0.4 +0.8 -0.1 +3.3 +0.41 +0.47 +20 \$740 \$120 \$161 \$129 \$135 \$9 +75 +45 -24 -21 +0.7 +28 +0.11 +0.03 +16 \$147 \$126 \$172 \$135	9 +81 +8.8 +2.3 +0.9 -0.4 +3.8 +0.43 +0.66 -9 \$161 \$135 \$188 \$145	1 +74 +5.8 -0.5 -0.6 -0.7 +3.7 +0.21 +0.23 +2 \$129 \$111 \$151 \$120	7 +75 +5.3 -0.5 -0.7 -0.1 +3.4 +0.27 +0.37 -10 \$145 \$117 \$173 \$130	0 +71 +6.9 +0.5 +1.0 -0.7 +3.6 +0.59 +0.69 +2.9 \$140 \$119 \$160 \$129 0 +6.0 +6.0 +7.1 0.5 +0.0 +0.0 +0.0 +0.0 +0.51 0 +0.50 0 +	5 +69 +42 -0.2 -0.1 -1.8 +4.2 +0.35 +3.5 5120 \$101 \$141 \$111	1 +57 +5.7 +1.4 +1.4 -0.8 +3.3 +0.52 +0.54 +2.3 \$126 \$112 \$142 \$117	8 +62 +1.0 0.0 0.0 -0.8 +2.7 +0.16 +0.32 -20 \$126 \$112 \$141 \$118	9 +67 +69 -0.7 -0.7 +0.3 +3.1 +0.34 +0.44 -5 \$127 \$112 \$145 \$118	6 +78 +7.9 -1.4 -1.1 +1.0 +3.0 +0.30 +0.46 -1 \$152 \$132 \$176 \$140	9 +65 +4.8 -0.7 -0.8 +0.4 +1.8 +0.10 -0.09 -19 \$129 \$116 \$138 \$124	6 +62 +84 +0.6 +0.4 +0.4 +2.8 +0.39 +0.53 +13 \$138 \$123 \$152 \$130	7 +68 +9.1 +1.5 +1.7 +0.2 +3.4 +0.45 +0.51 +24 \$158 \$131 \$181 \$144	6 +64 +9.0 -1.2 -2.0 +1.2 +2.4 +0.14 +0.02 +12 \$118 \$112 \$127 \$114	4 +49 +64 -0.5 -1.2 +0.6 +3.0 +0.16 +0.19 +2.3 \$131 \$170 \$147 \$1.23	4 +60 +6.6 -1.1 -1.7 +1.0 +2.8 +0.22 +0.20 +26 \$128 \$120 \$145 \$119	3 +64 +5.3 +0.1 -0.1 +0.3 +2.5 +0.27 +0.48 +2 \$135 \$117 \$149 \$128	2 +81 +3.5 -0.5 -0.3 -1.0 +3.1 +0.21 +0.06 +2.1 \$119 \$99 \$137 \$112 1 +59 +68 +10 +19 -0 9 +4.1 +0.42 +0.33 +10 \$1.46 \$1.26 \$136	5 +65 +6.5 -0.4 +0.1 -0.2 +2.8 +0.21 +0.12 -1 \$131 \$119 \$143 \$126	5 +61 +10.5 +0.3 -0.6 +0.7 +3.0 +0.34 +0.52 +6 \$148 \$128 \$170 \$136	0 +60 +639 +1.2 +1.3 0.0 +3.1 +0.34 +0.47 +30 \$146 \$125 \$166 \$134	4 +69 +3.4 -0.5 +1.1 -0.7 +3.5 +0.41 +0.46 -7 \$147 \$128 \$169 \$135	1 +61 +10.4 +0.3 +0.1 +1.3 +2.0 +0.10 +0.21 -2 \$130 \$122 \$137 \$128	2 +62 +11.3 -0.9 -1.3 +1.3 +2.2 +0.44 +0.40 +0 +0 +0 +0 +0 +0 +0 +0 13 \$135 \$135 \$137	3 +68 +9.4 -1.0 -0.7 +1.4 +2.4 +0.24 +0.48 -5 \$132 \$121 \$145 \$128	4 +50 +6.0 -0.4 -1.1 +1.2 +2.0 +0.13 +0.39 -3 5144 5126 5130 5130 5140	8 +56 +1.6 -0.1 +0.1 -0.4 +2.9 +0.14 +0.21 -6 \$129 \$117 \$144 \$121	2 +/3 +2.2 -1.2 -1.5 +0.4 +2.4 +0.0/ +0.11 +4 \$136 \$118 \$126 \$12/ 2 +52 +70 +18 +14 -0.2 +3.4 +0.39 +0.50 +20 \$144 \$124 \$164 \$131	5 +69 +4.6 +1.7 +0.3 +0.2 +2.6 +0.18 +0.57 -5 \$139 \$121 \$154 \$129	0 +54 +55 +0.5 +1.9 -0.4 +3.5 +0.51 +0.73 +2.3 \$137 \$120 \$126 \$126 \$126 \$126 \$126 \$126 \$126 \$126	1 +83 +8.6 -0.3 -1.3 +0.8 +3.4 +0.26 +0.35 -9 \$150 \$125 \$175 \$137	9 +60 +107 -2.8 -2.5 +1.7 +3.1 +0.24 +0.38 +3.0 \$149 \$131 \$174 \$138	0 +70 +6.5 +1.1 +0.6 -0.9 +2.9 +0.25 +0.25 +2.1 \$118 \$103 \$125 \$116	9 +66 +4.3 -1.0 -1.1 +0.6 +2.5 +0.20 +0.43 -8 \$130 \$118 \$145 \$122	7 + 50 + 51 - 1.8 - 1.0 + 0.2 + 5.2 + 0.17 + 0.02 + 11 \$1.59 \$1.50 \$1.51 \$1.20 \$1.50 \$1.51 \$1.50	3 +59 +7.3 -1.1 -1.1 +1.1 +2.3 +0.10 +0.24 +2 \$143 \$124 \$160 \$133	5 +74 +10.9 -1.8 -2.2 +1.3 +3.0 +0.29 +0.45 O \$149 \$133 \$171 \$139 9 +67 +43 -05 -14 +0.6 +22 +0.14 +0.13 +11 \$130 \$117 \$142 \$123	3 +67 +2.1 +0.1 +1.0 -1.8 +3.5 +0.27 +0.29 +3 \$109 \$99 \$123 \$104	1 +64 +7.9 +0.3 -0.8 +0.7 +1.8 +0.01 -0.23 +10 \$121 \$111 \$125 \$119 5 +7.3 +7.0 -2.0 -2.0 +11 +3.0 +0.19 +0.19 +34 \$147 \$129 \$171 \$136	7 +76 +9.9 -2.6 -2.8 +1.4 +3.1 +0.23 +0.24 +6 \$157 \$136 \$184 \$144	2 +71 +7.5 -0.6 -1.1 +0.5 +2.3 +0.14 +0.32 -2 \$123 \$106 \$139 \$116 2 +66 +4.2 +0.8 +1.6 -2.4 +4.8 +0.49 +0.46 +16 \$129 \$108 \$156 \$116	7 +73 +12.6 -0.1 -1.1 +1.9 +2.4 +0.17 +0.32 -5 \$150 \$129 \$168 \$141
2017	Growth& Maternal Fertil	200 400 600 MWt Milk SS DC	+50 +92 +120 +96 +22 +2.8 -7.0	+52 +92 +117 +96 +18 +3.6 -9.9	+48 +90 +123 +106 +20 +1.1 -3.1	+50 +90 +129 +135 +20 +2.8 -6.7	+50 +94 +123 +90 +25 +2.8 -6.0	+32 +78 +111 +83 +19 +0.5 -3.5	+44 +84 +106 +78 +21 +2.1 -7.1	+44 +85 +113 +106 +22 +1.9 -6.8	+47 +88 +117 +91 +20 +2.6 +1.7 -4.9	+57 +101 +133 +126 +19 +2.7 -5.6	+52 +93 +125 +118 +19 +1.5 -5.9	+48 +91 +117 +82 +25 +2.2 -5.6	+55 +102 +134 +100 +33 +5.0 -7.7	+46 +80 +105 +83 +18 +0.1 -3.6	+ 10 + 10 + 10 + 10 + 10 + 10 + 10 + 10	+46 +88 +109 +91 +21 +1.8 -5.4	+46 +88 +121 +89 +20 +1.7 -5.3	+54 +97 +130 +115 +20 +1.4 -4.Z	+52 +94 +121 +97 +22 -0.3 -4.5	+46 +89 +116 +98 +24 +3.7 -7.5	+48 +90 +116 +94 +23 +2.8 -8.0 +46 +91 +108 +85 +22 +1.4 -5.0	+55 +102 +128 +105 +25 +2.6 -7.4	+44 +85 +111 +88 +20 +1.4 -3.1	+43 +84 +100 +88 +17 +4.1 -10.	+49 +90 +121 +108 +24 +2.8 -2.3	+48 +90 +118 +84 +23 +3.1 -5.4	+43 +84 +108 +84 +25 +2.8 -6.8	+50 +93 +128 +113 +15 +1.3 -6.2 +45 +84 +108 +85 +24 +33 -8.2	+46 +82 +110 +91 +22 +4.3 -8.5	+44 +62 +10/ +64 +21 +4.2 -6.0 +46 +77 +104 +72 +22 -6.2	+57 +102 +138 +110 +21 +17 -51	+46 +93 +124 +98 +25 +2.6 -3.9 +45 +84 +111 +81 +16 +0.7 -7.1	+46 +79 +114 +81 +23 0.0 -3.0	+47 +93 +119 +85 +19 +1.9 -5.9	+51 +97 +123 +1U5 +21 +U.7 -5.7 + +0.7 -5.7 +44 +82 +108 +86 +17 +0.2 -6.0	+47 +91 +124 +117 +25 +3.9 -6.3	+53 +95 +124 +107 +17 +1.8 -4.5 +49 +90 +120 +90 +20 +15 -5.0	+42 +80 +107 +78 +20 +1.0 -3.3	+53 +90 +122 +104 +20 +0.9 -4.1	+53 +103 +136 +125 +24 +2.2 -4.7	+49 +89 +126 +138 +19 +1.5 -4.2 +47 +88 +115 +95 +20 +1.7 -5.2	+56 +102 +137 +110 +24 +2.7 -4.7
	Calving Ease	Dir Dtrs GL BWt	-1.8 +1.5 -4.8 +5.5 +1.9 +2.2 -5.3 +4.8			+3.3 +0.7 -4.4 +3.8	11.1 +0.2 -5.1 +3.9	4.6		+4.0 00 00 +4.14			00 01 28 44.0		m	11.5 -2.1 -3.0 +3.4	+36 +41 -85 +38		. .	-2.5 -3.4 -3.5 +5.3 +2.4 +0.2 -5.5 +2.5		+1.5 +3.2 -6.8 +3.4		-	+2.1 +3.5 -7.3 +3.6			+1.4 +2.4 -7.5 +5.9 +2.5 +2.0 -9.5 +2.8	+5.5 +4.5 -8.7 +1.3	+0.1 +2.9 -7.4 +5.5 +1.5 +3.3 -7.3 +2.8		+2.2 +1.7 -7.5 +2.9 +1.5 +1.7 -7.2 +3.8		+3.8 +1.4 4.5 +3.1		2.5 +0.8 -5.1 +5.2	+0.8 +1.7 -5.3 +3.7	ස් +	-0.8 +3.7 -3.7 +4.7		-1.4 +2.8 -4.7 +4.9 +1.9 +0.4 -5.0 +4.3		-1.1 +1.8 -3.5 +6.6 -0.4 -2.0 -4.3 +4.0	0
		Sire	TE MANIA GARTH G67 (AI) TE MANIA JOE 1963 (AI)	TE MANIA JEROME J131 (AI)	TE MANIA GASKIN G555 (AI)	TE MANIA JACK J70 (AI)	TE MANIA GARTH G67 (AI)	TE MANIA GASKIN G555 (AI)	TE MANIA GARTH G67 (AI)	TE MANIA JACK J70 (AI)	TE MANIA GLENCOE G872 (AI)	TE MANIA JENKINS J89 (AI)	TE MANIA JACK J/U (AI)	TE MANIA GARTH G67 (AI)	TE MANIA GARTH G67 (AI)	V A R RESERVE 1111(ET)	RENNYLEA H7 (AD) (ET)	V A R RESERVE 1111(ÉT)	TE MANIA JOCK J930 (AI)	LE MANIA GASKIN G555 (AI) G A R PROPHET	G A R PROPHET	TE MANIA GARTH G67 (AI)	LE MANIA GARTH G67 (AI) V.A.R. RESERVE 1111(ET)	G A R PROPHET	RENNYLEA H7 (AI) (ET)	RENNYLEA G317 (AI)	PATHFINDER GOLDMARK D189(AI)			TE MANIA JOCK 1930 (AI) TE MANIA GARTH G67 (AI)	_	TE MANIA GARTH G67 (AI) TE MANIA GARTH G67 (AI)		TE MANIA JENKINS J89 (AI) TE MANIA JOCK 1930 (AI)	TE MANIA GASKIN G555 (AI)	TE MANIA JOCK J930 (AI)	TE MANIA JOE JS63 (AI)	TE MANIA JACK J70 (AI)	TE MANIA JENKINS J89 (AI)	TE MANIA GASKIN G555 (AI)	RENNYLEA H7 (AI) (ET) TE MANIA JENKINS 189 (AI)	TE MANIA JENKINS J89 (AI)	PATHFINDER GOLDMARK D189(AI) TE MANIA GASKIN G555 (AI)	TE MANIA JOCK J930 (AI)
		DOB	18/08/2015	01/08/2015	03/08/2015	03/08/2015	04/08/2015	01/08/2015	01/08/2015	30/07/2015	09/09/2015	10/09/2015	08/08/2015 15/08/2015	03/08/2015	31/07/2015	05/08/2015	12/08/2015	08/08/2015	13/08/2015	30/03/2015	31/07/2015	01/08/2015	13/08/2015	24/08/2015	31/08/2015	08/08/2015	08/08/2015	08/08/2015	09/08/2015	10/08/2015	10/08/2015	12/08/2015	13/08/2015	13/08/2015	14/08/2015	14/08/2015	14/08/2015	14/08/2015	15/08/2015	15/08/2015	15/08/2015	16/08/2015	16/08/2015	16/08/2015
	F	lag	L0938	L0155	L0203	10197	L0237	L0168	L0153	L0105	L1336	L1365	10362	L0201	L0119	L0261	10595	L0399	L0629	1308	L0126	L0157	10654	L1060	L1148	L0378	L0389	L0392	L0442	104/2	10492	L0577	10631	0637	96907	L0700	L0712 L0719	L0728	10783	L0788	L0791 1.0832	L0839	L0841 L0851	10852
	;	Lot	- c	e	4 4	9	_ 0	o 0	10	= \$	4 C	14	5 4	1	48	9 6	27	22	23	24	28	27	200	30	हें ल	3.8	34	98	37	B 68	40	4 4 2	43	44 45	94	47	4 4 2 6 4 9	20	2 2	53	55 55	26	57 58	59

		0	Calving Ease	Ease		Gro	Growth& Maternal	laterna		Fert	Fertility CWT	-M		Car	Carcase		=	ntake			SINDEX	X	
		Dir	Dtrs (GL B	wt 20	00 400	009 0	Mwt	MILK	SS	D C	750d EMA	-MA	RIB RI	RUMP RBY%		MF% NFIP	NFIF	00Q	AB D HG G	Q	HG	g
ш	BREED AVERAGE EBVS FOR 2015 BORN CALVES	0.0	+0.1 =:	3.7 +4	.3 +4	12 +7	-3.7 +4.3 +42 +77 +100 +88 +15 +1.7 -3.8 +56 +4.6 0.0 -0.2 +0.3 +1.6 +0.09 +0.15 +5 \$106 \$103 \$110 \$105	0 +88	+15	+1.7	-3.8	+99+	4.6	0.0	7.2 +0	.3 +1	0.0+6	9+0.15	9+2	\$106	\$103	110\$	105
⊢	TE MANIA BULL SALE AVERAGE	+1.6	+1.7 -4	5.7 +3	7+ 9'9	.8+ 8t	-5.7 +3.6 +48 +87 +115 +94 +20 +2.0 -5.6 +63 +6.5 -0.2 -0.3 +0.2 +3.0 +0.31 +0.31 +9.31 +9.31 +9.31 +9.31 +0	+64	+20	+2.0	-5.6	+63	-6.5	0.2 -(1.3 +0	.2 +3.	0+0.3	1+0.31	6+	\$134	\$119	150\$	125
	Animals with EBVs and Indexes highlighted with shading are in the top 10% of	op 10%	of the	Angus	s bree	d. Wit	f the Angus breed. With the exception of fat which has no shading, and Mature Weight which is shaded if the value is < 100.	excepti	on of f	at whi	ch has	ts on s	ading	, and l	Aature	Weig	ht whic	ls si h	naded	if the	/alue	s < 10	o i

2017 AUTUMN BULL SALE SUMMARY

1	П		27	20 20 20	26	37	98	- L	23	34	12	54	80	~ o	9 9	24	8 9	200	000	2 00	σα	7.0	ω œ	24	20	28	30	<u>ත</u> සූ	24	28	10	97.	24	00 0	32	D 4	40 04	33
	×	9 Эн	60 \$1 64 \$1; 44 \$1;	26 \$1 50 \$1	39 \$11	76 \$1	19 \$1	31 \$12	52 \$11.	69 \$1 1	79 \$1.	35 \$1	69 \$1	48 \$1	38	41 \$11	18 \$1	34 \$1	62 \$1	36 41 65 \$1	53 \$11	35 \$1	71 \$1	27 \$11.	50 8 1	64 \$11. 58 \$1	56 \$11	36 \$1	63 \$1	46 \$1. 53 \$1	32 \$1	45 \$1	48 \$1.	45 \$1 33 \$1	51 \$1	32 \$1	71 \$1.	32 \$1 54 \$1
	\$INDEX	Н	25 \$1 18 \$1 14 \$1	103 \$1	16 8 81 81	28 \$1	93 \$1	20 \$1	16 \$1	28 \$1 23 \$1	28 \$1	14 \$1	25 \$1	17 47	14 \$1	21 \$1	10 \$1	75 47 25 41	20 \$1	24 \$1	30 \$1	- 01	27 81	8 1	- -	25 \$1	25 \$1	32 \$1	32 \$1	22 \$1	9 61	10 \$1 27 \$1	23 \$1	32 \$1 13 \$1	33 \$1	5 4	35 \$1	27 \$1
	0 ,	AB	42 \$1 39 \$1 30 \$1	16 \$1 34 \$1	34 \$1 24 \$1	51 \$1	12 \$	24 \$1	33 \$1	46 \$1 38 \$1	55 \$1	21 \$1	49 \$1	26 \$1	22 \$1	30 \$1	18 \$1	20 \$1 45 \$1	40 \$1	43 \$1	37 \$1	22 \$1	28 \$1	26 \$1	30 6	38 81	39 \$1	54 \$1	47 \$1	34 8 1	22 \$1	26 \$1	33 \$1	35 \$1 23 \$1	38 \$1	21 \$1	15 ∉ 50 \$1	18 \$1 39 \$1
	Н	DOC 🕨	44 81 24 81 81 81 81 81 81 81 81 81 81 81 81 81	10 \$1	₩ ₩ ₩	28 \$1	o o	30 \$1	36	16 20 8. 9.	28 \$1	34 81	17	36 89	9	25 81	15 \$1	29 e2	36 \$1	15	5 rd	, φ • φ	25 81	. Ω €	16 81	55 85 84 84	3 -	φ 4 9	20 \$1	29	13 \$	-7 35 \$1	= = = = = = = = = = = = = = = = = = =	10 \$1	9	24 81	F 0	9 8
Z	0	ш	. 44 . 54 . 20 . +	1.49	.27	+ 69	. 29	123 +	76 +	115 +	199	+ + + + + + + + + + + + + + + + + + + +	+	92 +	£.	33	+	+ + +	,52 +	+ + 69.	5.20	3 =	+ + 5/10 30 130	88	3 8	533	+	90.0	+ 47	4 +	+	93	+ +	+ 1	90.0	+ +	.38	. 06 -
LAN	Intake	FIP NFI	124 +6 133 +6 127 +6	2.24 5.27 5.27	5 T T	52 +6	37 + 50	93 83 83 83	1.59 ±0	2.5 2.5	48 +0	33 +0	34 +0	9.14 13.14 13.14 13.14	115 0	92 48 4 수	2 P '	7 4 4. 145 + 5	47 +0	4.2. 4.5.	1.15 1.75 1.05 1.05	5 5 5 7	37 +0	23	37 + 1	23 +	19 + 1	7 F	44 +	5 5	29 +0	21 +0	11	1.13 o 1.12 t	112 +0	3.23	3.45 3.55 3.55 3.55	.06 d
EDP		IMF% NFI	2.9 + + + + + + + + + + + + + + + + + + +	3.0 +	2.6	9.0	2.6	36.6	3.5	3.4	3.6	3.0 +	+ Te	7 + +	2.9	2.5	9 6 6	3000	3.8	333	2.9	3.0	333 + +0	9.0	3.5	888	2.7	950	0 F	2.9	27.7	3.5	2.5	2.3 +	2.0	3.4 +	3.2 + + + + + + + + + + + + + + + + + + +	2.9
REE		RBY% IN	0.6 1.2 1.0 1.0 1.0	0.9 1.2 + +	0.4	+ + PO	2.0 +	+ + 60	9.0	0.8	4 +	0.7	0.0	1.4	+ 9.0	+ + + 0000	2.0 +	+ + 501	4 .	4 + 4	- 1 2 α 4 + +	0.2	0.2	9.0	0.4	0.3	+ 0.8 0.8	0.4	100	0.2	6.0	100		+2.9 +	2.1	4 +	7.3 1.5 +	+ +
В	Carcase	Rump RE	1.5 +	1.7 +	1.2 +	1.7	2.5	1.3	(S)	2.3	12 -	4 60	0.4	100	2.0 +	+ 1 90 90 1	2.5	4.17	6.0	0.0	+ +	0.2	1.2	+ + +	- 0	10.5	12.	3.5	+	+ +	+ 8.0	1.2	0.5	2.8	8 6	5.0	2.4	2.0
alia	Car	Rib R	2.5 2.5 4 0.2 4	1.5	- 60	+ 900	17.	7.7	+ 6.0	2.4	+ 4.1	0.4	+	0.3	2.4	5.07	0.8	- 50.5 - 51.5 - + +	1.0	+ + 0.80	4.7	0.2	+ + 6.0	+ 0.0	+ +	1.7	1.6	0.2	+ 6.0	+ + 8,4	0.8	0.20	0.4	2.1	1.7	1 +	17	0.9 +
Australia		EMA	10.0 14.2 14.5	+7.7	+6.4 +4.3	16.5	4.2	+6.5	19.64	. 4.0	8.64	- 6.7+	+9.6+	. 65+	10.9	17.1	0.00	5.4 - 4.1	68.6	+3.6	0.4	25.6	10.3	19.6	F F 6.64	+6.1	5.4	5.2	6.9	17.1	- - - - - - - - - - - - - - - - - - -	. τ - α - α	7.5	+4.2	18.0	2.7	11.0	+0.7
-	CWT	,50d F	+78 +64 +59	 299 499	 	7 4 6 5	31,	+67 +67	. 9	+72	9	85 4	4	1,75	9	τ φ.φ.	3 9 3	44	69	64	89	149	+ T	629	7 5	+57	199	151	154	147	145	+ 73	45	+ + + 09	691	229	8/4	+ 99 4
Angus		DC 7	7.5 6.9 6.9	0.8	6.7	00	0.00	2 4 5	6.1	5.5	8.2	6 4 6	7.0	∞ ∈		9.6	4 6 6	.√.	5.3	9.2	4 4	3.3	φ.φ 8.4	5.7	 6.8	5.8	5.2	4.6	7.4	် တက် တက်	4.6	5.7	7.1	7.4	5.3	6.7	8 7 8 7	2 6
An	Fertility	SS	0.00 0.00 0.00	+4.0 +2.0	 250 250	12.8	9.0	117	-5.0	် တက္ ကု	+2.4	7.6	15	0.8	+0.3	5 0.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	5 -		8 4	+3.0	T 7	4.	ζ ζ 2 4		5.7	±3.7	+2.4	 5 5	+2.8	5.7	+1.2	 44.0	-5.6	7.5 3.6	7. 1.5 1.	5.4	 5.5 	+0.9 +2.4
2017		Milk	+1+ +19 +26	+24	+ + 6 7	+22 .	+17	+20 +32	+24	+20 +19 +19	+22	+20	61+	+ + + +	2 2 2	+16	-19	+718	+25	5 4	± ±	+23	+37	- 25	27 124	+13	- 23 - 23	+22	+24	+22	+21	+17	- 207	+ 19	+28	+27	+20 +	+21
	ernal	M Wt	+107 +94 +79	+101	+116	66+	+103	479 +97	+102	+127	+89	5/+	+102	+106	+104	+95 +63	+108	462	101	+86	+87	+74	+ 58 + 83	+73	784 +86	+84	+102	+78	+73	+62 +85	+75	+83 +67	+92	+94	104	- 107 +68 +68	/6+ +83	+108
uar	& Mat	009	+112 +107 +115	+122 +109	+120 +	+120	117	+134	+104	+129	+115	+97	+120	+124	+124	+108	+123	108	+113	+103	1115	+107	+103	901+	+112	+108 +08 +08	+122	+110	+110	+102	86+	+109	+102	+114 +104 =	+118	2 6 5	9 1 1 9	+112
January	Growth& Maternal	400	+86 +82 +87	+87	\$ \$	+9 +	+82	+85	490	864	485	+78	88	+91 F84	96	+96	68+	+87 +87	\$ £ 5	194 194 194 194	+ 94 - 84	+77	+ 62	+82	+84 +84	+84	+94	+111	+89	+80	8	φ φ	+82	+ 6+ + 8+	+97	, p + 6 + 94 + 97	+8Z +9Z	98
		200	+ 449 + 45 + 49	+48	+47	+49	+45	+ 49 + 55	+41	+51	+47	+ + 4 + 43	+21	+449 87+	+55	+47 +47	+52	+46 +46	+46	+50	+53	+42	+41	+43	+2+47	+50	+49	+43	+47	+43	+43	+45	+44	+52 +45	95	+ + 543	+44	+47
		B Wt	4.55 4.55 5.54	+6.2 +2.3	+4.9	+3.6	+4.2	+3.6 +5.5	+1.1	+2.3 +3.9	φ	+2.6 +2.6	+4.5	4 + 4 α α	+5.2	43.8	45.2 15.2	+2.6 +3.4	41.9	+4.7	9,44	+3.9	+2.2	+2.5	ρ. 4+ Β. 4-	+3.5	+2.8	4 4 6 8	÷.	+2.1	+1.1	+2.2	+2.1	+3.7	+1.4	+3.5	+3.4	+3.5
	g Ease	GL	ကု မှ ကု မှ	2.7	6.6	6 6 5	-5.7	ဖ ဗု ဗု	9.6	φ φ -	-6.7	-2.0	-10.0	က် က ယ 4	6,6	9 q	4	4 φ 5 σ	9.6	-10.9	9.6	6 6	6 4	49.4	6 4 9 9	4 4	6.4	ယ် 4 ထ ပ	-10.5	4.6	- φ	9.5 4.4	r 89 φ	4 4	6.3	0 6	4 6	-3.9
	Calving	Dtrs	5.1 42.1 42.3	+1.5	+3.6 -1.9	+2.9	4.6	9 9	+3.6	+3.9	+4.6	-2.6 +3.8	+4.1	- o	-1.0	+ + 2	171+	+0.6	+3.3	+5.8 +5.8	+3.4	+2.7	- α	+3.5	+7.7 -0.7	+ + 8, 4 8, 8	+1.7	+ + 2.8 + 3.8	+4.3	+4.0	+2.0	± ±	+2.9	4 6 6	+3.3	- 7 2.4	-5.5 +4.7	+3.2
		Dir	+4.4 +3.0 -1.8	-3.6 +3.2	7 7	± 55.	5.7	φ φ	+4.5	+4.4		5 5 2	+2.7	9,5	- 6	+2.4	8 7	+ + + 1.9	+3.8	+5.9	+ +	9.0	- α - Τ	+2.3	71.5	+3.2	+2.5	9 G		+ 5.5		+3.3	+6.0	+2.7	+6.1		+5.4	+4.3
,																																						
																_																						
			TE MANIA JEROME J131 (AI) TE MANIA JEROME J131 (AI) TE MANIA GARTH G67 (AI)	0189(AI)	PATHFINDER GOLDMARK D189(AI) TE MANIA GLENCOE G872 (AI)											VERMONT DRAMBUIE D057(AI)(ET) TE MANIA GAPTH G67 (AI)					=																_	
		Sire	TE MANIA JEROME J131 (AI) TE MANIA JEROME J131 (AI) TE MANIA GARTH G67 (AI)	PATHFINDER GOLDMARK D TE MANIA JENKINS J89 (AI)	MARK [: G872 (TE MANIA GARTH G67 (AI)	TE MANIA GASKIN G555 (AI)	1(ET) 67 (AI)	67 (AI)	TE MANIA JOE J963 (AI) TE MANIA JOE J963 (AI)	67 (AI)	1(ET) 67 (AI)	67 (AI)	555 (Al	(A)	IE D057	E)	549 (AI) 67 (AI)	67 (AI)	955 (AI B1 (AI)	E MANIA HAMPER H199 (AI)	357 S	97 (AI) 87 (AI)) (E)	97 (AI) 67 (AI)	TE MANIA GALAXY G49 (AI) TE MANIA GARTH G67 (AI)	J89 (AI)	RD 357	67 (AI)	67 (AI) 67 (AI)	1(ET)	TE MANIA GASKIN G555 (AI) TE MANIA GARTH G67 (AI)	1(ET)	(A)	1(ET)	TE MANIA GARTH G67 (AI)	TE MANIA GASKIN G555 (AI) TE MANIA JENKINS J89 (AI)	TE MANIA JACK J70 (AI) TE MANIA JENKINS J89 (AI)
			RTH G	GOLDI NKINS,	GOLDI	RTHG	SKING	VE 111 RTH G	RTHG	Б 1963 1963	RTH G	VE 111 RTH G	RTHG	SKIN G PTH Q	E 1963	SAMBUI PTH G	7 (A) (B)	RTHG	RTH G	RKLEY	MPER I	STWAF	RIH	7 (Al) (F	RTH	LAXY O	KINS	STWAF	RTHG	RTH	VE 111	SKIN G RTH Q	VE 111	K 17	VE 111	RTHG	SKIN G	OK 570 NKINS
			NIA JEI NIA JEI NIA GA	-INDER NIA JEI	FINDER NA GL	TE MANIA GARTI	NIA GA	V A R RESERVE 1111(ET) TE MANIA GARTH G67 (AI	NIA GA	OL AIN	TE MANIA GARTH G67 (AI)	RESER NIA GA	NIA GA	NIA GA	NIA JO	ONT DE	RENNYLEA H7 (AI) (ET)	NIA GA	NIA GA	TE MANIA GASKIN GSSS (AI) TE MANIA BERKLEY B1 (AI)	TE MANIA HAMPER H1 SVDGENI TRIIST 6338	WERNER WESTWARD 357	TE MANIA GARTH G67 (AI) TE MANIA GARTH G67 (AI)	YLEA H	LE MANIA GARTH G67 (AL) TE MANIA GARTH G67 (AL)	NIA GA	NIA JE	WERNER WESTWARD 357 G A R TWINHFARTS 8418	NIA GA	TE MANIA GARTH G67 (AI) TE MANIA GARTH G67 (AI)	V A R RESERVE 1111(ET)	NIA GA	V A R RESERVE 1111(ET)	V A R RESERVE 1111(ET) TE MANIA JACK J70 (AI)	V A R RESERVE 1111(ET)	NIA GA	5 Y Y Y	NIA JA
			TE M/ TE M/ TE M/	PATH TE M/	PATH TE M/	TE MA	Z Z	V A R	TE MA	Ž Ž	TE M	V A R RESERVE 1111(ET)	TE M	TE M	TE MA	VERM	NE N	TE MANIA GALAXY G49 (AI) TE MANIA GARTH G67 (AI)	TE M	TE M	TE MA	WER	Ž Ž	RENN	TE W	TE W	TE M/	WER A A R	TE M	W W	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	TE M	V A R	V A R	V A R		A W	TE M/
		DOB	2015 2015 2015	2015 2015	2015 2015	2015	2015				15	015			015	2015		55	015	55	0/08/2015	2015	2015 2015	2015	2015	2015	2015	5/09/2015	6/07/2015	2015	2015	2015	7/2015	2015 2015	2015	2015	2015 2015	2015
		Ω	17/08/2015 17/08/2015 18/08/2015	19/08/2015 20/08/2015	13/09/2015	28/07/2015	01/08/	02/08/	07/08/	07/08/2	08/08/20	08/08/2015	14/08/2015	14/08/2	17/08/2	18/08/2	18/08/2015	22/08/20	24/08/	30/08/2015	30/08/20	03/09/20	04/09/	07/09/2015	07/09/2015	08/09/20	15/09/20	15/09/20	26/07/	27/07/ 28/07/	30/07/2015	30/07/20	31/07/	01/08/2015	01/08/20	02/08/201	02/08/201	05/08/20
		g	.0873 .0885 .0934	.0962 .0999	L1402 L1515	0063	49	.0186 0219	0300	0305	0342	0508	0682	0597	£	0915	0918	1032	53	28	88	1186	223	382	1292	L1317	115	1418	129	0040	7600	8 =	25	L0158 L0158	L0164	83	0228	0253 0273
		Tag	.0877 1088/ 1093/	L0962 L0999	7	35	L0149	<u> </u>	33	3 8	í	701	0	07	1087	10915	301	L0989	L1053	ΞΞ	= =	=		=======================================		112	114	14	0	00040	33	<u> </u>	2 5	<u> </u>	ě	10183	000	707
		Lot	61 62 62	63	99	67	99	70	72	73	75	76	78	50	3.5	82	3 8 8	£ 88	87	888	8 6	92	93	38	9.6	888	300	52	103	104	98	107	98	2 = =	112	5 1	116	117
		_	L																								•		-		•		•					

	Cal	Calving Ea	Ease		Gro	Growth& Maternal	Materr	ıal	Fe	Fertility	CW.			Carcase	ase		_	ntake	_	_	•	SINDEX	×	
	Dir Dt	rs GL	L Bw	wt 20(0 40	00 00	Mw	Λ MIL	K SS) D C	7500)d EM	A RII	B RUN	1P RBY	WIME	% NFI	P NF	IF Do	oc A	В	Ė	PHG	G
BREED AVERAGE EBVS FOR 2015 BORN CALVES	0.0 +0.1		7 +4	.3 +4	2 +7	-3.7 +4.3 +42 +77 +100 +88 +15 +1.7 -3.8 +56 +4.6 0.0 -0.2 +0.3 +1.6 +0.09 +0.15	9+ 00	+ 1	5 +1.	7 -3.6	9 +5	6 +4.	6 0.0	0-0	2 +0.	3 +1.	.0+9.	.0+60	15 +	+5 \$106	06 \$1	03.87	110	\$103 \$110 \$105
TE MANIA BULL SALE AVERAGE	+1.6 +1	7.	7 +3	.6 +4	3+	-5.7 +3.6 +48 +87 +115 +94 +20 +2.0 -5.6 +63 +6.5 -0.2 -0.3 +0.2 +3.0 +0.31+0.31 +9 8	15 +9	4 +2	0 +2.	0 -5.0	9+	3 +6.	5 -0.	2 -0.	3 +0.	2 +3.	.0+0.	31+0.:	31 +	9 \$1	\$134\$1	198	150	119 \$150 \$125

Animals with EBVs and Indexes highlighted with shading are in the top 10% of the Angus breed. With the exception of fat which has no shading, and Mature Weight which is shaded if the value is < 100.

2017 AUTUMN BULL SALE SUMMARY

		O	\$133 \$120	\$115	\$137	\$130	\$123 \$129	\$120	\$122	\$130	\$112	\$129	0710	\$124	\$119	\$109	#12G	\$116	\$129	\$112	\$133	\$121	\$118	\$105	\$107	\$129	\$117	\$126	\$123	\$134	\$135	\$131	\$112	\$116	\$122	\$132	8 119	\$118	\$142 \$123	\$124
	\$INDEX	HG	\$163	\$134	\$180	\$172	\$140	\$137	\$127	\$156	\$127	\$150	014	\$144	\$148	\$122	4163	\$131	1 \$156	\$120	\$135	\$148	\$167	\$119	\$116	\$136	\$122	\$156	\$158	\$137	\$179	\$163	\$127	\$143	\$144	\$170	\$153	\$154	\$179	\$129
	\$II	3 D	44 \$126 28 \$113	22 \$116	53 \$129	146 \$122	28 \$117 36 \$121	26 \$118	24 \$118	29	17 \$107	35 \$124	21 0 01 10	31 \$119	29 \$114	13 \$106	37 \$124	21 \$109	40 \$124	114 \$109	126 \$124 126 \$120	32 \$113	34 \$108	108 \$98 103 \$103	•••	31 \$123	5110	37 \$120	36 \$118	46 \$124 26 \$111	50 \$125	41 \$130	17 \$106	25 \$112	29 \$117	46 \$123	30 \$115	31 \$114	30 \$1128	25 \$110
		DOC AB	0 \$12 +3 \$12	11 81	20 \$15	915	21.891.	912	9	35 814	9	30 \$10	9 6	7 81	3 \$12	12 \$1.	Ž V c	38 81	9 \$17	0 84	14 \$1	34 \$10	16 \$10	51 81 81 81 81 81	4	40 81	9118	39 \$10	ώ! Ω	. t.	9	17 \$1.	5.5	5 0	15 \$1	5 812	21-6-17	6 \$10	άά	913
z	e	NFIF D	0.46	0.32 +	0.60	0.53	0.21	0.27	0.16	0.33	0.29	0.20	2000	0.36	0.21	0.28 +	92.0	0.40	69.0	0.54	0.00	0.43 +	0.17	0.14	0.32	0.26	0.44	0.58	0.72	0.40	0.42	0.07	0.46	0.00	0.02	0.56	0.44	0.13	0.45	16
PLA	Intake	NFIP	+0.41 +	+0.23 +	+0.37	+0.28 +	+ 15.26 +	+0.24 +	÷ :	+0.32 +	+010+	+0.22	10.08	+ 88 0+	+0.12 +	40.18	1 2 2	+0.34	+0.31 +	+0.24 +	+ 020+	+0.31 +	+ 61.0+	+ + 0.10 + 0.15 + + 0.15	+0 18	555	100	+0.41 +	+ 1410+	1 00 0+	+0.17	+0.03	+0.22	+0.16	+0.12 +	+0.23 +	+0.42	+ 60.0+	+0.29+	+0.07
BREEDPLAN		%∃WI	+3.9	+2.8	10.4	+3.6	+2.4	+2.4		+2.9	5	42.8	2 9	127	+2.9	+2.5	+2.5	+2.6	+2.9	250	5.5	+2.9	+4.1	+3.1	+23	4 5	+1.5	+2.8	+3.7	2 7	43.55	+2.7	+2.4	4 4 5	+2.4	(n) (n)	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	+3.0	+3.2	α: +
3RE	se	RBY%	- 0 - 0 - 0	+0.7	0 @ 7 Q	6.9	9 P	+1.4	± 0	9 49	+	1.0	0 0	+0.8	+0.5	e e e	41.2	9 9	+0.1	40.7	+ 0.1 0.0	90	-10	- C	10-	6.0+	+ +	+0.3	-	4.4	40.2	+1.2	40.2	- 8 - 9 - 9	40.1	40,0	9 O	9.0	+0.5 4.0+	+1
	Carcase	Rump	3 +1.1	3 -0.3	9 9	-1.6	120	-13	o (+1.6	1.2		7 7	0.2	5 -0.2	40.5	7.5	1 + 16	9.0+ 6	9 9	77	6.0+ 6		9 9	-10	1.0	99	+0.5	7	500	101	1 -2.7	42.2	25.4	9 9	9 4	4.04	0.0	2007	-18
stra		A Rib	2 +0.8 4 -0.6	9	174	5 -0.2	500	7 -0.4	0.0	2 + +	1 0.8	5 -10	0.0	7 0.2	1 0.5	0.0	50	7.0+	4 +2.5	4 +0.2	4 - 1.8	6 +0.5	4 -0.3	4 6	90	9.0	4 +0.1	8 +0.2	9	7.0	2 0.0	4 -2.4	7.5	207	4 -1.6	C: 0	1 - 1	- P	- P	10
Angus Australia	Δ	750d EMA	55 +6. 74 +7.	52 +7	282	70 +8	2 2	β+ 60	111	44 44	57 +5	90	2 9	24	44 61	24	7+ +	1 + 2 00	92 49	94	9.5	54 +3	75 +4	92 42	19 4	29	0 80	44 +4	53 +5	200	17	99 +2	9 9	57 +7	+1	55 +8	57	99	21 4	53
snb	cw]	DC 75		5.6 +5	9.8	9.0	2 F 2 M	4.9	4.0	2 7 7 0 0 0	4.5	9.0	2 6	4 4	7 6.9	3.7	+ + - o	F +	9.9	4.3	900	3.8 +6	÷ ;	2.58	67	4 4	1 4	3.2 +	¥ 8 2	7.5	14 0.7	4.6	4.0	200	5.3	+ + +	5.5	7.6	2 10	32
An	Fertility	38	H.3 0.3	9.5	1 T	1.4	220	7 2	9.0	17.7 13.6 11.1	12.8	4.4	- 6	2.3	14.0	5.53	4.24	2.52	13.5	7 G G	212	+2.9 →	4.6	9 G 9 G	9.0	515 1 5	222	4.5	2.0	2 Z	191	1.5	72.4	4.04	13.1	0.5	2 F	42.6	# Y	9 9
017		Milk	+27 +	+ 10	0 00	+18	+23	61+	+16	+19	+18	+22	5 6	+165	+17	+14	+ 124 + 24	+17	+14	+22	17+	+20	+ ;	+74	+20	+17	+26	+20	+14	ρ σ + +	+22	+17	+24	+19	+22	+24	+23	+16	2 0	5
January 201	ternal	M Wt	+80 +88	+77	28+	+95	+ 103 + 103 + 103	190	8	2000	+107	+66+ 50-	1107	+88	+101	+106	78+ +84	192	+83	+83	478	+98	+137	+86	68+	£6,	198	06+	584	+ 22	+119	+105	66+ 1	86+	+111	+98	+94	+124	+107	+82
านลา	Growth& Maternal	009	+114	+92	+115	+107	+118	+106	+ 5	+113	+108	+115	1 1 2 1 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3	+115	+115	4114	+11/5	+109	+100	+100	+107	+107	+123	+ 108 + 54	56	+123	+104	+106	+102	+90+	+127	+122	+107	+1120	+126	+112	+120	+113	+128	+115
Jar	Grow	400	+94 +94	+77	1489	+80	/8+ +83	+83	984	+ 68	+76	+ 68	ο α + +	- 68 + 83	+86	489	β+ 6+	+ +	+79	+75	+ 84 5 44	+80	+86	+77	+76	+92	+73	+80	8	+ 42 + 43	+92	+67	+//	+86	96+	+93	99	+86	£ 5	+87
		t 200	55 454 454	+43	+52	+46	+49	+47	+49	+444	+43	+49	044	100	3 +47	99	+ 4 8 4	+ 44	+44	+41	443	+44	+49	+ 443	+42	+54	4 4	+42	+43	+ 45	199	+48	4 5	4 4 4	420	+47	+49	+45	42	+50
	ıse	. B Wt	3 +1.2 2 +3.2	5 +3.0	7 +2.8	3 +2.0	42.8	44.4	9 +4.1	7 +4.4	9 +4.5	11.2	1 4	7 +5.6	7 +4.8	5 +5.7	7 + 1.2	144.1	3 +0.6	43.4	177	2 +3.3	5.2	5 +2.7	9 +2 6	2 +3.5	7 +2.9	5.5	5 +2.4	+ + 0.0	1+5.5	43.4	+4.2	+ +6.0	5 +3.6	+2.1	3 45.3	+3.1	4 45.7	+3.7
	/ing Ease	rs Gl	7 -0.2	2 -1.1	5 - 6	0	~ 9 4 4	÷	7 6	7 9	4	φ 6 +	9 0	100	5 5	9.4.6	Ω Ω α		9	0.0	5 C	.3 -5.2	9.6	2 C	3	70	† iq	0 -5.6	8.0	n e	4 6	3 20	9.5	4 4	8 -2 (40	54	6.77	φ φ - -	77
	Calvin	Dir Dtrs	+2.8 +3.2 -2.1 -1.7	+4.0 -0.2			+2.5 +1.7 +0.7 +0.6		+0.3 +2			+5.4 +3.9	41.0	20	-0.8 -0.5		4.9 +3.5	+0.9		+3.4 +4.0	+4.1 +5. +4.0 +3.	+	7	+1.6 -0.2 +0.9 +4.0	-	+1.2 +2.7				+3.4 +2.3		+3.6 +3.3	_	+5.6 +5.1 -2.8 -1.4		+4.3 +2				+24 +28
			+ 1	+	7	+	+ +	Ŧ	Ŧ.	+ Ŧ	+	+ -	+ `	1 1	Υ	7	Ť	ŕŦ	Ŧ	+	ŤŤ	+	Ŧ	+ +	+	+ -	F ¥	+	Ť	1 +	Ŧ	+	Ŧ	+ 1	+	+ -	FY	Ť	1 1	+
						_					189(AI)		(141)	<u> </u>	AI)	AI)			_	189(AI)				189(AI)	189(AI)	746	189(AI)		_	_			189(AI)			(4)	Ē.			
		Sire		1(ET)	J131 (AI)	J131 (Al	J89 (AI)	1(ET)	ET)	67 (AI)	MARK D	J89 (AI)	E I)	3452 (AI	. G429 (. G429 (v	J89 (AI)	67 (Al)	J131 (AI)	MARK D	(AI) 189 (AI)	67 (AI)	3555 (AI)	3555 (AI) MARK D	MARKD	NSWE	MARK D	67 (AI)	J131 (Al)	0 (AI) 1131 (AI)	0 (AI)	J89 (AI)	MARK D	(A) (A)	(AI)	J131 (AI)	67 (AI)	(AI)	(A)	Œ
			HET HET	3VE 111	ROME	ROME	NKINS. HET	₹VE 111	17 (Al) (I	ARTH G	3 GOLD	NKINS.		ENEVA	ENERAL	ENERAL	NKINS.	ARTH G	ROME.	3 GOLD	NKINS.	ARTH G	ASKING	ASKIN G	3 GOLD	RIGHT A	3 GOLD	ARTH G	ROME	CK J93	OCK 193	NKINS	3 GOLD	JE 1353	DE 1963	ROME.	ARTH G	CK 370	JCK J93 47 (Al) (1	17 (Al) (I
			G A R PROPHE G A R PROPHE	V A R RESERVE 1111(ET)	AANIA JE	TE MANIA JEROME J131 (AI)	TE MANIA JENKINS J89 (AI) G A R PROPHET	VARRESERVE 1111(ET)	RENNYLEA H7 (AI) (ET)	TE MANIA GARTH G67 (AI)	PATHFINDER GOLDMARK D189(AI)	TE MANIA JENKINS J89 (AI)	AANIAD	TE MANIA GENEVA G452 (AI)	TE MANIA GENERAL G429 (AI)	MANIA G	LE MANIA JENKINS J89 (AI)	FE MANIA GARTH G67 (AI)	TE MANIA JEROME J131 (AI)	PATHFINDER GOLDMARK D189(AI)	F MANIA JOE J363 (AI)	FE MANIA GARTH G67 (AI)	TE MANIA GASKIN G555 (AI)	TE MANIA GASKIN G555 (AI) PATHFINDER GOI DMARK D189(AI)	PATHFINDER GOLDMARK D189(AI)	CONNEALY RIGHT ANSWER 746	LE MAINE JEINNINS 368 (AL) PATHEINDER GOLDMARK D189(AL)	TE MANIA GARTH G67 (AI)	TE MANIA JEROME J131 (AI)	LE MANIA JOCK J930 (AL)	TE MANIA JOCK J930 (AI)	TE MANIA JENKINS J89 (AI)	PATHFINDER GOLDMARK D189(AI)	TE MANIA JOCK J930 (AI)	TE MANIA JOE J963 (AI)	TE MANIA JEROME J131 (AI)	TE MANIA GARTH G67 (AI)	TE MANIA JACK J70 (AI)	TE MANIA JOCK J930 (AI) RENNYLEA H7 (AI) (ET)	RENNYLEA H7 (AI) (ET)
							Ť								Ė							_							и Ш Ц	•					•					
		DOB	06/08/2015 09/08/2015	10/08/2015	/08/2015 /08/2015	/08/2015	22/08/2015	/08/2015	709/2015	/09/2015 /09/2015	/09/2015	709/2015	/09/2015 /09/2015	11/09/2015	15/09/2015	02/10/2015	0//08/2015	/08/2015 /08/2015	09/08/2015	10/08/2015	11/08/2015	11/08/2015	11/08/2015	11/08/2015 12/08/2015	13/08/2015	13/08/2015	13/08/2015	13/08/2015	13/08/2015	14/08/2015	15/08/2015	15/08/2015	16/08/2015	17/08/2015	17/08/2015	18/08/2015	19/08/2015	01/09/2015	02/09/2015	08/09/2015
		Tag	L0285 L0433	L0454	L1013	L1024	1038	11097	11173	1236	L1254	L1256	11308	L1378	1427	L1523	0383	0404	0445	10462	0518	L0529	10541	0584	10630	10640	0649	10650	10653	07.03	10769	L0770	10836	0875	0884	10932	0979	L1160	1304	1324
		ĭ	o 0	 c	40	4		7	φ 0	n 0	_	Ol e	0.0	įω	9	<u></u>	pσ	00	-	212	0 4	2	91	·- α	. o	0+	- 2	9	4.	200	57	58	900		62		į ω	91	<u>_</u> α	
		Lot	11	12	12	12	125	12	7 5	7 €	13	5 5	2 6	200	13	50	138	140	14	142	247	145	146	147	149	150	5 5	153	5	0 10	5	15	55	16.1	16.	163	165	166	168	169

	Calving	ng case	ı,		Growthe Maternal	o Mate	E LIG	_	rerunty	3	_		Carcase	ase		=	IIIake			-	PINDEA		
	Dir Dtrs	e GL	Bwt	200	400	009	Mwt N	ILK S	S	C 750d	0d EM	A RI	B RUN	AP RBY	% IME	% NFIP	NFIF	Doc	AB	۵	ЭH	9	
BREED AVERAGE EBVS FOR 2015 BORN CALVES	0.0 +0.	1 -3.7	+4.3	+42	+42 +77 +100 +88 +15 +1.7 -3.8	+100	+884	15 +	1.7	3+	99 +4	.6 0.1	+56 +4.6 0.0 -0.2 +0.3 +1.6 +	2 +0.	3 +1.	60.0+8	+0.15	9+2	\$106	\$103	\$110	\$10	10
TE MANIA BULL SALE AVERAGE	+1.6 +1.7	7 -5.7	-5.7 +3.6	+48	+48 +87 +115 +94 +20 +2.0	+115 +	+94 +	20 +2	2.0 -5.6	9+ 9:	+63 +6.5	.5 -0.	-0.2 -0.3 +0.2 +3.0 +0.31	3 +0.	2 +3.	0+0.31	+0.31	6+	\$134	\$118	\$150	\$125	10

Animals with EBVs and Indexes highlighted with shading are in the top 10% of the Angus breed. With the exception of fat which has no shading, and Mature Weight which is shaded if the value is < 100.

LIKEN L938 Lot 1

Born: 18/08/2015 IFU/NHFU/CAFU/DDFU Structure date scored 05/12/2016

Growth Fertility Marbling Angus Breeding Heavy Grass Heavy Grain

TE MANIA AFRICA A217 (AI) Sire: TE MANIA GARTH G67 (AI)

TE MANIA MITTAGONG E28 (AI) TE MANIA CANTON C138 (AI) (ET) TE MANIA MITTAGONG C900 (ACR)

BONGONGO BULLETPROOF Z3 TE MANIA I OWAN 4626 (AI) (ET) TE MANIA CALAMUS C46 (AI) Dam: TE MANIA MOONGARA F508 (AI) (ET) TE MANIA MOONGARA X615 (AI)

\$INDEX HG G \$161 \$129 \$140 \$120

G

								J	anuai	ry 201	7 Ang	jus Aı	ıstrali	a BRI	EDPL	_AN									
	C	Calvin	g Eas	е	(Growt	h& Ma	aterna	ı	Fert	ility	cwt		400 H	(G Ca	rcase		Inta	ake			S	tructu	re	
	Dir	Dtrs	GL	B Wt	200	400	600	M Wt	Milk	SS	DC	750d	EMA	Rib	Rump	RBY%	IMF%	NFIP	NFIF	DOC	FC	FA	RA	RH	RS
EBV	-1.8	+1.5	-4.8	+5.5	+50	+92	+120	+96	+22	+2.8	-7.0	+61	+6.8	+0.4	+0.8	-0.1	+3.3	+0.41	+0.47	+20	+4.4	-6.1	-12.1	-1.1	+0.1
Acc	56%	51%	85%	76%	71%	72%	70%	66%	54%		44%	64%	63%	63%	65%	59%	60%	50%	53%	62%	60%	61%	54%	50%	52%

Traits Observed: GL CE BWT 200WT 400WT SS FAT EMA IMF DOC, Structral Scores: FC 6, FA 6, RA 6, RH 5, RS 5

Balanced with good body length and natural thickness on display in this AI conceived son of Garth. The dam of this bull ran through our donor program in 2013 and as a rising seven year cow she remains active within the stud herd.

Lot 2

Born: 14/08/2015

Growth Fertility Carcase Marbling Angus Breeding Heavy Grass Heavy Grain

BONGONGO BULLETPROOF Z3 TE MANIA LOWAN A626 (AI) (ET) S S OBJECTIVE T510 0T26 G A R YIELD GRADE 2015 \$INDEX TE MANIA CALAMUS C46 (AI) HG Sire: TE MANIA JOE J963 (AI) Dam: TE MANIA LOWAN F869 (AI) TE MANIA JEDDA G949 TE MANIA LOWAN B606 (AI)

\$147 \$126 \$172 \$135 TE MANIA YOR TE MANIA LOW January 2017 Angus Australia BREEDPLAN **Calving Ease Growth& Maternal** Fertility CWT 400 KG Carcase Structure 600 GL 400 M Wt DC 750d EMA Rump RBY% IMF% NFIP NFIF +2.2 -6.3 +4.8 **EBV** +1.9 +56 +103 +139 +142 +22 +2.4 -5.9 +76 +4.5 -2.4 -2.1 +0.7 +2.8 +0.11 +0.03 +16 +16.2 +13.9 -0.6 +0.5 -1.0 39% 86% 76% 71% 73% 73% 72% 35% 63% 60% 64% 63% 54% 56% 41% 40% 57% 48% 49% 39%

Traits Observed: GL CE BWT 200WT 400WT SS FAT EMA IMF DOC Genomics, Structral Scores: FC 6, FA 6, RA 6, RH 5, RS 6

L716 is stylish and balanced with good natural thickness. Out of a cow from the Lowan cow family line, the most prominent within our herd with 930 direct descendants still active within our herd.

Lot 3

Born: 01/08/2015 Society Id: VTML155 Structure date scored 05/12/2016

Calving Ease Growth Fertility Marbling Angus Breeding Heavy Grass Heavy Grain

Sire: TE MANIA JEROME J131 (AI)

Born: 03/08/2015

TE MANIA LOWAN G694 (AI)

TE MANIA BARTEL B219 (AI) (ET) EAGLEHAWK JEDDA B32(AI) AYRVALE BARTEL E7(AI)(ET) Dam: TE MANIA MITTAGONG J129 (AI) TE MANIA MITTAGONG G551 (AI)

\$INDEX \$161 \$145 \$135 \$188

January 2017 Angus Australia BREEDPLAN Fertility **Calving Ease Growth& Maternal** CWT 400 KG Carcase Intake Structure 8 Dtrs GL B Wt 200 400 600 M Wt Milk SS DC 750d FMA Rib Rump RBY% IMF% NFIP NFIF DOC FC RA RS FA **EBV** +92 +117 +96 +81 -9 +4.5 +3.2 -6.2 +3.0 +52 +18 +3.6 -9.9 +8.8 +2.3 +0.9 -0.4 +3.8 +0.43 +0.66 -4.7 -8.1 -7.0 -4.6 +0.5 74% 74% 72% 59% 79% 41% 64% 64% 67% 65% 57% 58% 47% 47% 5 Observed: GL CE BWT 200WT 400WT SS FAT EMA IMF DOC Genomics, Structral Scores: FC 6, FA 6, RA 6, RH 6, RS 52%

A strong and stylish bull with good natural thickness. The past four generations on both sides of this bulls pedigree have been by artificial conception with this bull being the first of eleven sons of Jerome being offered. He has a small amount of white in his groin. First calf out of a two year old heifer.

LANCEWOOD Lot 4

> Structure date scored 05/12/2016 AMEU/NHEU/CAEU/DDEU Society Id: VTML203 Calving Ease Growth Marbling Angus Breeding Heavy Grass Heavy Grain

TUWHARETOA REGENT D145 (AI) (ET) TE MANIA FITZPATRICK F528 (AI) (ET)

Sire: TE MANIA GASKIN G555 (AI) Dam: TE MANIA BARUNAH J589 (AI) \$129 \$111 \$151 \$120 TE MANIA LOWAN D66 (AI) TE MANIA BARUNAH F888 TE MANIA YORKSHIF TE MANIA LOWAN BI

								J	anua	ry 201	7 Ang	jus Aı	ıstrali	a BRI	EEDP	LAN									
	C	alvin	g Eas	е	(Growt	h& Ma	terna	ı	Fert	ility	сwт		400 F	(G Ca	rcase		Inta	ake			St	tructu	re	
THE STATE OF THE S	Dir	Dtrs	GL	B Wt	200	400	600	M Wt	Milk	SS	DC	750d	EMA	Rib	Rump	RBY%	IMF%	NFIP	NFIF	DOC	FC	FA	RA	RH	RS
EBV	+2.0	-2.7	-3.9	+3.7	+48	+90	+123	+106	+20	+1.1	-3.1	+74	+5.8	-0.5	-0.6	-0.7	+3.7	+0.21	+0.23	+2	-3.5	+1.6	+2.0	+0.8	+0.5
Acc	54%	49%	85%	75%	70%	71%	69%	65%	51%	73%	42%	63%	61%	62%	64%	58%	59%	49%	50%	60%	57%	57%	52%	47%	49%
					Tı	raits Obs	erved: G	L CE BV	VT 200W	/T 400W	T SS FA	T EMA I	MF DOO	. Structi	al Score	s: FC 6. I	FA 6. RA	6. RH 5	5. RS 5						

Real sire appeal in this Al conceived son of Gaskin. He is stylish and balanced with good body length. First calf out of a two year old heifer from the Barunah cow family line of which we currently have 780 direct active descendants within our herd.

							BRI	EED A	VERA	GE EB	VS FC	OR 20	15 B	ORN (CALV	ES							
C	ALVIN	G EAS	SE	GI	ROWTI	H & MA	TERN	٩L	FERT	ILITY	CWT		C	ARCA	SE		INT	AKE			IND	EX\$	
DIR.	DTRS	GL	Bwt	200	400	600	Mwt	MILK	SS	DC	750d	EMA	RIB	RUMP	RBY%	IMF%	NFIP	NFIF	Doc	AB	D	HG	G
0.0	+0.1	-3.7	+4.3	+42	+77	+100	+88	+15	+1.7	-3.8	+56	+4.6	0.0	-0.2	+0.3	+1.6	+0.09	+0.15	+5	\$106	\$103	\$110	\$105
	Anim	als with	EBVs and	Indexes	highlighte	ed with sha	ding are i	n the top	10% of the	e Angus	breed. W	ith the e	xceptio	n of fat w	hich has	no shad	ding, and	Mature W	eight wl	nich is sha	aded if the	value is	< 100.

Lot 5 LAMOND L169

Structure date scored 05/12/2016

Born: 01/08/2015 AMFU/NHFU/CAFU/DDFU Calving Ease Growth Marbling Angus Breeding Heavy Grass Heavy Grain

TE MANIA JEDDA F577 (AI)

TUWHARETOA REGENT D145 (AI) (ET) Sire: TE MANIA GASKIN G555 (AI)

TE MANIA LOWAN D66 (AI)

TE MANIA YORKSHIRE Y437 (AI)

TE MANIA BERKI EY B1 (AI) Dam: TE MANIA JEDDA J518 (AI)

AB 1000 Z191 BRINDABELIA B197 (AI) (ET) \$132 \$108 \$161 \$117

							, a c Dooo (, a									in a til t occ	37 CD 100 (7 a)			-					
								J	anua	ry 201	7 Ang	jus Aı	ustrali	a BRI	EEDPI	_AN									
	C	alvin	g Eas	е	(Growt	h& Ma	aterna	ı	Fert	ility	CWT		400 F	(G Ca	rcase		Inta	ake			St	ructu	re	
	Dir	Dtrs	GL	B Wt	200	400	600	M Wt	Milk	SS	DC	750d	EMA	Rib	Rump	RBY%	IMF%	NFIP	NFIF	DOC	FC	FA	RA	RH	RS
EBV	+3.2	+0.1	-5.8	+1.8	+44	+78	+107	+95	+17	+1.7	-6.5	+67	+3.3	+1.6	+1.1	-2.3	+4.9	+0.36	+0.34	+4	+0.3	+2.6	+2.5	-0.2	+0.5
Acc	61%	52%	87%	77%		75%	75%	73%	62%			67%	65%		67%				52%		57%	58%	52%	48%	50%
-					Traits (Observe	d: GL CE	BWT 20	0WT 40	OWT SS	FAT EM	IA IMF D	OC Ger	omics, S	Structral S	Scores: F	C 6, FA	6, RA 6,	RH 6, R	IS 6					

Regent and Berkley have combined well in this grandson. These Gaskin sons are impressive with presence, frame and body length. Well suited for use over heifers. L169 is the first calf out of a two year old heifer. The dam of this bull is currently in our donor mob. Note the IMF at 4.9% is in the top 1% of the breed.

Lot 6

Calving Ease Growth Fertility Marbling Angus Breeding Heavy Grass Heavy Grain

G A R TWINHEARTS 8418 Sire: TE MANIA JACK J70 (AI)

TE MANIA LOWAN G141 (AI) (ET)

TE MANIA BERKLEY B1 (AI) TE MANIA LOWAN Z74 (AI) (ET)

TUWHARETOA REGENT D145 (AI) (ET) Dam: TE MANIA BARUNAH J322 (AI)

TE MANIA BARUNAH G1072

DUNOON Z191 BRINDABELLA B197 (AI) (ET) TE MANIA BARUNAH B163 (AI) (ET)

\$145 \$117 \$173 \$130

								J	anua	ry 201	7 Ang	jus Aı	ıstrali	a BRI	EEDPI	LAN									
	C	alvin	g Eas	е	•	Growt	h& Ma	aterna	ı	Fert	ility	CWT		400 k	(G Ca	rcase		Inta	ake			St	tructu	re	
	Dir	Dtrs	GL	B Wt	200	400	600	M Wt	Milk	SS	DC	750d	EMA	Rib	Rump	RBY%	IMF%	NFIP	NFIF	DOC	FC	FA	RA	RH	RS
EBV	+3.3	+0.7	-4.4	+3.8	+50	+90	+129	+135	+20	+2.8	-6.7	+75	+5.3	-0.5	-0.7	-0.1	+3.4	+0.27	+0.37	-10	+12.2	+8.1	+0.1	0.0	+0.4
Acc	57%	41%	86%	76%	71%	73%	72%	71%	58%	78%	37%	63%	60%	64%	63%	54%	55%	43%	43%	55%	50%	50%	41%	38%	41%
					Traits (Observed	: GL CE	BWT 20	0WT 40	OWT SS	FAT EM	A IMF D	OC Gen	omics, S	Structral S	Scores: F	C 6, FA	6, RA 6,	, RH 5, R	S 5					

This bull presents well with good frame and length on display. He is the first calf out of two year old heifer.

Society Id: VTML237

Lot 7

Structure date scored 05/12/2016

Growth Fertility Marbling Angus Breeding Heavy Grass Heavy Grain

TE MANIA DANDI OO E95 (AI)

TE MANIA AFRICA A217 (AI) Sire: TE MANIA GARTH G67 (AI)

Born: 04/08/2015

TE MANIA MITTAGONG F28 (AI)

TUWHARETOA REGENT D145 (AI) (ET) Dam: TE MANIA DANDLOO J561 (AI) (ET)

TE MANIA AMBASSADOR A134 (AI) LAWSONS HENRY VIII Y5 (AI)

\$INDEX \$140 \$119 \$160 \$129

								J	anua	ry 201	7 Ang	jus Αι	ıstrali	a BRI	EEDPI	_AN									
	O	alvin	g Eas	е	(Growt	h& Ma	terna	ı	Fert	ility	CWT		400 H	(G Ca	rcase		Inta	ake			St	ructu	re	
	Dir	Dtrs	GL	B Wt	200	400	600	M Wt	Milk	SS	DC	750d	EMA	Rib	Rump	RBY%	IMF%	NFIP	NFIF	DOC	FC	FA	RA	RH	RS
EBV	-1.1	+0.2	-5.1	+3.9	+50	+94	+123	+90	+25	+2.8	-6.0	+71	+6.9	+0.5	+1.0	-0.7	+3.6	+0.59	+0.69	+29	-4.1	-25.9	-17.3	+0.9	+0.5
Acc	57%	52%	85%	75%	70%	71%	69%	65%	52%	74%	44%	63%	62%	62%	65%	58%	60%	51%	53%	61%	58%	58%	52%	50%	51%
					Tr	aits Obs	erved: G	L CE BV	VT 200W	/T 400W	T SS FA	T EMA I	MF DOC	, Structr	al Score	s: FC 6, I	FA 6, RA	6, RH 5	, RS 5						

Balanced throughout. One of 39 Garth sons catalogued for this sale. L237 is the first calf out of two year old heifer. Some great cows of our herd sit back in the pedigree of this bull. VTMW85. VTMY32 to name a few.

TE MANIA LACKEY L27 Lot 8 Society Id: VTML27 Born: 26/07/2015

Structure date scored 05/12/2016

Growth Fertility Carcase Marbling Angus Breeding Heavy Grass Heavy Grain

TE MANIA ULONG U41 (AI) (ET) TE MANIA JEDDA Y32 (AI) (ET) TE MANIA AFRICA A217 (AI) Sire: TE MANIA GARTH G67 (AI)

TE MANIA MITTAGONG E28 (AI)

BOOROOMOOKA INSPIRED E124(AI) Dam: TE MANIA JAPARA J274 (AI) (ET) TE MANIA JAPARA E63 (AI)

ARDROSSAN EQUATOR A241 (AI) (ET)

\$153 \$133 \$176 \$140

								J	anua	ry 201	7 Ang	jus Aı	ıstrali	a BRI	EEDPI	_AN									
	C	alvin	g Eas	е	0	Growt	h& Ma	aterna	ı	Fert	ility	cwt		400 F	(G Ca	rcase		Inta	ake			St	ructu	re	
NO.	Dir	Dtrs	GL	B Wt	200	400	600	M Wt	Milk	SS	DC	750d	EMA	Rib	Rump	RBY%	IMF%	NFIP	NFIF	DOC	FC	FA	RA	RH	RS
EBV	+1.6	+3.0	-10.0	+4.1	+52	+99	+127	+112	+27	+3.2	-5.9	+69	+7.1	-0.5	+0.8	+0.6	+3.3	+0.41	+0.51	+29	+5.7	-16.8	-8.3	+0.7	+0.5
Acc	63%	52%	86%	77%	73%	75%	75%	73%	61%	79%	41%	67%	65%	67%	67%	58%	61%	49%	51%	60%	56%	57%	51%	46%	49%

Traits Observed: GL CE BWT 200WT 400WT SS FAT EMA IMF DOC Genomics, Structral Scores: FC 6, FA 6, RA 6, RH 5, RS 5

An Al conceived son of Garth who presents with style, frame and body length. First calf out of a two year old heifer.

							BR	EED A	VERA	GE EB	VS FC	OR 20	15 B	ORN (CALV	ES							
C	ALVIN	G EAS	SE	GI	ROWTI	H & MA	TERN	AL	FERT	ILITY	CWT		C	ARCA	SE		INT	AKE			IND	EX\$	
DIR.	DTRS	GL	Bwt	200	400	600	Mwt	MILK	SS	DC	750d	EMA	RIB	RUMP	RBY%	IMF%	NFIP	NFIF	Doc	AB	D	HG	G
0.0	+0.1	-3.7	+4.3	+42	+77	+100	+88	+15	+1.7	-3.8	+56	+4.6	0.0	-0.2	+0.3	+1.6	+0.09	+0.15	+5	\$106	\$103	\$110	\$105
	Anim	als with	EBVs and	Indexes	highlighte	ed with sha	iding are	in the top	10% of th	e Angus	breed. W	/ith the e	xceptio	n of fat w	hich has	no sha	ding, and	Mature W	eight wh	nich is sha	ded if the	value is	< 100.

Calving Ease Growth Marbling Angus Breeding Heavy Grass Heavy Grain

TE MANIA GOVERNOR G576 (AI)

TUWHARETOA REGENT D145 (AI) (ET) Sire: TE MANIA GASKIN G555 (AI)

Born: 01/08/2015

Born: 01/08/2015

TE MANIA LOWAN D66 (AI)

Dam: TE MANIA LOWAN J652 (AI) TE MANIA YORKSHIRE Y437 (AI) TE MANIA LOWAN B860 (AI)

LAWSONS TANK B1155(AI) TE MANIA DANDLOO E95 (AI) \$120 \$101 \$141 \$111 DUNOON Z191 BRINDABELLA B197 (AI) (ET) TE MANIA LOWAN D87 (AI) TE MANIA LOWAN F1101 (AI)

January 2017 Angus Australia BREEDPLAN **Calving Ease Growth& Maternal** Fertility CWT 400 KG Carcase Structure 6 DC Dtrs GL 200 400 600 M Wt SS 750d Rib Rump RBY% IMF% NFIP NFIF RA B Wt Milk EMA DOC FΑ +1.9 -2.1 -4.6 +1.8 +43 +78 +111 +83 +19 +0.5 -3.5 +69 +4.2 -0.2 -0.1 -1.8 +4.2 +0.34 +0.35 +3 +8.9 +8.6 +5.3 -0.1 +0.5 48% 85% 75% 70% 71% 69% 64% 49% 73% 40% 63% 61% 61% 64% 57% 58% 47% 49% 59% 56%

Traits Observed: GL CE BWT 200WT 400WT SS FAT EMA IMF DOC, Structral Scores: FC 6, FA 6, RA 6, RH 6, RS 5 56% 50%

A heifers first calf from the Lowan cow family. The Lowan family is the most prominent within our herd with 930 active direct descendants in the herd. This stylish son of Gaskin presents with good body length and butt shape and is one of 15 sons of Gaskin being offered in this sale.

TE MANIA LAMBORN **Lot 10**

Structure date scored 05/12/2016

Growth Fertility Marbling Angus Breeding Heavy Grass Heavy Grain

TE MANIA BEEAC X400 (AI) (ET)

Sire: TE MANIA GARTH G67 (AI)

TE MANIA MITTAGONG E28 (AI)

TE MANIA ULONG U41 (AI) (ET) TE MANIA JEDDA Y32 (AI) (ET)

TUWHARETOA REGENT D145 (AI) (ET) Dam: TE MANIA BEEAC J653 (AI)

TE MANIA AMBASSADOR A134 (AI) LAWSONS HENRY VIII Y5 (AI)

\$INDEX \$126 \$112 \$142 \$117

B/R NEW DESI January 2017 Angus Australia BREEDPLAN CWT Fertility 400 KG Carcase **Calving Ease** Growth& Maternal Intake Structure 0 Rump RBY% IMF% M Wt SS 750d NFIP NFIF RA GL B Wt 200 400 600 Milk DC EMA Rib DOC FC FΑ RS Dir Dtrs -1.8 +0.1 -6.3 +3.8 +84 +106 +78 +21 +2.1 -7.1 +57 +5.7 +1.4 +1.4 -0.8 +3.3 +0.52 +0.54 +23 -1.1 -19.2 -14.9 +0.8 +0.5 +44 53% 86% 75% 70% 71% 70% 66% 53% 74% 45% 63% 62% 63% 65% 59% 60% 51% 53% 60% 57% 58% 52% 49% Fraits Observed: GL CE BWT 200WT 400WT SS FAT EMA IMF DOC, Structral Scores: FC 6, FA 6, RA 6, RH 5, RS 5

Natural thickness and body length on display in this first calf out of a two year old heifer.

Lot 11

Society Id: VTML105

Calving Ease Growth Fertility Marbling Angus Breeding Heavy Grass Heavy Grain S S OBJECTIVE T510 0T26 G A R YIELD GRADE 2015 G A R PREDESTINED BEE EVEREL DA ENTENSE 4015 G A R TWINHEARTS 8418

Sire: TE MANIA JACK J70 (AI)

TE MANIA LOWAN G141 (AI) (ET)

WERNER WESTWARD 357 Dam: TE MANIA WARGOONA J1308 (AI) TE MANIA WARGOONA D236 (AI) (ET) TE MANIA YORKSHIRE Y437 (AI TE MANIA WARGOONA X254 (AI \$126 \$112 \$141 \$118

January 2017 Angus Australia BREEDPLAN **Calving Ease Growth& Maternal** Fertility CWT 400 KG Carcase Intake Structure DC NFIP Dtrs GL B Wt 200 400 600 M Wt Milk SS 750d EMA Rib Rump RBY% IMF% NFIF DOC FC FΑ RA RH RS +5.1 -5.8 +1.4 +85 +113 +106 +22 +1.9 -6.8 +62 +1.0 0.0 0.0 -0.8 +2.7 +0.16 +0.32 -20 -3.9 -3.8 -4.5 +0.7 0.0 68% 65% 56% 46% 38% 85% 73% 67% 60% 45% 72% 35% 57% 58% 59% 54% 52% 42% 42% 56% 41% 50% 51% 40% Traits Observed: GL CE BWT 200WT 400WT SS FAT EMA IMF DOC, Structral Scores: FC 6, FA 5, RA 5, RH 5, RS 5

Balanced with good body length and calving ease. Well suited for use over heifers. First calf out of a two year old heifer.

Lot 12

Structure date scored 06/12/2016

Born: 16/08/2015 Society Id: VTML834 Growth Fertility Carcase Marbling Angus Breeding Heavy Grass Heavy Grain

\$INDEX

SITZ NEW DESIGN 458N B/R NEW DAY 454 Sire: V A R RESERVE 1111(ET) Dam: TE MANIA MITTAGONG G774 (AI) SANDPOINT BLACKBIRD 8809

TE MANIA MITTAGONG B641 (AI) GARDENS HIGHMARK TE MANIA MITTAGONG X576 (AI) \$124 \$116 \$134 \$120

								J	anuai	ry 201	7 Ang	jus Ai	ıstrali	a BRI	EEDPI	LAN									
	C	alvin	g Eas	е	(Growt	h& Ma	aterna	I	Fert	ility	CWT		400 F	(G Ca	rcase		Inta	ake			St	ructu	re	
THE STATE OF	Dir	Dtrs	GL	B Wt	200	400	600	M Wt	Milk	SS	DC	750d	EMA	Rib	Rump	RBY%	IMF%	NFIP	NFIF	DOC	FC	FA	RA	RH	RS
EBV	+1.8	-0.2	-3.0	+4.1	+47	+86	+115	+103	+20	+2.8	-4.4	+59	+4.8	-1.4	-0.9	+1.5	+1.9	+0.10	+0.13	+29	-3.7	-16.0	-10.4	-5.8	+0.2
Acc	51%	45%	85%	74%	69%	70%	68%	63%	53%	73%	38%	59%		61%	61%	56%	56%	,.	44%	59%	52%	54%	42%	33%	38%

Traits Observed: GL CE BWT 200WT 400WT SS FAT EMA IMF DOC, Structral Scores: FC 6, FA 5, RA 5, RH 6, RS 6

Stylish and balanced with good natural thickness on display. This is a very good outcross option to go over Berkley, Regent and Garth bloodlines.

							BRI	EED A	VERA	GE EB	VS F	OR 20	15 B	ORN (CALV	ES							
	CALVII	NG EAS	SE	GI	ROWTI	H & MA	TERN	AL	FERT	ILITY	CWT		C	ARCA	SE		INT	AKE			IND	EX\$	
DIR.	DTRS	GL	Bwt	200	400	600	Mwt	MILK	SS	DC	750d	EMA	RIB	RUMP	RBY%	IMF%	NFIP	NFIF	Doc	AB	D	HG	G
0.0	+0.1	-3.7	+4.3	+42	+77	+100	+88	+15	+1.7	-3.8	+56	+4.6	0.0	-0.2	+0.3	+1.6	+0.09	+0.15	+5	\$106	\$103	\$110	\$105
	Ani	imals with	EBVs and	Indexes	highlighte	d with sha	ding are i	n the top	10% of the	e Angus	breed. W	ith the e	xceptio	n of fat v	vhich has	no shad	ling, and	Mature W	eight wl	nich is sha	aded if the	value is	< 100.

Lot 13 TE MANIA LORNE L1336

Growth Carcase Marbling Angus Breeding Heavy Grass Heavy Grain

TE MANIA JAPARA F464 (AI) (ET)

TUWHARETOA REGENT D145 (AI) (ET)

TE MANIA AMBASI
LAWSONS HENRY

Sire: TE MANIA GLENCOE G872 (AI)

TE MANIA BARUNAH D576

Born: 09/09/2015

TE MANIA AMBASSADOR A134 (AI) LAWSONS HENRY VIII Y5 (AI)

ARDCAIRNIE MIDLAND Z57 (AI) TE MANIA BARUNAH Z146 (AI) (ET)

Society Id: VTML1336

TE MANIA FESTIVITY F327 (AI)

TE MANIA FESTIVITY F327 (AI)

TE MANIA JAPARA H67 (AI)

AMFU/NHFU/CAFU/DDF

January 2017 Angus Australia BREEDPLAN **Calving Ease Growth& Maternal** Fertility CWT 400 KG Carcase Structure B Wt Dtrs GL 400 600 M Wt DC 750d Rump RBY% IMF% NFIP NFIF FA RA 200 EMA **EBV** -1.9 -2.4 -5.7 +5.7 +88 +117 +91 +20 +1.7 -4.9 +67 +6.9 -0.7 -0.7 +0.3 +3.1 +0.34 +0.44 -5 +0.6 -2.0 -3.0 -0.9 +0.5 +48 70% 68% 65% 52% 72% 41% 62% 60% 61% 63% 57% 58% 47% 49% 58% 52% Traits Observed: CE BWT 200WT 400WT SS FAT EMA IMF DOC, Structral Scores: FC 6, FA 5, RA 5, RH 6, RS 5 66% 74% 69%

Balanced with good body length and one of the few naturally conceived sons in this sale. Has some white in his groin.

Lot 14 TE MANIA LOUVRE L1365 (AI)

Structure date scored 05/12/2016

Born: 10/09/2015 Society Id: VTML1365 AMFU/NHFU/CAFU/DDFU Structure date sco
Growth Fertility Carcase Marbling Angus Breeding Heavy Grass Heavy Grain

G A R TWINHEARTS 8418 S 0 BJECTIVE T510 01
G A R TWINHEARTS 8418 G A R YIELD GRADE 20

TE MANIA BERKLEY B1 (AI)

TE MANIA YORKSHIRE Y437 (AI) TE MANIA LOWAN Z53 (AI) (ET) \$INDEX

Sire: TE MANIA JENKINS J89 (AI)

TE MANIA JAPARA G115 (AI)

LAWGONS INVINCIBLE C402(AI)

LAWGONS INVINCIBLE C402(AI)

Dam: TE MANIA WARGOONA F738 (AI)

TE MANIA WARGOONA C532 (AI) (ET)

GARDENS HIGHMARK
TE MANIA WARGOONA X254 (AI)

\$152 \$132 \$176 \$140

								J	anuai	ry 201	7 Ang	us Aı	ıstrali	a BRI	EEDPI	LAN									
	C	alvin	g Eas	е	(Growt	h& Ma	aterna	ı	Fert	ility	CWT		400 H	(G Ca	rcase		Inta	ake			St	ructu	re	
	Dir	Dtrs	GL	B Wt	200	400	600	M Wt	Milk	SS	DC	750d	EMA	Rib	Rump	RBY%	IMF%	NFIP	NFIF	DOC	FC	FA	RA	RH	RS
EBV	+1.8	+1.7	-4.9	+5.1	+57	+101	+133	+126	+19	+2.7	-5.6	+78	+7.9	-1.4	-1.1	+1.0	+3.0	+0.30	+0.46	-1	-9.9	+3.0	-6.0	+1.5	+0.3
Acc	57%	41%	86%	76%		73%	73%		59%		38%	64%		65%	64%	55%				58%	54%	54%	45%	41%	44%
					Traits (Observed	: GL CE	BWT 20	0WT 40	OWT SS	FAT EM	A IMF D	OC Gen	omics, S	Structral S	Scores: F	C 6, FA	6, RA 5,	RH 5, R	S 5					

Added thickness with frame and body length shown by this son of Jerome. These are Jeromes first sons being offered and there are 11 in this years sale. We have sold sons to a high of \$12,000 from the dam of this bull.

Lot 15

TE MANIA LARA L362 (AI)

Born: 08/08/2015

Society Id: VTML362

AMFU/NHFU/CAFU/DDFU

Structure date scored 05/12/2010

Calving Ease Growth Carcase Marbling Angus Breeding Heavy Grass Heavy Grain

GARTWINHEARTS 8418
Sire: TE MANIA JACK J70 (AI)

TE MANIA LOWAN G141 (AI) (ET)

TE MANIA BERKLEY B1 (AI)

Dam: TE MANIA DANDLOO J767 (AI)
TE MANIA DANDLOO B351 (AI)
TE MANIA ULONG

CIRCLE A INCENTIVE

S S OBJECTIVE T510 0126 CIRCLE A BEAUTY 5566 **76 7 (AI)**AI
TE MANIA DLANDLOO 7465 (ACR)

\$1

\$INDEX
AB D HG G
\$129 \$116 \$138 \$124

								J	anuai	ry 201	7 Ang	jus Αι	ıstrali	a BRE	EDPI	_AN									
	O	alvin	g Eas	е	•	Growt	h& Ma	terna		Fert	ility	CWT		400 H	(G Ca	rcase		Inta	ake			St	tructu	re	
THE COLUMN	Dir	Dtrs	GL	B Wt	200	400	600	M Wt	Milk	SS	DC	750d	EMA	Rib	Rump	RBY%	IMF%	NFIP	NFIF	DOC	FC	FA	RA	RH	RS
EBV	+2.5	+1.1	-2.0	+4.0	+52	+93	+125	+118	+19	+1.5	-5.9	+65	+4.8	-0.7	-0.8	+0.4	+1.8	+0.10	-0.09	-19	-5.8	-6.4	+1.1	-1.5	+0.2
Acc	45%	34%	85%	73%	67%	68%	65%	60%	43%	71%	33%	56%	57%	58%	59%	53%	51%	39%	39%	54%	49%	49%	38%	33%	36%
					T	raits Ohs	erved: G	I CE BV	/T 200\n	/T 400W	T SS FA	TEMAI	ME DOC	: Structr	al Score	s: FC 6	FA 6 RA	6 RH 5	RS 5						

L 362 presents with good frame and length. He is the first calf out of two year old heifer.

Lot 16 TE MANIA LETUP L799 (AI)

AB1

Born: 15/08/2015 Society Id: VTML799 AMFU/NHFU/CAFU/DDFU Structure date scored 06/12/2016
Growth Fertility Carcase Marbling Angus Breeding Heavy Grass Heavy Grain

TE MANIA BADMINTON B41 (AI)

GARDENS HIGHMARK
TE MANIA DEFLATION D367 (AI)

TE MANIA WARGOONA Y408 (AI)

LAWSONS DINKY-DI Z191 BON VIEW DESIGN 14 G AR PRECISION 190

Dam: TE MANIA MOONGARA F385 (AI)

BON VIEW DESIGN 1407 G A R PRECISION 1900 RA F385 (AI) LEMMON NEWSLINE C804 (AI) (ET) TE MANIA MOONGARA WAT (AI)

					IEI	MANIA WAR	GOUNA W IC	iii (Ai)							I E	MANIA MUU	INGARA WO	(AI)		7 -			т		
								J	anuai	y 201	7 Ang	jus Aı	ıstrali	a BRI	EEDP	LAN									
	Calving Ease Growth& Maternal										ility	CWT		400 F	(G Ca	rcase		Inta	ake			St	ructu	re	
THE COLUMN	Dir	Dtrs	GL	B Wt	200	400	600	M Wt	Milk	SS	DC	750d	EMA	Rib	Rump	RBY%	IMF%	NFIP	NFIF	DOC	FC	FA	RA	RH	RS
EBV	0.0	-0.1	-2.6	+4.9	+53	+86	+116	+101	+10	+2.7	-6.0	+70	+8.5	-3.2	-3.1	+1.5	+2.3	+0.11	-0.04	+11	+15.5	+9.4	+8.7	-3.6	+0.4
Acc	60%	48%	86%	77%	73%	74%	75%	74%	66%	79%	44%	67%	64%	67%	67%	59%	61%	48%	48%	59%	55%	56%	48%	42%	45%

TE MANIA MOONGARA A673 (ACR) (AI)

Traits Observed: GL CE BWT 200WT 400WT SS FAT EMA IMF DOC Genomics, Structral Scores: FC 6, FA 6, RA 6, RH 5, RS 5

Balanced throughout and a good outcross option for Berkley, Regent and Garth bloodlines.

TE MANIA WANGLE W128 (AI)

							BRI	ED A	VERA	GE EB	VS FC	OR 20	15 B	ORN (CALV	S							
С	ALVIN	G EAS	SE.	GF	ROWTI	H & MA	TERNA	٩L	FERT	ILITY	CWT		C	ARCA	SE		INT	AKE			IND	EX\$	
DIR.	DTRS	GL	Bwt	200	400	600	Mwt	MILK	SS	DC	750d	EMA	RIB	RUMP	RBY%	IMF%	NFIP	NFIF	Doc	AB	D	HG	G
0.0	+0.1	-3.7	+4.3	+42	+77	+100	+88	+15	+1.7	-3.8	+56	+4.6	0.0	-0.2	+0.3	+1.6	+0.09	+0.15	+5	\$106	\$103	\$110	\$105
	Anim	nals with	EBVs and	d Indexes	highlighte	d with sha	iding are i	n the top	10% of th	e Angus	breed. W	ith the e	xceptio	n of fat w	hich has	no shac	ling, and	Mature W	eight wh	nich is sha	ded if the	value is <	< 100.

Growth Fertility Carcase Marbling Angus Breeding Heavy Grass Heavy Grain G A R PREDESTINED BFF EVERELDA ENTENSE 4015 WERNER WESTWARD 357

TE MANIA AFRICA A217 (AI) Sire: TE MANIA GARTH G67 (AI)

Born: 03/08/2015

Born: 31/07/2015

TE MANIA MITTAGONG E28 (AI) TE MANIA CANTON C138 (AI) (ET) TE MANIA MITTAGONG C900 (ACR TE MANIA BARUNAH F430 (AI) (ET)

Dam: TE MANIA BARUNAH J844 (AI) \$138 \$123 \$152 \$130 TE MANIA CODRINGTON C737 (AI) (ET) TE MANIA BARUNAH A439 (AI)

								J	anua	ry 201	7 Ang	jus Aı	ıstrali	ia BRI	EEDPI	_AN									
	C	Calving	g Eas	е	(Growt	h& Ma	terna	ı	Fert	ility	CWT		400 k	(G Ca	rcase		Int	ake			St	ructu	re	
	Dir	Dtrs	GL	B Wt	200	400	600	M Wt	Milk	SS	DC	750d	EMA	Rib	Rump	RBY%	IMF%	NFIP	NFIF	DOC	FC	FA	RA	RH	RS
EBV	-0.4	+2.5	-3.3	+3.8	+48	+91	+117	+82	+25	+2.2	-5.6	+62	+8.4	+0.6	+0.4	+0.4	+2.8	+0.39	+0.53	+13	-8.8	-6.8	-5.3	-0.6	+0.5
Acc	55%	50%	85%	74%		71%	69%	63%	51%		41%	62%		62%	64%	57%	59%		51%	60%	57%	58%	52%	48%	50%

Another impressive son of Garth with good frame and body length. He is the first calf out of a two year old heifer from our Barunah cow family and from who we have 780 direct and active descendants within our herd.

Lot 18

Structure date scored 05/12/2016

Growth Fertility Marbling Angus Breeding Heavy Grass Heavy Grain

TE MANIA BARUNAH F945 (AI)

TE MANIA ULONG U41 (AI) (ET) TE MANIA JEDDA Y32 (AI) (ET) Sire: TE MANIA GARTH G67 (AI)

TE MANIA MITTAGONG E28 (AI)

TE MANIA BARTEL B219 (AI) (ET) EAGLEHAWK JEDDA R32/AII Dam: TE MANIA BARUNAH J894 (AI)

\$INDEX

\$158 \$131 \$181 January 2017 Angus Australia BREEDPLAN CWT Fertility 400 KG Carcase Intake **Calving Ease Growth& Maternal** Structure 600 M Wt Milk Rump RBY% IMF% NFIP NFIF RA RS Dir GL B Wt 200 400 SS DC 750d EMA Rib DOC FC FA Dtrs +55 +102 +134 +100 +33 +5.0 -7.7 +68 +1.9 -5.0 +6.0 +9.1 +1.5 +1.7 +0.2 +3.4 +0.45 +0.51 +24 +3.5 -15.4 -17.0 -2.3 +0.5 -1.8 64% 54% 87% 77% 73% 58% 58% 52% 49% 51%

75% 75% 73% 62% 79% 43% 67% 65% 67% 67% 59% 62% 50% 52% 60%
Disserved: GL CE BWT 200WT 400WT SS FAT EMA IMF DOC Genomics, Structral Scores: FC 6, FA 6, RA 6, RH 5, RS 5

Added thickness and body length on display in this balanced son of Garth. He is the first calf out of a two year old heifer from our Barunah cow family.

Lot 19 GDO

Calving Ease Growth Carcase Marbling Angus Breeding Heavy Grass Heavy Grain

\$INDEX

BOYD NEW DAY 8005 B/R RUBY 1224 B/R NEW DAY 454 TE MANIA GASKIN G555 (AI) Sire: V A R RESERVE 1111(ET) Dam: TE MANIA JEDDA J1249 (AI)

TE MANIA JEDDA B174 (AI) (ET) CONNEALY ONWARD RIVERBEND BLACKBIRD 4301 B/R NEW DIMENSION 7127 TE MANIA JEDDA W85 (AI) (ET) \$118 \$112 \$127 \$114

								J	anua	ry 201	7 Ang	jus Αι	ıstrali	a BRI	EEDPI	LAN									
	С	alvin	g Eas	е	(Growt	h& Ma	terna	ı	Fert	ility	CWT		400 F	(G Ca	rcase		Inta	ake			St	tructu	re	
	Dir	Dtrs	GL	B Wt	200	400	600	M Wt	Milk	SS	DC	750d	EMA	Rib	Rump	RBY%	IMF%	NFIP	NFIF	DOC	FC	FA	RA	RH	RS
EBV	+1.5	-2.1	-3.0	+3.4	+46	+80	+105	+83	+18	+0.1	-3.6	+64	+9.0	-1.2	-2.0	+1.2	+2.4	+0.14	+0.02	+12	+9.8	-3.0	+0.5	-3.6	+0.1
Acc	51%	44%	85%	74%	69%	70%	68%	61%	50%	73%	36%	59%	60%	61%	61%	56%	56%	43%	44%	59%	52%	52%	43%	37%	41%
					Tr	aits Ohs	erved: G	I CF BV	VT 200W	/T 400W	T SS FA	T FMA I	MF DOC	Structr	al Score	s: FC 6	FA 6 RA	6 RH 6	RS 5						

L261 is stylish with good butt shape balanced figures.

SANDPOINT BLACKBIRD 8809

Lot 20

Structure date scored 05/12/2016

Heavy Grain Calving Ease Growth Fertility Marbling Angus Breeding Heavy Grass

\$INDEX TE MANIA FITZPATRICK F528 (AI) (ET)

Sire: TE MANIA JEROME J131 (AI) Dam: TE MANIA DANDLOO J1035 (AI) (ET) \$144 \$123 \$168 TE MANIA I OWAN G694 (AI) TE MANIA DANDLOO C670 (AI) (ET) ARDCAIRNIE MIDLAND Z57 (AI) TE MANIA DANDLOO Y711 (AI)

									J	anua	ry 201	7 Ang	jus Aı	ıstrali	a BRI	EEDPI	_AN									
	1	C	alving	g Eas	е	(Growt	h& Ma	aterna	ı	Fert	ility	CWT		400 F	(G Ca	rcase		Inta	ake			St	ructu	re	
		Dir	Dtrs	GL	B Wt	200	400	600	M Wt	Milk	SS	DC	750d	EMA	Rib	Rump	RBY%	IMF%	NFIP	NFIF	DOC	FC	FA	RA	RH	RS
EE	3V	+3.8	+2.7	-5.0	+3.6	+50	+87	+114	+96	+18	+2.8	-6.8	+68	+5.8	+0.9	+0.7	-0.7	+3.9	+0.27	+0.47	-15	+5.2	+2.2	-5.2	-0.9	+0.4
Ad	СС	59%	43%	85%	76%	72%	74%	73%	71%	59%	78%	40%	64%	63%	65%	64%	56%	57%	45%	45%	58%	52%	52%	45%	41%	43%

Traits Observed: GL CE BWT 200WT 400WT SS FAT EMA IMF DOC Genomics, Structral Scores: FC 6, FA 6, RA 6, RH 5, RS 5

There is a lof of style and presence on display in this son of Jerome. He has a small amount of white in the groin area. L230 is the first calf out of a two year old heifer.

							BRI	EED A	VERA	GE EB	VS FC	OR 20	15 B	ORN (CALV	ES							
C	ALVIN	G EAS	SE .	GF	ROWTH	H & MA	TERN	AL	FERT	ILITY	CWT		C	ARCA	SE		INT	AKE			IND	EX\$	
DIR.	DTRS	GL	Bwt	200	400	600	Mwt	MILK	SS	DC	750d	EMA	RIB	RUMP	RBY%	IMF%	NFIP	NFIF	Doc	AB	D	HG	G
0.0	+0.1	-3.7	+4.3	+42	+77	+100	+88	+15	+1.7	-3.8	+56	+4.6	0.0	-0.2	+0.3	+1.6	+0.09	+0.15	+5	\$106	\$103	\$110	\$105
	Anim	nals with	EBVs and	Indexes	highlighte	d with sha	iding are i	n the top	10% of the	e Angus	breed. W	ith the e	xceptio	n of fat v	vhich has	no shac	ling, and	Mature W	eight wh	nich is sha	ded if the	value is	< 100.

Born: 12/08/2015 Structure date scored 06/12/2016 Calving Ease Growth Carcase Marbling Angus Breeding Heavy Grass Heavy Grain

TC ABERDEEN 759 Sire: RENNYLEA H7 (AI) (ET)

Dtrs GI

+3.6 +4.1 -8.5 +3.8

EBV

59%

B Wt 200

+48

C R A BEXTOR 872 5205 608 TC BLACKBIRD 4034

TE MANIA ANMOL A888 (AI) (ET) Dam: TE MANIA LOWAN G3 (AI) \$131 \$120 \$147 \$123

-0.9

BON VIEW DESIGN 1407 LAWSONS FUTURE DIRECTION W75(AI) LAWSONS NEW DESIGN 1407 Z1393(AI) TE MANIA LOWAN E478 (AI) **Calving Ease Growth& Maternal** 8

400

January 2017 Angus Australia BREEDPLAN Fertility CWT 400 KG Carcase 600 M Wt Milk SS DC 750d Rib Rump RBY% IMF% NFIP NFIF FA RA EMA DOC +79 +104 +78 +15 +1.5 -5.4 | +49 | +6.4 -0.5 -1.2 +0.6 | +3.0 | +0.16 +0.19 | +23 | +10.2 +12.0 +2.2 -0.5

TE MANIA BADMINTON B41 (AI) TE MANIA LOWAN C396 (AI)

74% 76% 75% 73% 60% 79% 39% 65% 65% 67% 66% 58% 59% 46% 46% 62% 48% 49% 36% 31% Traits Observed: GL CE BWT 200WT 400WT SS FAT EMA IMF DOC Genomics, Structral Scores: FC 6, FA 6, RA 5, RH 6, RS 5 45% 86% 78% 74%

Balanced throughout. The dam of this bull from our most prominent cow family line, Lowan, ran through our donor mob in 2014 and has contributed 17 progeny to our herd.

Lot 22 Society Id: VTML399 Calving Ease Growth Fertility Carcase Marbling Angus Breeding Heavy Grass Heavy Grain TE MANIA AMBASSADOR A134 (AI) LAWSONS HENRY VIII Y5 (AI) \$INDEX TUWHARETOA REGENT D145 (AI) (ET) Sire: V A R RESERVE 1111(ET) Dam: TE MANIA BEEAC J857 (AI) \$128 \$120 \$145 \$119 SANDPOINT BLACKBIRD 8809 TE MANIA BEEAC Z670 (AI) January 2017 Angus Australia BREEDPLAN CWT Fertility 400 KG Carcase **Calving Ease Growth& Maternal** Intake Structure Rump RBY% IMF% 750d EMA Rib NFIP NFIF Dtrs GL B Wt 200 400 600 M Wt Milk SS DC DOC FC FΑ RA RS Dir +60 +6.6 -1.1 -1.7 +1.0 +2.8 +0.22 +0.20 +26 +6.1 -4.8 +88 +109 +91 +21 +1.8 -5.4 -3.3 -3.3 0.0 +1.7 -1.7 -1.3 +3.5 +46 51% 46% 85% 74% 69% 70% 68% 62% 52% 73% 38% 59% 61% 61% 61% 56% 56% 45% 45% Traits Observed: GL CE BWT 200WT 400WT SS FAT EMA IMF DOC, Structral Scores: FC 6, FA 6, RA 6, RH 6, RS 6 45% 59% 52% 52% 43% 40%

Good natural thickness and body length on display in this first calf out of a two year old heifer.

Lot 23 Structure date scored 06/12/2016

Growth Carcase Marbling Angus Breeding Heavy Grass Heavy Grain

WERNER WESTWARD 357 Sire: TE MANIA JOCK J930 (AI)

TE MANIA BEEAC G93 (AI) LAWSONS TANK B1155(AI) TE MANIA BEEAC E117 (AI)

ARDCAIRNIE MIDLAND Z57 (AI) TE MANIA CANTON C138 (AI) (ET) Dam: TE MANIA MITTAGONG E28 (AI) TE MANIA MITTAGONG C900 (ACR) TE MANIA YORKSHIRE Y437 (AI) TE MANIA MITTAGONG Z374 (ACR) (AI

\$INDEX AB HG G \$135 \$117 \$149 \$128

\$INDEX

January 2017 Angus Australia BREEDPLAN **Calving Ease Growth& Maternal** Fertility CWT 400 KG Carcase Intake Structure DC FA Dir Dtrs GL B Wt 200 400 600 M Wt Milk SS 750d EMA Rib Rump RBY% IMF% NFIP NFIF DOC FC RA RS -0.1 +2.5 -8.1 +4.7 +46 +88 +121 +89 +20 +1.7 -5.3 +64 +5.3 +0.1 -0.1 +0.3 +2.5 +0.27 +0.48 +2 -39.6 -6.8 -2.1 +0.5 70% 66% 63% 50% 71% 56% 37% 59% 60% 61% 62% 56% 44% 44% 60% 49% 41% 85% 74% 69% 52% 50% 40% 37% 39% Traits Observed: GL CE BWT 200WT 400WT SS FAT EMA IMF DOC, Structral Scores: FC 7, FA 6, RA 6, RH 5, RS 5

Stylish and balanced with this son of Jock being one of fourteen being offered in this sale. The dam of this bull from our Mittagong cow family is the also the dam of Garth and as a rising eight year old she remains active within our stud herd.

Lot 24

Structure date scored 05/12/2016 Growth Marbling Angus Breeding Heavy Grass Heavy Grain

TE MANIA EARNINGS E38 (AI) TUWHARETOA REGENT D145 (AI) (ET) Sire: TE MANIA GASKIN G555 (AI)

TE MANIA LOWAN D66 (AI) TE MANIA MOONGARA C493 (AI)

Dam: TE MANIA MOONGARA G863 (AI) \$119 \$99 \$137 \$112 TE MANIA ADILONG A251 (AI) (ET) TE MANIA MOONGARA Y828

January 2017 Angus Australia BREEDPLAN Calving Ease Fertility CWT 400 KG Carcase **Growth& Maternal** 400 NFIP NFIF 750d Rump RBY% IMF% GL B Wt DC EMA **EBV** +1.4 -4.2 +81 -0.5 -0.3 -1.0 +3.1 +0.21 +0.06 +21 -3.4 -3.6 +5.3 +50 +91 +130 +115 +20 +3.5 +0.9 -2.5 -0.5 +2.3 -0.9 +0.5 o 71% 69% 65% 53% 74% 39% 63% 60% 60% 63% 56% 57% 47% 49% Traits Observed: GL CE BWT 200WT 400WT SS FAT EMA IMF DOC, Structral Scores: FC 6, FA 6, RA 6, RH 6, RS 6 48% 86% 75% 49% 59% 56% 57% 50% 44%

These Gaskin sons present so well and this bull is no exception. He is balanced with good body length. L1308 is one of fifteen Gaskin sons being offered in this sale.

							BR	EED A	VERA	GE EB	VS FC	DR 20	15 B	ORN (CALV	ES							
C	ALVIN	G EAS	Ē	GF	ROWTH	AM & F	TERN	AL	FERT	ILITY	CWT		C	ARCA	SE		INT	AKE			IND	EX\$	
DIR.	DTRS	GL	Bwt	200	400	600	Mwt	MILK	SS	DC	750d	EMA	RIB	RUMP	RBY%	IMF%	NFIP	NFIF	Doc	AB	D	HG	G
0.0	+0.1	-3.7	+4.3	+42	+77	+100	+88	+15	+1.7	-3.8	+56	+4.6	0.0	-0.2	+0.3	+1.6	+0.09	+0.15	+5	\$106	\$103	\$110	\$105
	Anin	nals with	EBVs and	Indexes	highlighte	d with sha	ding are i	n the top	10% of the	e Angus	breed. W	ith the e	xceptio	n of fat v	vhich has	no shad	ling, and	Mature W	eight wl	nich is sha	ded if the	value is	< 100.

Calving Ease Growth Marbling Angus Breeding Heavy Grass Heavy Grain

C R A BEXTOR 872 5205 608 Sire: G A R PROPHET GAR OBJECTIVE 1885

Born: 30/07/2015

B A R EXT TRAVELER 205 CRA LADY JAYE 608 498 S EASY S S OBJECTIVE T510 0T26 GAR 1407 NEW DESIGN 2232

G A R SOLUTION LAWSONS PREDESTINED A598(AI) LAWSONS INVINCIBLE C402(AI) Dam: TE MANIA BARUNAH J1125 (AI) (ET)

TE MANIA ULONG U41 (AI) (ET) TE MANIA BARUNAH X101 (AI) (ET)

\$146 \$129 \$166 \$136

								J	lanuai	ry 201	7 Ang	jus Aı	ıstrali	a BRI	EEDPI	LAN									
	C	Calvin	g Eas	е	(Growt	h& Ma	terna	ı	Fert	ility	CWT		400 k	(G Ca	rcase		Inta	ake			St	ructu	re	
The same of	Dir	Dtrs	GL	B Wt	200	400	600	M Wt	Milk	SS	DC	750d	EMA	Rib	Rump	RBY%	IMF%	NFIP	NFIF	DOC	FC	FA	RA	RH	RS
EBV	+2.4	+0.2	-5.2	+2.5	+54	+95	+118	+82	+19	+0.2	-5.1	+59	+6.8	+1.0	+1.9	-0.9	+4.1	+0.42	+0.33	+10	-1.7	+15.8	+1.2	-1.5	+0.3
Acc	64%	54%	85%	76%	73%	75%	75%	74%	65%	79%	42%	67%	65%	67%	67%	58%	61%	46%	47%	60%	56%	56%	49%	39%	42%
					Traits (hserver	I GL CE	RWT 20	NWT 40	OWT SS	FAT FM	A IMF D	OC Gen	omics S	Structral S	Scores: F	C 6 FA	5 RA 5	RH 5 R	S 5	•				

TE MANIA BARUNAH A96 (AI) (ET)

Balanced with good body length on show. He is the first calf out of a two year old heifer from our prominent Barunah cow family line. The last six generations on the dams side of this bull have all been ET conceived and combined they have contributed 226 progeny to our herd. Small amount of white in the groin area. L107 is well suited for use over heifers

Lot 26 ΓΕ MANIA LALBERT L126

Calving Ease Growth Marbling Angus Breeding Heavy Grass Heavy Grain

Sire: G A R PROPHET

Born: 31/07/2015

B A R EXT TRAVELER 205 CRA LADY JAYE 608 498 S EAS

Dam: TE MANIA MITTAGONG J615 (AI)

G A R PREDESTINED BFF EVERELDA ENTENSE 4015

\$INDEX \$131 \$119 \$143 \$126

0, 1	. 02020.	112 1000			GAF	R 1407 NEW	DESIGN 22	32					001100	,	TE	MANIA MITT	AGONG Z24	(AI) (ET)		ψισι	Ψι	10	Ψιτι	γ	120
								J	anua	ry 201	7 Ang	jus Aı	ıstrali	a BR	EEDP	LAN									
	C	alvin	g Eas	е	(Growt	h& Ma	aterna	ı	Fer	tility	cwt		400 I	(G Ca	rcase		Inta	ake			Sí	tructu	re	
	Dir	Dtrs	GL	B Wt	200	400	600	M Wt	Milk	SS	DC	750d	EMA	Rib	Rump	RBY%	IMF%	NFIP	NFIF	DOC	FC	FA	RA	RH	RS
EBV	+0.8	+2.1	-3.1	+3.5	+52	+94	+121	+97	+22	-0.3	-4.5	+65	+6.5	-0.4	+0.1	-0.2	+2.8	+0.21	+0.12	-1	+1.1	+24.1	+8.4	-2.2	+0.1
Acc	55%	50%	85%	74%	69%	70%	69%	66%	56%	73%	38%	62%	61%	62%	63%	57%	58%	43%	45%	58%	54%	55%	47%	37%	41%

Traits Observed: GL CE BWT 200WT 400WT SS FAT EMA IMF DOC, Structral Scores: FC 6, FA 6, RA 5, RH 6, RS 5

Good frame and body length on display. Well suited for use over heifers.

Lot 27

Calving Ease Growth Fertility Carcase Marbling Angus Breeding Heavy Grass Heavy Grain TE MANIA YORKSHIRE Y437 (AI) TE MANIA LOWAN Z53 (AI) (ET)

TE MANIA AFRICA A217 (AI) Sire: TE MANIA GARTH G67 (AI)

TE MANIA MITTAGONG E28 (AI)

Dam: TE MANIA DANDLOO J394 (AI) TE MANIA DANDLOO A619 (AI) (ET)

TE MANIA BERKI EY B1 (AI)

B/R NEW DIMENSION 7127 TE MANIA DANDLOO V249 (AI

\$INDEX \$148 \$128 \$170 \$136

								J	lanuai	ry 201	7 Ang	jus Αι	ustrali	a BRI	EEDPI	LAN									
	C	alvin	g Eas	е	(Growt	h& Ma	terna	ı	Fert	ility	cwt		400 k	(G Ca	rcase		Inta	ake			St	tructu	re	
	Dir	Dtrs	GL	B Wt	200	400	600	M Wt	Milk	SS	DC	750d	EMA	Rib	Rump	RBY%	IMF%	NFIP	NFIF	DOC	FC	FA	RA	RH	RS
EBV	+1.5	+3.2	-6.8	+3.4	+46	+89	+116	+98	+24	+3.7	-7.5	+61	+10.5	+0.3	-0.6	+0.7	+3.0	+0.34	+0.52	+6	-33.6	-29.7	-24.5	+0.6	+0.5
Acc	64%	54%	86%	76%	73%	75%	75%	73%	62%	79%	45%	67%	65%	67%	67%	59%	62%	51%	53%	60%	57%	58%	52%	49%	50%
					Traite (hearvar	+ GL CE	BWT 20	UMT 4U	22 TWN	FAT FM	A IME D	OC Gan	omice C	tructral C	Scores: F	C 7 FΔ	6 PA6	RH 5 R	95					

Good frame and body length on display in this AI conceived son of Garth. He is the first calf out of a two year old heifer.

Lot 28 Born: 13/08/2015 Society Id: VTML654 Structure date scored 06/12/2016

Growth Fertility Marbling Angus Breeding Heavy Grass Heavy Grain

TE MANIA AFRICA A217 (AI) Sire: TE MANIA GARTH G67 (AI)

TE MANIA MITTAGONG F28 (AI)

TE MANIA BERKLEY B1 (AI) Dam: TE MANIA MOONGARA G713 (AI)

ARDCAIRNIE MIDLAND Z57 (AI

\$INDEX \$146 \$125 \$166 \$134

					TE N	MANIA MITT	AGONG C90	0 (ACR)							TE	MANIA MOC	NGARA Z66	i8 (AI)		, .					
								J	lanuai	ry 201	7 Ang	jus Aı	ıstrali	a BRI	EEDPI	_AN									
	Calving Ease Growth& Maternal									Fert	ility	CWT		400 k	(G Ca	rcase		Inta	ake			St	tructu	re	
THE STATE OF	Dir	Dtrs	GL	B Wt	200	400	600	M Wt	Milk	SS	DC	750d	EMA	Rib	Rump	RBY%	IMF%	NFIP	NFIF	DOC	FC	FA	RA	RH	RS
EBV	+0.7	+2.9	-7.3	+4.5	+48	+90	+116	+94	+23	+2.8	-8.0	+60	+6.9	+1.2	+1.3	0.0	+3.1	+0.34	+0.47	+30	-29.6	-26.0	-23.7	-0.4	+0.4
Acc	64%	54%	87%	77%	74%	76%	75%	74%	63%	79%	45%	68%	65%	67%	67%	59%	62%	51%	53%	61%	58%	60%	54%	50%	52%

Traits Observed: GL CE BWT 200WT 400WT SS FAT EMA IMF DOC Genomics, Structral Scores: FC 7, FA 6, RA 6, RH 6, RS 5

TE MANIA MOONGARA C844

Berkley and Africa bloodlines have combined well with good body length and balance on display in this son of Garth.

							BRE	EED A	VERA	GE EB	VS FC	OR 20	15 B	ORN (CALVI	ES							
С	ALVIN	G EAS	E	GF	ROWTI	H & MA	TERNA	AL.	FERT	ILITY	CWT		C	ARCA	SE		INT	AKE			IND	EX\$	
DIR.	DTRS	GL	Bwt	200	400	600	Mwt	MILK	SS	DC	750d	EMA	RIB	RUMP	RBY%	IMF%	NFIP	NFIF	Doc	AB	D	HG	G
0.0	+0.1	-3.7	+4.3	+42	+77	+100	+88	+15	+1.7	-3.8	+56	+4.6	0.0	-0.2	+0.3	+1.6	+0.09	+0.15	+5	\$106	\$103	\$110	\$105
	Anim	als with I	FBVs and	Indexes	hiahliahte	ed with sha	ding are i	n the top	10% of the	e Anaus	breed. W	ith the e	xceptio	n of fat w	hich has	no shad	ling, and	Mature W	eiaht wh	nich is sha	ded if the	value is	< 100.

Lot 29 TE MANIA LINGUINE L1037 (AI) Born: 22/08/2015 Society Id: VTML1037 AMFU/NHFU/CAFU/DDFU

CONNEALY ONWARD RIVERBEND BLACKBIRD 4301 MFU/NHFU/CAFU/DDFU Structure date scored 05/12/2016

Calving Ease Growth Carcase Marbling Angus Breeding Heavy Grass Heavy Grain

B/R NEW DAY 454

Sire: V A R RESERVE 1111(ET)

SANDPOINT BLACKBIRD 8809

G AR TWINHEARTS 8418 S SOBJECTIVE 151001726

Dam: TE MANIA BOORTKOI J138 (AI)

TE MANIA BOORTKOI G44 (AI)

TE MANIA AMOKI A886 (AI) (ET)

TE MANIA AMOKI A886 (AI) (ET)

AB D HG G \$132 \$129 \$147 \$124

								J	anuai	ry 201	7 Ang	jus Aı	ıstrali	a BRI	EDPI	LAN									
	C	alvin	g Eas	е	(Growt	h& Ma	terna	I	Fert	ility	CWT		400 F	(G Ca	rcase		Inta	ake			St	ructu	re	
	Dir	Dtrs	GL	B Wt	200	400	600	M Wt	Milk	SS	DC	750d	EMA	Rib	Rump	RBY%	IMF%	NFIP	NFIF	DOC	FC	FA	RA	RH	RS
EBV	+4.9	+2.2	-6.3	+1.9	+46	+91	+108	+85	+22	+1.4	-5.0	+59	+5.8	-2.3	-2.2	+1.6	+2.5	+0.15	+0.09	+22	+14.2	-4.5	-6.7	-3.2	-1.2
Acc	49%	41%	85%	74%	69%	70%	68%	62%	49%	72%	33%	58%	59%	60%	60%	55%	54%	41%	41%	57%	50%	52%	40%	33%	38%
					Tı	raits Ohs	erved: G	L CF BV	VT 200W	T 400W	T SS FA	TEMAI	ME DOC	Structr	al Score	s: FC 6	FA 6 RA	6 RH 6	RS 5						

L1037 is the first calf out of a two year old heifer. An outcross option for going over daughters of Berkley, Regent and Africa. He is well suited for use over heifers.

Lot 30 Born: 24/08/2015 Structure date scored 05/12/2016 Growth Fertility Marbling Angus Breeding Heavy Grass Heavy Grain B A R EXT TRAVELER 205 CRA LADY JAYE 608 498 S EASY ARDROSSAN EQUATOR A241 (AI) (ET) BOOROOMOOKA SIGNAL B325(AI) \$INDEX C R A BEXTOR 872 5205 608 BOOROOMOOKA INSPIRED E124(AI) HG Sire: G A R PROPHET Dam: TE MANIA JAPARA J426 (AI) GAR OBJECTIVE 1885 \$147 \$128 \$169 \$135 TE MANIA JAPARA F522 (AI) TE MANIA YOR TE MANIA JAP January 2017 Angus Australia BREEDPLAN CWT Fertility 400 KG Carcase **Growth& Maternal** Calving Ease Intake Structure GL 600 M Wt SS 750d Rib NFIP NFIF FA RA RS Dir Dtrs B Wt 200 400 Milk DC EMA Rump RBY% IMF% DOC FC -7 +0.4 +2.0 -3.6 +3.2 +55 +102 +128 +105 +25 +2.6 -7.4 +69 +3.4 -0.5 +1.1 -0.7 +3.5 +0.41 +0.46 -12.5 +4.2 +5.5 -0.5 -0.2 50% 85% 74% 69% 70% 68% 66% 56% 73% 38% 62% 61% 61% 63% 57% 58% 44% 45% raits Observed: GL CE BWT 200WT 400WT SS FAT EMA IMF DOC, Structral Scores: FC 6, FA 5, RA 5, RH 5, RS 5 45% 58% 54%

A balanced son of Prophet and the first calf out of a two year heifer.

Lot 31 Calving Ease Growth Carcase Marbling Angus Breeding Heavy Grass Heavy Grain C R A BEXTOR 872 5205 608 TC BLACKBIRD 4034 B/R MIDLAND ARDCAIRNIE GEORGINA V18 (AI) \$INDEX TC ARERDEEN 759 ARDCAIRNIE MIDI AND 757 (AI) Sire: RENNYLEA H7 (AI) (ET) Dam: TE MANIA DANDLOO C300 (AI) LAWSONS NEW DESIGN 1407 Z1393(AI) TE MANIA DANDLOO Z295 (AI) (ET) \$130 \$122 \$137 \$128 B/R NEW DIMENSION 7127 TE MANIA DANDLOO V622 (AI) (ET) January 2017 Angus Australia BREEDPLAN **Calving Ease Growth& Maternal** Fertility CWT 400 KG Carcase Intake Structure Rump RBY% IMF% NFIP NFIF Dtrs GL B Wt 200 400 600 M Wt Milk SS DC 750d EMA Rib DOC FC FA RA RH RS **EBV** +2.1 +3.5 -7.3 +3.6 +85 +111 +88 +20 +1.4 -3.1 +61 +10.4 +0.3 +0.1 +1.3 +2.0 +0.10 +0.21 -2 -22.1 -1.0 -6.6 -4.4 +0.4 71% 69% 64% 59% 57% 51% 45% 85% 75% 70% 53% 74% 41% 61% 61% 62% 57% 46% 47% 59% 50% 50% 38% 33% 36% erved: GL CE BWT 200WT 400WT SS FAT EMA IMF DOC, Structral Scores: FC 7, FA 6, RA 6, RH 5, RS 5

Added thickness and body length on display. The dam of this bull remains active within the stud herd as a rising ten year old.

Lot 3	32							T	ΕM	AN	IA L	_AN	IDR	ΥL	239	(Al)								AB2
Born: 04/0	8/2015	;			Socie	ety ld: \	/TML23	9			Α	MFU/N	HFU/C/	AFU/DE	FU						Struct	ure da	e score	d 05/12	2/2016
Calvi	ng	Eas	e G	Grov	vth	Fe	tility	/ Са	rca	se l	Marl	olin	g Α	ngu	s B	reed	ding	He	eavy	/ Gr	ass	He	avy	Gr	ain
GA	R TWINH	FARTS 84	118			OBJECTIVE R YIELD G	T510 0T26			TF	MANIA EA	ARI GRE	(F25 (AI)			MANIA CALA						\$IND	EX		
Sire: TE				INS J			0002010		Da							(AI) (E	,	,		AB)	HG		G
		PARA G1			LAV	VSONS INVI	NCIBLE C402 ARA E649 (AI)				MANIA LO				TE	MANIA BERI MANIA LOW	KLEY B1 (AI)		,	\$142	2 \$1	31	\$153	3 \$1	136
								J	lanuai	y 201	7 Ang	jus Ai	ıstrali	a BRI	EDP	LAN									
1000	C	alvin	g Eas	е	(Growt	h& Ma	terna	ıl	Fert	ility	CWT		400 H	G Ca	rcase		Int	ake			S	tructur	·e	
ARCCO CO	Dir	Dtrs	GL	B Wt	200	400	600	M Wt	Milk	SS	DC	750d	EMA	Rib	Rump	RBY%	IMF%	NFIP	NFIF	DOC	FC	FA	RA	RH	RS
EBV	+6.5	+4.7	-11.5	+0.3	+43	+86	+110	+74	+25	+2.0	-4.9	+62	+11.5	-0.9	-1.3	+1.9	+2.2	+0.24	+0.46	+5	+8.8	-5.1	-7.9	+1.9	-0.2
Acc	47%	37%	85%	74%	69%	69%	66%	62%	47%	72%	36%	58%	59%	60%	61%	55%	54%	43%	43%	58%	52%	52%	44%	39%	42%

Balanced and well suited for use over heifers. One of the 17 sons of Jenkins being offered in this sale. Small amount of white in the groin area.

							BRI	EED A	VERA	GE EB	VS FC	OR 20	15 B	ORN (CALVI	ES							
C	ALVIN	G EAS	E	GF	ROWTI	AM & F	TERNA	AL	FERT	ILITY	CWT		C	ARCA	SE		INT	AKE			IND	EX\$	
DIR.	DTRS	GL	Bwt	200	400	600	Mwt	MILK	SS	DC	750d	EMA	RIB	RUMP	RBY%	IMF%	NFIP	NFIF	Doc	AB	D	HG	G
0.0	+0.1	-3.7	+4.3	+42	+77	+100	+88	+15	+1.7	-3.8	+56	+4.6	0.0	-0.2	+0.3	+1.6	+0.09	+0.15	+5	\$106	\$103	\$110	\$105
	Anim	als with I	EBVs and	Indexes	highlighte	d with sha	ding are i	n the top	10% of the	e Angus	breed. W	ith the e	xceptio	n of fat w	hich has	no shac	ling, and	Mature W	eight wh	hich is sha	aded if the	value is	< 100.

Society Id: VTML378

YTHANBRAE HENRY VIII U8 (AI) (ET) YTHANBRAE DIRECTION T270 (AI)

Structure date scored 05/12/2016

Calving Ease Growth Fertility Marbling Angus Breeding Heavy Grass Heavy Grain

TE MANIA AFRICA A217 (AI) Sire: RENNYLEA G317 (AI) (ET)

Born: 08/08/2015

LAWSONS HENRY VIII Y5 (AI)

TE MANIA YORKSHIRE Y437 (AI) TE MANIA LOWAN Z53 (AI) (ET) TE MANIA BERKLEY B1 (AI) Dam: TE MANIA DANDLOO G649 (AI) (ET) TE MANIA DANDLOO B76 (AI) TE MANIA UNLIMITED U3271 (AI) (ET) TE MANIA DANDLOO X330 (AI)

AMFU/NHFU/CAFU/DDFU

\$157 \$133 \$188 \$137

								J	anua	ry 201	7 Ang	us Aı	ıstrali	a BRI	EEDPI	_AN									
	C	Calvin	g Eas	е	(Growt	h& Ma	aterna	ı	Fer	tility	сwт		400 F	(G Ca	rcase		Inta	ake			St	ructu	re	
	Dir	Dtrs	GL	B Wt	200	400	600	M Wt	Milk	SS	DC	750d	EMA	Rib	Rump	RBY%	IMF%	NFIP	NFIF	DOC	FC	FA	RA	RH	RS
EBV	+2.1	+3.1	-7.7	+3.7	+43	+84	+100	+88	+17	+4.1	-10.2	+53	+9.1	+2.2	+2.4	-0.7	+4.4	+0.60	+0.89	+1	-4.6	+3.3	-3.1	+0.7	-0.4
Acc	61%	50%	86%	77%	74%	75%	75%	73%	62%	79%	46%	66%	65%	67%	66%	59%	60%	50%	50%	62%	46%	47%	37%	33%	36%
					Traits ()hserver	· GLCF	BWT 20	0WT 40	OWT SS	FAT EM	A IMF D	OC Gen	omics S	Structral S	Scores: F	C 6 FA	6 RA 6	RH 5 R	S 5					

Balanced with good body length on display. Bloodlines from some of our more prominent cow family lines, Lowan and Jedda, have blended well with this bull.

Lot 34

Born: 08/08/2015 Structure date scored 05/12/2016

Growth Carcase Marbling Angus Breeding Heavy Grass Heavy Grain

Sire: PATHFINDER GOLDMARK D189(AI)

TE MANIA DAIQUIRI D19 (AI) TE MANIA MOONGARA C332 (AI) TE MANIA FLORIATED F664 (AI) Dam: TE MANIA JEDDA H247 (AI) TE MANIA JEDDA C1120 (AI) (ET)

\$INDEX \$132 \$121 \$145 \$128

January 2017 Angus Australia BREEDPLAN Fertility CWT **Growth& Maternal** 400 KG Carcase Calving Ease Intake Structure GL 600 M Wt SS 750d Rib NFIP NFIF RS Dir Dtrs B Wt 200 400 Milk DC EMA Rump RBY% IMF% DOC FC FΑ RA +68 +9.4 -1.0 -0.7 +1.4 +2.4 +0.24 +0.48 +2.5 +3.1 -9.0 +5.1 +49 +90 +121 +108 +24 +2.8 -2.3 -5 +8.7 -6.9 -4.6 -0.4 +0.2 52% 43% 86% 75% 70% 71% 70% 67% 58% 74% 43% 62% 62% 63% 64% 59% 58% 48% 48% Traits Observed: GL CE BWT 200WT 400WT SS FAT EMA IMF DOC, Structral Scores: FC 6, FA 6, RA 6, RH 5, RS 5 48% 58% 47% 49%

Stylish with presence and butt shape on display.

PATHFINDER BOWMAN B175 (AI) (ET)

Lot 35

Society Id: VTML390 Calving Ease Growth Carcase Marbling Angus Breeding Heavy Grass Heavy Grain

TE MANIA BADMINTON B41 (AI) TE MANIA WARGOONA Y408 (AI G A R PREDESTINED BFF EVERELDA ENTENSE 4015 \$INDEX TE MANIA DEFI ATION D367 (AI)

WERNER WESTWARD 357 Sire: TE MANIA JOCK J930 (AI) TE MANIA BEEAC G93 (AI) LAWSONS TANK B1155(AI) TE MANIA BEEAC E117 (AI

Dam: TE MANIA BEEAC F748 (AI) TE MANIA BEEAC Z700 (AI) TE MANIA UNLIMITED U3271 (AI) (ET) TE MANIA BEEAC X529 (AI) \$144 \$128 \$160 \$135

								J	anuai	ry 201	7 Ang	jus Αι	ıstrali	a BR	EEDPI	LAN									
	O	alvin	g Eas	е	·	Growt	h& Ma	terna	ı	Fert	ility	CWT		400 I	(G Ca	rcase		Inta	ake			St	tructu	re	
THE COLUMN	Dir	Dtrs	GL	B Wt	200	400	600	M Wt	Milk	SS	DC	750d	EMA	Rib	Rump	RBY%	IMF%	NFIP	NFIF	DOC	FC	FA	RA	RH	RS
EBV	+1.4	+2.4	-7.5	+3.9	+49	+90	+118	+90	+16	+1.4	-5.4	+66	+8.6	-0.4	-1.1	+1.2	+2.6	+0.15	+0.39	-3	-5.8	+9.8	+8.5	-2.8	+0.5
Acc	56%	40%	86%	76%	71%	73%	73%	72%	60%	78%	35%	64%	62%	65%	64%	55%	57%	42%	41%	58%	52%	52%	40%	37%	39%
					Traite (hearyon	I CL CE	DIVIT 20	OWT 40	OVA/T CC	EAT EM	V IME D	OC Con	omice (Structrol (Cooroe: E	CEEA	6 0 4 6	DH 5 D	9.5					

Traits Observed: GL CE BWT 200WT 400WT SS FAT EMA IMF DOC Genomics, Structral Scores: FC 6, FA 6, RA 6, RH 5, RS 5

Good natural thickness and body length are shown by this bull.

Lot 36

Born: 08/08/2015 Structure date scored 05/12/2016 Calving Ease Growth Fertility Carcase Marbling Angus Breeding Heavy Grass Heavy Grain

G A R SOLUTION LAWSONS PREDESTINED A598(AI) \$INDEX TE MANIA AFRICA A217 (AI) LAWSONS INVINCIBLE C402(AI) Sire: TE MANIA GARTH G67 (AI) Dam: TE MANIA LOWAN H181 (AI)

\$152 \$132 \$175 \$140 TE MANIA MITTAGONG F28 (AI) TE MANIA LOWAN F1045 (AI) (ET) DUNOON Z191 BRINDABELLA B197 (AI) (ET) TE MANIA LOWAN B48 (AI) (ET) January 2017 Angus Australia BREEDPLAN

										anuai	y 20 i	, with	jus At	ısıı an	a Divi											
100	30	C	alvin	g Eas	е	•	Growt	h& Ma	aterna	ıl	Fert	ility	CWT		400 F	(G Ca	rcase		Inta	ake			S	tructu	re	
THE SHE		Dir	Dtrs	GL	B Wt	200	400	600	M Wt	Milk	SS	DC	750d	EMA	Rib	Rump	RBY%	IMF%	NFIP	NFIF	DOC	FC	FA	RA	RH	RS
EB	V	+2.5	+2.0	-9.5	+2.8	+48	+90	+118	+84	+23	+3.1	-5.4	+59	+8.0	0.0	+0.3	+0.7	+3.6	+0.38	+0.52	+39	+5.0	-8.7	-10.5	-0.1	+0.4
Ac	c	62%	53%	86%	77%		75%	75%	73%	62%	79%		67%	64%	67%	67%	58%	61%	49%	51%	60%	57%	58%	52%	48%	50%

Traits Observed: GL CE BWT 200WT 400WT SS FAT EMA IMF DOC Genomics, Structral Scores: FC 6, FA 6, RA 6, RH 5, RS 5

Balanced and well suited for use over heifers

	BREED AVERAGE EBVS FOR 2015 BORN CALVES																						
С	ALVIN	G EAS	SE SE	GF	ROWT	∃& MA	TERNA	٩L	FERT	ILITY	CWT		C	ARCA	SE		INT	AKE			INDI	EX\$	
DIR.	DTRS	GL	Bwt	200	400	600	Mwt	MILK	SS	DC	750d	EMA	RIB	RUMP	RBY%	IMF%	NFIP	NFIF	Doc	AB	D	HG	G
0.0	+0.1	-3.7	+4.3	+42	+77	+100	+88	+15	+1.7	-3.8	+56	+4.6	0.0	-0.2	+0.3	+1.6	+0.09	+0.15	+5	\$106	\$103	\$110	\$105
	Anim	als with	EBVs and	Indexes	highlighte	d with sha	ding are i	n the top	10% of the	e Angus I	breed. W	lith the e	xceptio	n of fat w	hich has	no shac	ling, and	Mature W	eight wh	nich is sha	ded if the	value is ·	< 100.

AMFU/NHFU/CAFU/DDFU

Born: 09/08/2015 Society Id: VTML442 Calving Ease Growth Fertility Marbling Angus Breeding Heavy Grass Heavy Grain

G A R TWINHEARTS 8418 Sire: TE MANIA JACK J70 (AI)

TE MANIA LOWAN G141 (AI) (ET)

TE MANIA CALAMUS C46 (AI) TE MANIA MITTAGONG B112 (AI) TE MANIA FESTIVITY F327 (AI) Dam: TE MANIA MITTAGONG H759 (AI)

\$129 \$117 \$144 \$121

TE MANIA BERKLEY B1 (AI) TE MANIA LOWAN Z74 (AI) (ET) TE MANIA DECLARER D285 (AI) TE MANIA MITTAGONG C1169 January 2017 Angus Australia BREEDPLAN Fertility **Calving Ease Growth& Maternal** CWT 400 KG Carcase Structure 8 Dtrs GI 400 600 M Wt Milk 22 DC 750d EMA Rib Rump RBY% IMF% NFIP NFIF RA B Wt DOC FA **EBV** +5.5 +4.5 -8.7 +1.3 +43 +84 +108 +84 +25 +2.8 -6.8 +56 +1.6 -0.1 +0.1 -0.4 +2.9 +0.14 +0.21 -6 +12.4 +8.7 -6.7 -1.5 -0 1 5 68% 65% 61% 45% 72% 34% 57% 57% 58% 60% 54% 52% 41% 41% 56% 50% 51% 41% Traits Observed: GL CE BWT 200WT 400WT SS FAT EMA IMF DOC, Structral Scores: FC 6, FA 6, RA 6, RH 5, RS 5 36% 85% 74% 67%

TE MANIA MITTAGONG F315 (AI)

Balanced and well suited for use over heifers. Small amount of white in the groin area.

Lot 38 Born: 10/08/2015

Society Id: VTML472 Structure date scored 05/12/2016

Growth Carcase Marbling Angus Breeding Heavy Grass Heavy Grain

G A R PREDESTINED BFF EVERELDA ENTENSE 4015 WERNER WESTWARD 357 Sire: TE MANIA JOCK J930 (AI)

TE MANIA BEEAC G93 (AI)

S A F FOCUS OF ER TE MANIA LOWAN U275 (AI) (ET) TE MANIA YORKSHIRE Y437 (AI) Dam: TE MANIA BARUNAH A279 (AI)

\$INDEX \$136 \$118 \$156 \$127

January 2017 Angus Australia BREEDPLAN CWT Fertility 400 KG Carcase **Calving Ease Growth& Maternal** Intake Structure 6 Rump RBY% IMF% GL 400 600 M Wt Milk SS 750d EMA NFIP NFIF RA Dir Dtrs B Wt DC Rib DOC FC FA RS 200 +73 +2.2 -1.2 -1.5 +0.4 +2.4 +0.07 +0.11 +4 +0.1 +2.9 -7.4 +5.5 +50 +93 +128 +113 +15 +1.3 -6.2 -15.1 +12.2 +8.4 +0.1 +0.4 58% 43% 86% 76% 5 74% 74% 72% 62% 78% 39% 64% 63% 67% 65% 57% 58% 45% 44% 5 COBSERVED GLICE BWT 200WT 400WT SS FAT EMA IMF DOC Genomics, Structral Scores: FC 6, FA 5, RA 5, RH 5, RS 6 59% 52% 51% 39% 35%

A bull that exhibits lots of capacity, frame and body length.

TE MANIA LATTICE **Lot 39**

G

Society Id: VTML491 Calving Ease Growth Fertility Marbling Angus Breeding Heavy Grass Heavy Grain

TE MANIA BERKLEY B1 (AI) TE MANIA LOWAN Z74 (AI) (ET) TE MANIA ULONG U41 (AI) (ET) TE MANIA JEDDA Y32 (AI) (ET) TE MANIA AFRICA A217 (AI) TE MANIA EMPEROR E343 (AI)

Sire: TE MANIA GARTH G67 (AI)

TE MANIA MITTAGONG E28 (AI)

Dam: TE MANIA LOWAN G857 (AI)

\$INDEX

TE MANIA LOWAN Z283 (AI) (ET) \$144 \$124 \$164 \$131 B/R NEW DIMENSION 7127 TE MANIA LOWAN V105 (AI) (ET) January 2017 Angus Australia BREEDPLAN **Calving Ease** Fertility CWT 400 KG Carcase Intake **Growth& Maternal** Structure 6 Dtrs GL 400 600 M Wt SS DC 750d EMA Rib Rump RBY% IMF% NFIP NFIF DOC FC FA RA 200 +1.5 +3.3 -7.3 +2.8 +45 +84 +108 +85 +24 +3.3 -8.2 +52 | +7.0 +1.8 +1.4 -0.2 +3.4 | +0.39 +0.50 | +20 -26.6 -40.6 -17.2 +0.2

75% 75% 74% 63% 79% 44% 68% 65% 67% 59% 62% 51% 53% 61% 58% 58% 52% 48% 64% 54% 87% 77% 74% 67% Traits Observed: GL CE BWT 200WT 400WT SS FAT EMA IMF DOC Genomics, Structral Scores: FC 7, FA 7, RA 6, RH 5, RS 6

Good frame and body length shown by this bull. The past five generations of females on the dams side of this bull from the Lowan cow family have contributed 165 progeny to our herd. Well suited for use over heifers.

Lot 40

Born: 10/08/2015 Society Id: VTML492 Structure date scored 05/12/2016 Calving Ease Growth Fertility Marbling Angus Breeding Heavy Grass Heavy Grain

Sire: TE MANIA JEROME J131 (AI) Dam: TE MANIA BARUNAH H36 (AI) TE MANIA LOWAN G694 (AI) TE MANIA BARUNAH F366 (AI)

\$INDEX \$139 \$121 \$154 \$129

TE MANIA DECLARER D285 (AI) TE MANIA BARUNAH C1051 (AI) (ET) January 2017 Angus Australia BREEDPLAN **Calving Ease Growth& Maternal** Fertility CWT 400 KG Carcase Structure 6 GL M Wt 750d Rib Rump RBY% IMF% NFIP NFIF B Wt DC RA -5 **EBV** +4.4 +4.6 -7.2 +2.0 +46 +82 +110 +91 +22 +4.3 -8.5 +69 | +4.6 | +1.7 | +0.3 | +0.2 | +2.6 | +0.18 | +0.57 -0.7 -2.7 +0.6 +0.4 -3.6 44% 86% 76% 71% 58% 52% 52% 43% 40%

Balanced and well suited for use over heifers. Small amount of white in the groin area.

							BRE	EED A	VERA	GE EB	VS FO	OR 20	15 B	ORN (CALVI	ES							
С	ALVIN	G EAS	E	GF	ROWTH	1 & MA	TERNA	٩L	FERT	ILITY	CWT		C	ARCA	SE		INT	AKE			IND	EX\$	
DIR.	DTRS	GL	Bwt	200	400	600	Mwt	MILK	SS	DC	750d	EMA	RIB	RUMP	RBY%	IMF%	NFIP	NFIF	Doc	AB	D	HG	G
0.0	+0.1	-3.7	+4.3	+42	+77	+100	+88	+15	+1.7	-3.8	+56	+4.6	0.0	-0.2	+0.3	+1.6	+0.09	+0.15	+5	\$106	\$103	\$110	\$105
	Anim	nals with	EBVs and	Indexes	highlighte	d with sha	ding are i	n the top	10% of th	e Angus	breed. W	ith the e	xceptio	n of fat v	vhich has	no shac	ding, and	Mature W	eight wh	hich is sha	aded if the	value is	< 100.

G A R SOLUTION LAWSONS PREDESTINED A598(AI)

Calving Ease Growth Fertility Marbling Angus Breeding Heavy Grass Heavy Grain

LAWSONS INVINCIBLE C402(AI)

TE MANIA AFRICA A217 (AI) Sire: TE MANIA GARTH G67 (AI)

Born: 11/08/2015

Dam: TE MANIA WARGOONA G382 (AI) TE MANIA MITTAGONG E28 (AI) TE MANIA CANTON C138 (AI) (ET) TE MANIA MITTAGONG C900 (ACF

TE MANIA WARGOONA C702 (AI) (REDF) ARDCAIRNIE MIDLAND Z57 (AI) TE MANIA WARGOONA A999 (A \$137 \$120 \$156 \$126

January 2017 Angus Australia BREEDPLAN Calving Ease Growth& Maternal Fertility CWT 400 KG Carcase Intake Structure																								
С	alvin	g Eas	е	•	Growt	h& Ma	aterna	I	Fert	ility	CWT		400 H	(G Ca	rcase		Inta	ake			St	ructu	re	
Dir	Dtrs	GL	B Wt	200	400	600	M Wt	Milk	SS	DC	750d	EMA	Rib	Rump	RBY%	IMF%	NFIP	NFIF	DOC	FC	FA	RA	RH	RS
+2.2	+1.7	-7.5	+2.9	+44	+82	+107	+84	+21	+4.2	-6.0	+54	+5.5	+0.5	+1.9	-0.4	+3.6	+0.51	+0.73	+23	+6.4	-13.8	-18.5	-1.5	+0.1
56%	51%	85%	75%	70%			65%			43%	63%	62%	62%			59%	49%		60%	57%	58%	52%	49%	50%
	Dir +2.2	Dir Dtrs +2.2 +1.7	Dir Dtrs GL +2.2 +1.7 -7.5	+2.2 +1.7 -7.5 +2.9	Dir Dtrs GL BWt 200 +2.2 +1.7 -7.5 +2.9 +44 56% 51% 85% 75% 70%	Dir Dtrs GL B Wt 200 400 +2.2 +1.7 -7.5 +2.9 +44 +82 56% 51% 85% 75% 70% 71%	Dir Dtrs GL B Wt 200 400 600 +2.2 +1.7 -7.5 +2.9 +44 +82 +107 56% 51% 85% 75% 70% 71% 69%	Calving Ease Growth& Materna Dir Dtrs GL B Wt 200 400 600 M Wt +2.2 +1.7 -7.5 +2.9 +44 +82 +107 +84 56% 51% 85% 75% 70% 71% 69% 65%	Calving Ease* Growth& Maternal Dir Dtrs GL B Wt 200 400 600 M Wt Milk +2.2 +1.7 -7.5 +2.9 +44 +82 +107 +84 +21 56% 51% 85% 75% 70% 71% 69% 65% 53%	Calving Ease Growth& Maternal Fert Dir Dtrs GL B Wt 200 400 600 M Wt Milk SS +2.2 +1.7 -7.5 +2.9 +44 +82 +107 +84 +21 +4.2 56% 51% 85% 75% 70% 71% 69% 65% 53% 74%	Calving Ease Growth& Maternal Fertility Dir Dtrs GL B Wt 200 400 600 M Wt Milk SS DC +2.2 +1.7 -7.5 +2.9 +44 +82 +107 +84 +21 +4.2 -6.0 56% 51% 85% 75% 70% 71% 69% 65% 53% 74% 43%	Calving Ease Growth& Maternal Fertility CWT Dir Dtrs GL B Wt 200 400 600 M Wt Milk SS DC 750d +2.2 +1.7 -7.5 +2.9 +44 +82 +107 +84 +21 +4.2 -6.0 +54 56% 51% 85% 75% 70% 71% 69% 65% 53% 74% 43% 63%	Calving Ease Growth& Maternal Fertility CWT Dir Dtrs GL B Wt 200 400 600 M Wt Milk SS DC 750d EMA +2.2 +1.7 -7.5 +2.9 +44 +82 +107 +84 +21 +4.2 -6.0 +54 +5.5 56% 51% 85% 75% 70% 71% 69% 65% 53% 74% 43% 63% 62%	Calving Ease Growth& Maternal Fertility CWT 400 M Dir Dtrs GL B Wt 200 400 600 M Wt Milk SS DC 750d EMA Rib +2.2 +1.7 -7.5 +2.9 +44 +82 +107 +84 +21 +4.2 -6.0 +54 +5.5 +0.5 56% 51% 85% 75% 70% 71% 69% 65% 53% 74% 43% 63% 62% 62%	Calving Ease Growth& Maternal Fertility CWT 400 KG Ca Dir Dtrs GL B Wt 200 400 600 M Wt Milk SS DC 750d EMA Rib Rump +2.2 +1.7 -7.5 +2.9 +44 +82 +107 +84 +21 +4.2 -6.0 +54 +5.5 +0.5 +1.9 56% 51% 85% 75% 70% 71% 69% 65% 53% 74% 43% 63% 62% 62% 64%	Calving Ease Growth& Maternal Fertility CWT 400 KG Carcase Dir Dtrs GL B Wt 200 400 600 M Wt Milk SS DC 750d EMA Rib Rump RB7% +2.2 +1.7 -7.5 +2.9 +44 +82 +107 +84 +21 +4.2 -6.0 +54 +5.5 +0.5 +1.9 -0.4 56% 51% 85% 75% 70% 71% 69% 65% 53% 74% 43% 63% 62% 62% 64% 58%	Calving Ease Growth& Maternal Fertility CWT 400 KG Carcase Dir Dtrs GL B Wt 200 400 600 M Wt Milk SS DC 750d EMA Rib Rump RBY IMF% +2.2 +1.7 -7.5 +2.9 +44 +82 +107 +84 +21 +4.2 -6.0 +54 +5.5 +0.5 +1.9 -0.4 +3.6 56% 51% 85% 75% 70% 71% 69% 65% 53% 74% 43% 63% 62% 62% 64% 58% 59%	Calving Ease Growth& Maternal Fertility CWT 400 KG Carcase Int. Dir Dtrs GL B Wt 200 400 600 M Wt Milk SS DC 750d EMA Rib Rump RBY% IMF% NFIP +2.2 +1.7 -7.5 +2.9 +44 +82 +107 +84 +21 +4.2 -6.0 +54 +5.5 +0.5 +1.9 -0.4 +3.6 +0.51 56% 51% 85% 75% 70% 71% 69% 65% 53% 74% 43% 63% 62% 62% 64% 58% 59% 49%	Calving Ease Growth& Maternal Fertility CWT 400 KG Carcase Intake Dir Dtrs GL B Wt 200 400 600 M Wt Milk SS DC 750d EMA Rib Rump RBY% IMF% NFIP NFIF +2.2 +1.7 -7.5 +2.9 +44 +82 +107 +84 +21 +4.2 -6.0 +55 +0.5 +1.9 -0.4 +3.6 +0.51 +0.73	Calving Ease Growth& Maternal Fertility CWT 400 KG Carcase Intake Dir Dtrs GL B Wt 200 400 600 M Wt Milk SS DC 750d EMA Rib Rump RBY% IMF% NFIP NFIF DOC +2.2 +1.7 -7.5 +2.9 +44 +82 +107 +84 +21 +4.2 -6.0 +54 +5.5 +0.5 +1.9 -0.4 +3.6 +0.51 +0.73 +23 56% 51% 85% 75% 70% 71% 69% 65% 53% 74% 43% 63% 62% 64% 58% 59% 49% 51% 60%	Calving Ease Growth& Maternal Fertility CWT 400 KG Carcase Intake Intake Dirack Dir Dtrs GL B Wt 200 400 600 M Wt Mile SS DC 750d EMA Rib Rump RBY% IMF% NFIP NFIF DOC FC +2.2 +1.7 -7.5 +2.9 +44 +82 +107 +84 +21 +4.2 -6.0 +54 +5.5 +0.5 +1.9 -0.4 +3.6 +0.51 +0.51 +0.73 +23 +6.4 56% 51% 85% 75% 70% 71% 69% 65% 53% 74% 43% 63% 62% 62% 64% 58% 59% 49% 51% 60% 57%	Calving Ease Growth& Maternal Fertility CWT 400 KG Carcase Intake St St Dir Dtrs GL B Wt 200 400 600 M Wt Milk SS DC 750d EMA Rib Rump RBY% IMF% NFIP NFIF DOC FC FA +2.2 +1.7 -7.5 +2.9 +44 +82 +107 +84 +21 +4.2 -6.0 +54 +5.5 +0.5 +1.9 -0.4 +3.6 +0.51 +0.73 +23 +6.4 -13.8 56% 51% 85% 75% 70% 71% 69% 65% 53% 74% 43% 63% 62% 64% 58% 59% 49% 51% 60% 57% 58%	Calving Ease Growth& Maternal Fertility CWT 400 KG Carcase Intake Structure Dir Dtrs GL B Wt 200 400 600 M Wt Milk SS DC 750d EMA Rib Rump RBY IMF% NFIF DOC FC FA RA +2.2 +1.7 -7.5 +2.9 +44 +82 +107 +84 +21 +4.2 -6.0 +55 +0.5 +1.9 -0.4 +3.6 +0.51 +0.73 +23 +6.4 -13.8 -18.5 56% 51% 85% 75% 70% 71% 69% 65% 53% 74% 43% 62% 62% 62% 64% 58% 59% 49% 51% 60% 57% 58% 52%	Calving Ease Growth& Maternal Fertility CWT 400 KG Carcase Intake Structure Dir Dtrs GL B Wt 200 400 600 M Wt Mik SS DC 750d EMA Rib Rump RBY% IMF% NFIP NFIF DOC FC FA RA RH +2.2 +1.7 -7.5 +2.9 +44 +82 +107 +84 +21 +4.2 -6.0 +54 +5.5 +0.5 +1.9 -0.4 +3.6 +0.51 +0.73 +23 +6.4 -13.8 -18.5 -1.5 56% 51% 85% 75% 70% 71% 69% 65% 53% 74% 43% 63% 62% 66% 64% 58% 59% 49% 51% 60% 57% 58% 52% 49%

Stylish with added thickness and body length. L549 is well suited for use over heifers.

Lot 42 Structure date scored 05/12/2016 Society Id: VTML577 Calving Ease Growth Fertility Carcase Marbling Angus Breeding Heavy Grass Heavy Grain

TE MANIA ULONG U41 (AI) (ET) TE MANIA JEDDA Y32 (AI) (ET) BON VIEW DESIGN 1407 BONGONGO NGXX9 BONGONGO BULLETPROOF Z3

Sire: TE MANIA GARTH G67 (AI)

TE MANIA MITTAGONG E28 (AI) TE MANIA CANTON C138 (AI) (ET) TE MANIA MITTAGONG C900 (ACR Dam: TE MANIA BARUNAH C360 (AI) TE MANIA BARUNAH X584 (AI) (ET) B/R NEW DESIGN 036 TE MANIA BARUNAH R312 (AI) (ET)

\$133 \$118 \$146 \$125

								J	anua	ry 201	7 Ang	jus Αι	ıstrali	a BRI	EEDP	LAN									
	C	alvin	g Eas	е	(Growt	h& Ma	aterna	ı	Fert	ility	CWT		400 F	(G Ca	rcase		Inta	ake			St	ructu	re	
	Dir	Dtrs	GL	B Wt	200	400	600	M Wt	Milk	SS	DC	750d	EMA	Rib	Rump	RBY%	IMF%	NFIP	NFIF	DOC	FC	FA	RA	RH	RS
EBV	+1.5	+1.7	-7.2	+3.8	+46	+77	+104	+72	+22	+2.2	-6.2	+45	+8.0	-0.3	-0.2	+0.9	+2.8	+0.23	+0.17	+32	+2.4	-5.6	-3.5	+1.1	+0.2
Acc	60%	55%	86%	77%	73%	74%	72%	67%	58%	76%	47%	66%	65%	65%	67%	61%	63%	53%	55%	66%	63%	63%	56%	51%	52%
					Ti	raits Obs	erved: G	L CE BV	VT 200W	/T 400W	T SS FA	T EMA I	MF DOC	, Structi	al Score	s: FC 6,	FA 6, RA	6, RH 6	, RS 6						

A Garth son with great presence and style. The dam of this bull ran through our donor program in 2011 and she remains active within the stud herd as a rising 10 year cow and has contributed 23 progeny to our herd. The Barunah cow family line is our second most prominent with 780 direct and active descendants currently in our herd.

Lot 43

Growth Carcase Marbling Angus Breeding Heavy Grass Heavy Grain

WERNER WESTWARD 357 TUWHARETOA REGENT D145 (AI) (ET) Sire: TE MANIA JOCK J930 (AI) Dam: TE MANIA BARUNAH H325 (AI)

TE MANIA BEEAC G93 (AI) LAWSONS TANK B1155(AI) TE MANIA BEEAC E117 (AI TE MANIA BARUNAH E676 (AI) (ET) TE MANIA BRADMAN B49 (AI) (ET) TE MANIA BARUNAH X584 (AI) (ET

\$INDEX G \$150 \$125 \$175 \$137

								J	anua	ry 201	7 Ang	jus Aı	ıstrali	a BRI	EEDP	LAN									
	O	alvin	g Eas	е		Growt	h& Ma	aterna	ı	Fert	ility	сwт		400 F	(G Ca	rcase		Inta	ake			St	tructu	re	
THE STATE OF	Dir	Dtrs	GL	B Wt	200	400	600	M Wt	Milk	SS	DC	750d	EMA	Rib	Rump	RBY%	IMF%	NFIP	NFIF	DOC	FC	FA	RA	RH	RS
EBV	-2.9	-0.6	-7.4	+6.2	+57	+102	+138	+110	+21	+1.7	-5.1	+83	+8.6	-0.3	-1.3	+0.8	+3.4	+0.26	+0.35	-9	-34.6	+8.6	+9.0	-0.2	+0.5
Acc	57%	43%	86%	76%	71%	73%	73%	72%	59%	78%	40%	64%	63%	66%	65%	56%	57%	44%	44%	58%	52%	51%	41%	38%	40%
					Traits (Observed	: GL CE	BWT 20	0WT 40	OWT SS	FAT EM	A IMF D	OC Gen	omics. S	Structral S	Scores: F	C 7. FA	6. RA 6.	RH 5. R	S 5					

Stylish with frame and body length on display. The past five generations of females on the dams side of this bull have contributed 162 progeny to our herd.

Lot 44 Born: 13/08/2015 Structure date scored 05/12/2016

Calving Ease Growth Carcase Marbling Angus Breeding Heavy Grass Heavy Grain

\$INDEX

G A R TWINHEARTS 8418 TE MANIA DIPLOMAT D10 (AI) Sire: TE MANIA JENKINS J89 (AI) Dam: TE MANIA LOWAN F73 (AI) \$149 \$131 \$174 \$138 TE MANIA JAPARA G115 (AI) LAWSONS INVINCIBLE C402(AI) TE MANIA LOWAN D919 (REDC) TE MANIA ZAMBIA Z69 (AI) (ET)

					121		2012010 (10	/								MD UTIN LOTT	7 4 4 DOO 7 (7 ti	/		•					
								J	anua	ry 201	7 Ang	jus Ai	ustrali	a BRI	EEDP	LAN									
	Calving Ease Growth& Maternal								Fert	ility	cwt		400 ł	KG Ca	rcase		Inta	ake			St	tructu	re		
NO.	Dir	Dtrs	GL	B Wt	200	400	600	M Wt	Milk	SS	DC	750d	EMA	Rib	Rump	RBY%	IMF%	NFIP	NFIF	DOC	FC	FA	RA	RH	RS
EBV	+3.8	+1.4	-4.5	+3.1	+46	+93	+124	+98	+25	+2.6	-3.9	+60	+10.7	-2.8	-2.5	+1.7	+3.1	+0.24	+0.38	+30	+18.9	+14.3	+3.5	+1.5	0.0
Acc	57%	40%	86%	76%	72%	73%	73%	72%	59%	78%	36%	64%	61%	65%	63%	55%	57%	42%	42%	58%	52%	52%	44%	40%	43%

Traits Observed: GL CE BWT 200WT 400WT SS FAT EMA IMF DOC Genomics, Structral Scores: FC 6, FA 6, RA 5, RH 5, RS 5

L637 presents with good natural thickness and body length.

							BRI	ED A	VERA	GE EB	VS FO	OR 20	15 B	ORN (CALVE	S							
С	ALVIN	G EAS	SE.	GI	ROWT	∃&MA	TERN	٩L	FERT	ILITY	CWT		C	ARCA	SE		INT	AKE			IND	EX\$	
DIR.	DTRS	GL	Bwt	200	400	600	Mwt	MILK	SS	DC	750d	EMA	RIB	RUMP	RBY%	IMF%	NFIP	NFIF	Doc	AB	D	HG	G
0.0	+0.1	-3.7	+4.3	+42	+77	+100	+88	+15	+1.7	-3.8	+56	+4.6	0.0	-0.2	+0.3	+1.6	+0.09	+0.15	+5	\$106	\$103	\$110	\$105
	Anim	als with	EBVs and	Indexes	highlighte	d with sha	iding are i	n the top	10% of the	e Angus	breed. W	ith the e	xceptio	n of fat w	hich has	no shad	ling, and	Mature W	eight wh	nich is sha	ded if the	value is	< 100.

AMFU/NHFU/CAFU/DDC

Growth Carcase Marbling Angus Breeding Heavy Grass Heavy Grain

WERNER WESTWARD 357 Sire: TE MANIA JOCK J930 (AI)

TE MANIA BEEAC G93 (AI)

Born: 14/08/2015

KENNYS CREEK SANDY S15 (AI) Dam: TE MANIA MITTAGONG Y967 (AI) (ET)

TE MANIA KNIGHT K206 (AI) (ET) KENNYS CREEK Q140

\$INDEX \$126 \$111 \$139 \$118

B/R NEW DESIGN 036 TE MANIA MITTAGONG R383 (AI) (ET) January 2017 Angus Australia BREEDPLAN **Calving Ease Growth& Maternal** Fertility CWT 400 KG Carcase Structure B Wt Dtrs GL 200 400 600 M Wt Milk SS DC 750d EMA Rib Rump RBY% IMF% NFIP NFIF FA RA DOC -2.3 +0.5 -4.9 +5.4 +45 +84 +111 +81 +16 +0.7 -7.1 +60 +6.4 -0.4 -0.9 +0.3 +2.4 +0.16 +0.09 +6 -36.7 -11.2 +2.3 -1.6 +0.4 43% 85% 75% 70% 71% 67% 63% 53% 72% 42% 60% 60% 62% 62% 57% 56% 46% 46% 59% 59% 52% 38%

Traits Observed: GL CE BWT 200WT 400WT SS FAT EMA IMF DOC, Structral Scores: FC 6, FA 6, RA 6, RH 5, RS 5

TE MANIA MITTAGONG V44 (AI) (ET)

Added thickness and body length shown here. The dam of this bull remains active within the stud herd as a rising fourteen year old cow. The past three generations on the dams side of this bull have all been ET conceived and combined they have contributed 110 progeny to our herd.

TE MANIA LEGUME L696 **Lot 46**

Born: 14/08/2015 Calving Ease Growth Marbling Angus Breeding Heavy Grass Heavy Grain

TE MANIA AMBASSADOR A134 (AI) LAWSONS HENRY VIII Y5 (AI) TUWHARETOA REGENT D145 (AI) (ET)

TE MANIA EARL GREY E25 (AI)

TE MANIA CALAMUS C46 (AI) TE MANIA BARWON C587 (AI)

Sire: TE MANIA GASKIN G555 (AI) TE MANIA LOWAN D66 (AI)

TE MANIA YORKSHIRE Y437 (AI) TE MANIA LOWAN B860 (AI)

Dam: TE MANIA BARWON H7 (AI) TE MANIA BARWON F484 (AI) (ET)

\$118 \$103 \$125 \$116

								J	anuai	ry 201	7 Ang	jus Aı	ıstrali	a BRI	EEDPI	LAN									
	C	alvin	g Eas	е	(Growt	h& Ma	aterna	I	Fert	ility	cwt		400 F	(G Ca	rcase		Inta	ake			St	tructu	re	
THE STATE OF	Dir	Dtrs	GL	B Wt	200	400	600	M Wt	Milk	SS	DC	750d	EMA	Rib	Rump	RBY%	IMF%	NFIP	NFIF	DOC	FC	FA	RA	RH	RS
EBV	+3.1	-0.1	-6.6	+2.2	+46	+79	+114	+81	+23	0.0	-3.0	+70	+6.5	+1.1	+0.6	-0.9	+2.9	+0.25	+0.25	+21	+2.7	-5.7	+4.3	+0.2	+0.3
Acc	53%	48%	85%	75%	70%	71%	69%	65%	52%	73%	42%	63%	62%	62%	65%	58%	59%	49%	51%	60%	57%	57%	51%	45%	48%

Traits Observed: GL CE BWT 200WT 400WT SS FAT EMA IMF DOC, Structral Scores: FC 6, FA 6, RA 6, RH 5, RS 5

The sons of Gaskin present so well and this son is no exception. He is stylish and balanced with good natural thickness on display.

Lot 47

Growth Fertility Carcase Marbling Angus Breeding Heavy Grass Heavy Grain

Sire: TE MANIA JOCK J930 (AI)

WERNER WESTWARD 357

TE MANIA BEEAC G93 (AI)

TE MANIA FAZE F193 (AI) **Dam: TE MANIA LOWAN H866** TE MANIA LOWAN E331 (AI) LAWSONS PAYLOAD X951 (AI) TE MANIA LOWAN Z461 (AI) (ET)

\$INDEX \$130 \$118 \$145 \$122

								J	anuai	ry 201	7 Ang	jus Aı	ıstrali	a BRI	EDP	LAN									
	C	Calving	g Eas	е	(Frowt	h& Ma	aterna	I	Fer	tility	cwt		400 H	(G Ca	rcase		Inta	ake			St	tructu	re	
THE STATE OF	Dir	Dtrs	GL	B Wt	200	400	600	M Wt	Milk	SS	DC	750d	EMA	Rib	Rump	RBY%	IMF%	NFIP	NFIF	DOC	FC	FA	RA	RH	RS
EBV	-2.5	+0.8	-5.1	+5.2	+47	+93	+119	+85	+19	+1.9	-5.9	+66	+4.3	-1.0	-1.1	+0.6	+2.5	+0.20	+0.43	-8	-43.5	+1.1	+9.5	-1.1	+0.4
Acc	45%	37%	84%	73%	68%	69%	65%	61%	46%	70%	34%	56%	58%	59%	60%	54%	53%	40%	40%	57%	52%	50%	38%	35%	37%

Traits Observed: GL CE BWT 200WT 400WT SS FAT EMA IMF DOC, Structral Scores: FC 7, FA 6, RA 5, RH 5, RS 5

A powerful and strong son of Jock with great presence.

I of 48

G

Born: 14/08/2015 Structure date scored 05/12/2016 Calving Ease Growth Marbling Angus Breeding Heavy Grass Heavy Grain

G A R TWINHEARTS 8418

LAWSONS TANK B1155(AI)

\$INDEX

Sire: TE MANIA JOE J963 (AI) TE MANIA JEDDA G949 TE MANIA EARNINGS E38 (AI) TE MANIA JEDDA D314 (AI)

Dam: TE MANIA BEEAC G93 (AI) TE MANIA BEEAC E117 (AI)

TE MANIA CALAMUS C46 (AI) TE MANIA BEEAC C1042 (AI) (ET)

\$139 \$125 \$161 \$128

																		, , ,							=
								J	anuai	ry 201	7 Ang	jus Aı	ıstrali	a BRI	EEDPI	LAN									
	C	alvin	g Eas	е	·	Growt	h& Ma	terna	ı	Fert	ility	CWT		400 F	(G Ca	rcase		Int	ake			St	ructu	re	
Sec. of	Dir	Dtrs	GL	B Wt	200	400	600	M Wt	Milk	SS	DC	750d	EMA	Rib	Rump	RBY%	IMF%	NFIP	NFIF	DOC	FC	FA	RA	RH	RS
EBV	+0.8	+1.7	-5.3	+3.7	+51	+97	+123	+105	+21	+0.7	-5.7	+66	+5.1	-1.8	-1.5	+0.2	+3.2	+0.17	+0.02	+11	-4.2	+6.3	+0.1	-1.1	+0.5
Acc	56%	39%	86%	76%	72%	73%	73%	72%	59%	78%	35%	64%	61%	65%	63%	55%	57%	42%	42%	58%	49%	48%	37%	33%	36%
					Traits C	Observed	d: GL CE	BWT 20	OWT 40	OWT SS	FAT EM	A IMF D	OC Gen	omics, S	tructral S	Scores: F	-C 6, FA	6, RA 5,	RH 5, R	S 5					

Stylish with added thickness and body length on display. The dam of this bull is also the dam of sire Te Mania Jock VTMJ930.

							BRE	EED A	VERA	GE EB	VS FC	DR 20	15 B	ORN (CALV	ES							
С	ALVIN	G EAS	Ē	GF	ROWTI	H & MA	TERNA	٩L	FERT	ILITY	CWT		C	ARCA	SE		INT	AKE			IND	EX\$	
DIR.	DTRS	GL	Bwt	200	400	600	Mwt	MILK	SS	DC	750d	EMA	RIB	RUMP	RBY%	IMF%	NFIP	NFIF	Doc	AB	D	HG	G
0.0	+0.1	-3.7	+4.3	+42	+77	+100	+88	+15	+1.7	-3.8	+56	+4.6	0.0	-0.2	+0.3	+1.6	+0.09	+0.15	+5	\$106	\$103	\$110	\$105
	Anim	nals with	EBVs and	Indexes	highlighte	d with sha	ding are i	n the top	10% of th	e Angus	breed. W	ith the e	xceptio	n of fat v	vhich has	no shad	ling, and	Mature W	eight wl	nich is sha	aded if the	value is	< 100.

Lot 49 Born: 14/08/2015

Calving Ease Growth Marbling Angus Breeding Heavy Grass Heavy Grain

TUWHARETOA REGENT D145 (AI) (ET) Sire: TE MANIA GASKIN G555 (AI)

TE MANIA LOWAN D66 (AI)

TE MANIA YORKSHIRE Y437 (AI) TE MANIA LOWAN B860 (AI)

TE MANIA YORKSHIRE Y437 (AI) TE MANIA LOWAN Z53 (AI) (ET) TE MANIA BERKLEY B1 (AI) Dam: TE MANIA BARUNAH F121 (AI)

TE MANIA XAVIER X76 (AI) (ET) TE MANIA BARUNAH Z364 (AI)

\$125 \$108 \$144 \$115

								J	anua	ry 201	7 Ang	jus Aı	ıstrali	a BRI	EEDPI	LAN									
	C	alvin	g Eas	е	(Growt	h& Ma	aterna	ı	Fert	ility	CWT		400 H	(G Ca	rcase		Inta	ake			St	ructu	re	
	Dir	Dtrs	GL	B Wt	200	400	600	M Wt	Milk	SS	DC	750d	EMA	Rib	Rump	RBY%	IMF%	NFIP	NFIF	DOC	FC	FA	RA	RH	RS
EBV	+2.4	-1.1	-5.6	+3.0	+44	+82	+108	+86	+17	+0.2	-6.0	+70	+4.9	+0.5	+0.1	-1.6	+3.7	+0.29	+0.33	+10	+6.8	+13.4	+8.1	+0.9	+0.1
Acc	54%	49%	86%	75%	71%	71%	70%	65%	54%	74%	44%	64%	62%	63%	65%	59%	59%	50%	52%	60%	58%	58%	52%	48%	50%
					T	raits Ohs	served: C	I CF BV	VT 200V	VT 400W	T SS FA	TEMAI	MF DOO	Structi	al Score	s: FC 6	FA 5 RA	5 RH 6	RS 5						

TE MANIA BARUNAH C854

The blend of Regent and Berkley bloodlines have combined well in this son of Gaskin.

Lot 5	50							TE	MA	NIA	LE	MP	RIE	RE	L7:	28 (<i>i</i>	AI)								AB2
Born: 14/0	08/2015	;			Socie	ty ld: \	VTML72	28			Α	MFU/N	HFU/C	AFU/D	DC						Struct	ure dat	e score	d 05/1	2/2016
Calvi	ing	Eas	е (3rov	vth	Fei	rtility	/ Ca	rca	se N	∕larl	bling	g A	ngu	ıs B	reed	ding	He	eavy	/ Gr	ass	He	avy	Gr	ain
GA	R TWINH	EARTS 84	118			OBJECTIVE R YIELD GF	T510 0T26 RADE 2015			TE	MANIA AF	RICA A2	17 (AI)			MANIA ULO MANIA JEDI						\$IND			
Sire: TE	E MA	NIA J	ACK	J70	(AI)				Da	ım: T	E MA	AINA	LOW	AN (352 (<i>l</i>	AI)				AB)	HG		G
		WAN G14			TE		KLEY B1 (AI) 'AN Z74 (AI) (TE	MANIA LO	OWAN E1	21 (AI)			NOON MIDL MANIA LOW)		\$14 3	\$1	24	\$160) \$ [']	133
								J	anuai	ry 201	7 Ang	jus Aı	ıstral	ia BR	EEDP	LAN									
	C	alvin	g Eas	е	(Growt	h& Ma	aterna		Fert	ility	CWT		400 I	(G Ca	rcase		Inta	ake			St	tructu	re	
THE SHALL SHALL	Dir	Dtrs	GL	B Wt	200	400	600	M Wt	Milk	SS	DC	750d	EMA	Rib	Rump	RBY%	IMF%	NFIP	NFIF	DOC	FC	FA	RA	RH	RS
EBV	+4.6	+3.4	-7.0	+2.1	+47	+91	+124	+117	+25	+3.9	-6.3	+59	+7.3	-1.1	-1.1	+1.1	+2.3	+0.10	+0.24	+2	+11.5	+4.2	-4.1	-0.3	+0.4
Acc	57%	41%	86%	76%	71%	73%	72%	72%	59%	78%	38%	63%	61%	64%	63%	54%	55%	43%	43%	57%	48%	49%	40%	37%	39%
					Traits C)bserved	d: GL CE	BWT 20	OWT 40	OWT SS	FAT EM	A IMF D	OC Ger	nomics, S	Structral	Scores: F	C 6, FA	6, RA 5,	RH 5, R	lS 5					

L728 presents with good frame, thickness and body length. He is well suited for use over heifers. There is a small amount of white in the groin area.

Lot 5	51								ΤE	MA	NIA	LE	NT	L70	60 (AI)									AB2
Born: 15/0	08/2015				Socie	ety ld: \	/TML76	0			Α	MFU/N	HFU/C	AFU/DI	DFU						Struct	ure da	te score	d 05/12	2/2016
Calvi	ing l	Eas	e (Grov	vth	Fe	tility	/ Ca	ırca	se l	Marl	olin	g A	ngu	is B	reed	ding	He	eavy	/ Gr	ass	He	eavy	Gr	ain
GA	R TWINH	EARTS 84	18			OBJECTIVE				TE	MANIA BE	RKLEY E	31 (AI)			MANIA YOR MANIA LOW						\$IND	EX		
Sire: TE				INS J					Da					GOC	NA F					AB	[)	HG		G
		PARA G1			LAV	VSONS INVI	NCIBLE C40: RA E649 (AI						IA X254 (A		CA	FUTURE D MANIA WAF	RECTION 53	321		\$149	\$1	33	\$171	1 \$	139
								J	anua	ry 201	7 Ang	us Aı	ustrali	a BRI	EEDPI	LAN									
1	C	alvin	g Eas	e	(Growt	h& Ma	iterna	I	Fert	ility	CWT		400 H	(G Ca	rcase		Inta	ake			S	tructu	re	
THE OWNER OF THE PARTY OF THE P	Dir	Dtrs	GL	B Wt	200	400	600	M Wt	Milk	SS	DC	750d	EMA	Rib	Rump	RBY%	IMF%	NFIP	NFIF	DOC	FC	FA	RA	RH	RS
EBV	+4.2	+3.5	-5.7	+3.4	+53	+95	+124	+107	+17	+1.8	-4.5	+74	+10.9	-1.8	-2.2	+1.3	+3.0	+0.29	+0.45	0	-11.4	-8.1	-12.2	+2.2	+0.2
Acc	58%	42%	86%	76%	72%	74%	73% d: GL CE	72%	60%	79%	39%	64%		65%	64%	56%	57%	45%	45%	59%	55%	56%	47%	43%	45%

Balanced and well suited for use over heifers. We have sold sons from the dam of this bull to a high of \$10,000 and she remains active within the stud herd as a rising seven year old cow. Additional longevity on display with her dam, VTMX254, remaining active within the stud herd until thirteen years of age.

Lot 5	52							T	ΕM	AN	IA L	ER	OU	XL	783	(Al)								AB2
Born: 15/0	08/2015	j			Socie	ety ld: \	/TML78	3			Α	MFU/N	HFU/C	AFU/DI	DFU						Struct	ure da	te score	d 05/1:	2/2016
		(Grov	wth	Ca	rca	se N	/lart	oling	Ai	าgน	s Br	eec	ding	He	avy	Gra	ass	He	avy	Gra	ain			
WEF	RNFR WF	STWARD	357			R PREDES	TINED	015		TF	MANIA DI	ECLARER	D285 (A	D)		ACHMAN BO MANIA BARI		(AI)				\$IND	EX		
Sire: TE				J930			CHILITOL	010	Da					AN F			016/0171100	(**)		AB	_ [)	HG		G
		EAC G93			LAV	VSONS TAN	K B1155(AI) AC E117 (AI)					DWAN A7			B/F	NEW FRON MANIA LOW		CR)		\$130	\$1	17	\$142	\$	123
								J	anuai	y 201	7 Ang	jus Aı	ıstral	ia BRI	EDP	LAN									
1	C	Calvin	g Eas	е	(Growt	h& Ma	terna	ı	Fert	tility	CWT		400 k	(G Ca	rcase		Int	ake			S	tructur	е	
ALCO OF	Dir	Dtrs	GL	B Wt	200	400	600	M Wt	Milk	SS	DC	750d	EMA	Rib	Rump	RBY%	IMF%	NFIP	NFIF	DOC	FC	FA	RA	RH	RS
EBV	-0.8	+3.7	-3.7	+4.7	+49	+90	+120	+90	+20	+1.5	-5.9	+67	+4.3	-0.5	-1.4	+0.6	+2.2	+0.14	+0.13	+11	-45.0	-12.5	+1.2	-2.3	+0.5
Acc	46%	38%	85%	74%	68%	69%	66%	62%	49%	71%	36%	58%	59%	60%	61%	55%	54%	42%	42%	58%	54%	52%	41%	37%	40%
					Tr	raits Obs	erved: G	L CE BV	VT 200W	T 400W	T SS FA	T EMA I	MF DO	C, Structr	al Score	s: FC 7,	FA 6, RA	6, RH 6	6, RS 6						

These sons of Jock present as strong and powerful bulls with the added benefit that the dam is from our Lowan cow family. The most prominent within our herd.

							BRI	EED A	VERA	GE EB	VS FC	OR 20	15 B	ORN (CALV	ES							
	CALVI	NG EA	SE	G	ROWT	H & MA	TERN	AL	FERT	ILITY	CWT		C	ARCA	SE		INT	AKE			IND	EX\$	
DIR.	DTRS	S GL	Bwt	200	400	600	Mwt	MILK	SS	DC	750d	EMA	RIB	RUMP	RBY%	IMF%	NFIP	NFIF	Doc	AB	D	HG	G
0.0	+0.1	-3.7	+4.3	+42	+77	+100	+88	+15	+1.7	-3.8	+56	+4.6	0.0	-0.2	+0.3	+1.6	+0.09	+0.15	+5	\$106	\$103	\$110	\$105
	An	nimals wit	h EBVs ar	nd Indexes	highlighte	ed with sha	iding are i	n the top	10% of the	e Angus	breed. W	ith the e	xceptio	n of fat v	vhich has	no shad	ling, and	Mature W	eight wl	nich is sha	aded if the	value is	< 100.

Calving Ease Growth Marbling Heavy Grain

TUWHARETOA REGENT D145 (AI) (ET) Sire: TE MANIA GASKIN G555 (AI)

TE MANIA LOWAN D66 (AI)

Born: 15/08/2015

TE MANIA YORKSHIRE Y437 (AI)

Society Id: VTML788

ARDCAIRNIE MIDLAND Z57 (AI) **Dam: TE MANIA JAPARA D578**

TE MANIA JAPARA Y937 (ACR)

B/R MIDLAND ARDCAIRNIE GEORGINA V18 (AI) TE MANIA VEHICLE V148 (AI) (ET)

\$INDEX \$109 \$99 \$123 \$104

								J	anuai	ry 201	7 Ang	jus Aı	ıstrali	a BRI	EEDPI	_AN									
	C	alvin	g Eas	е	(Growt	h& Ma	iterna	ı	Fert	ility	CWT		400 k	(G Ca	rcase		Inta	ake			St	tructu	re	
THE STATE OF	Dir	Dtrs	GL	B Wt	200	400	600	M Wt	Milk	SS	DC	750d	EMA	Rib	Rump	RBY%	IMF%	NFIP	NFIF	DOC	FC	FA	RA	RH	RS
EBV	+0.8	-2.4	-3.7	+3.6	+42	+80	+107	+78	+20	+1.0	-3.3	+67	+2.1	+0.1	+1.0	-1.8	+3.6	+0.27	+0.29	+3	+9.6	+6.2	+3.6	-1.2	+0.3
Acc	54%	49%	85%	75%	71%	71%	70%	65%	55%	74%	43%	64%	62%	63%	65%	58%	59%	49%		61%	57%	57%	51%	46%	49%

Another Gaskin son that is very easy on the eye. Strong and balanced with good butt shape. The dam of this bull as a rising nine year old remains active within our stud herd. Small amount of white in the groin area.

Lot 54

Structure date scored 05/12/2016

Born: 15/08/2015 Growth Carcase Marbling Angus Breeding Heavy Grass Heavy Grain

TC ABERDEEN 759

C R A BEXTOR 872 5205 608 TC BLACKBIRD 4034

LEACHMAN BOOM TIME TE MANIA BARUNAH A439 (AI)

\$INDEX

Sire: RENNYLEA H7 (AI) (ET) LAWSONS NEW DESIGN 1407 Z1393(AI)

Dam: TE MANIA BARUNAH G477 (AI) (ET) TE MANIA BARUNAH A194 (AI) (ET)

TE MANIA ULONG U41 (AI) (ET) TE MANIA BARUNAH X101 (AI) (ET)

\$121 \$111 \$125 \$119

								J	anuai	ry 201	7 Ang	jus Ai	ustrali	a BRE	EDP	LAN									
	Calving Ease Growth& Maternal I										ility	cwt		400 K	(G Ca	rcase		Inta	ake			St	ructu	re	
	Dir	Dtrs	GL	B Wt	200	400	600	M Wt	Milk	SS	DC	750d	EMA	Rib	Rump	RBY%	IMF%	NFIP	NFIF	DOC	FC	FA	RA	RH	RS
EBV	-1.4	+2.8	-4.7	+4.9	+53	+90	+122	+104	+20	+0.9	-4.1	+64	+7.9	+0.3	-0.8	+0.7	+1.8	+0.01	-0.23	+10	+5.7	+9.1	+1.1	-1.7	+0.5
Acc	51%	44%	85%	74%	69%	70%	68%	64%	51%	73%	40%	59%	61%	61%	62%	57%	56%	46%	46%	60%	49%	50%	38%	33%	36%

Traits Observed: GL CE BWT 200WT 400WT SS FAT EMA IMF DOC, Structral Scores: FC 6, FA 5, RA 5, RH 5, RS 5

Balanced with good body length on display. The past four generations on the dams side of this bull have all been ET conceived and combined they have contributed 139 progeny to our herd.

Lot 55

Society Id: VTML832 Growth Carcase Marbling Angus Breeding Heavy Grass Heavy Grain

G A R TWINHEARTS 8418

TE MANIA EL AME E565 (AI)

TE MANIA 07 436 AB TF MANIA BARUNAH D256 (ACR) (AI)

\$INDEX

Sire: TE MANIA JENKINS J89 (AI) TE MANIA JAPARA G115 (AI) LAWSONS INVINCIBLE C402(AI) TE MANIA JAPARA E649 (AI) Dam: TE MANIA MITTAGONG H793 TE MANIA MITTAGONG E1152 TE MANIA AFRICA A217 (AI) TE MANIA MITTAGONG Z539 (ACR) (AI

HG G \$147 \$129 \$171 \$136

								J	anua	ry 201	7 Ang	jus Ai	ıstralı	a BRI	=EDPI	LAN									
	c	alvin	g Eas	е	(Growt	h& Ma	aterna	ı	Fert	tility	CWT		400 H	(G Ca	rcase		Inta	ıke			St	tructu	re	
THE COLUMN	Dir	Dtrs	GL	B Wt	200	400	600	M Wt	Milk	SS	DC	750d	EMA	Rib	Rump	RBY%	IMF%	NFIP	NFIF	DOC	FC	FA	RA	RH	RS
EBV	+1.9	+0.4	-6.0	+4.3	+55	+105	+139	+128	+25	+2.7	-3.5	+73	+7.0	-2.0	-2.0	+1.1	+3.0	+0.19	+0.19	+34	+6.5	+2.1	-3.8	+1.1	+0.4
Acc	56%	38%	85%	76%	71%	73%	72%	71%	58%	78%	34%	63%	61%	64%	63%	54%	56%	41%	41%	57%	51%	52%	41%	38%	40%
					Traits (Observed	I: GL CE	BWT 20	0WT 40	OWT SS	FAT EM	A IMF D	OC Gen	omics, S	Structral S	Scores: F	C 6, FA	6, RA 5,	RH 5, R	S 5					

A stylish son of Jenkins with natural thickness and body length on display.

Lot 56

Structure date scored 05/12/2016

Born: 16/08/2015 Calving Ease Growth Fertility Carcase Marbling Angus Breeding Heavy Grass Heavy Grain

G A R TWINHEARTS 8418 Sire: TE MANIA JENKINS J89 (AI)

LAWSONS TANK B1155(AI) Dam: TE MANIA MOONGARA H33 (AI)

LAWSONS TANK X1235(AI) LAWSONS NEW DESIGN 1407 Z1393(AI)

\$INDEX \$157 \$136 \$184 \$144

TE	MANIA JA	PARA G1	15 (AI)			VSONS INVIN				TE	MANIA M	OONGAR	A F155 (A)		MANIA CALA MANIA MOO				\$157	' \$ 1	36	\$184	\$1	144
								J	anua	ry 201	7 Ang	jus Aı	ıstrali	a BRI	EEDP	LAN									
	0	alvin	g Eas	е	(Growt	h& Ma	aterna	ı	Fer	tility	cwt		400 k	(G Ca	rcase		Inta	ake			S	tructur	е	
THE STATE OF THE S	Dir	Dtrs	GL	B Wt	200	400	600	M Wt	Milk	SS	DC	750d	EMA	Rib	Rump	RBY%	IMF%	NFIP	NFIF	DOC	FC	FA	RA	RH	RS
EBV	+4.1	+3.0	-5.5	+1.7	+53	+103	+136	+125	+24	+2.2	-4.7	+76	+9.9	-2.6	-2.8	+1.4	+3.1	+0.23	+0.24	+6	+8.0	+6.7	+1.1	+1.2	+0.2
Acc	57%	40%	86%	76%	71%	73%	73%	72%	58%	78%	36%	63%	61%	65%	63%	55%	56%	42%	42%	57%	52%	52%	43%	39%	41%

Traits Observed: GL CE BWT 200WT 400WT SS FAT EMA IMF DOC Genomics, Structral Scores: FC 6, FA 6, RA 6, RH 5, RS 5

Good natural thickness and body length shown by L839. He is well suited for use over heifers.

							BR	EED A	VERA	GE EB	VS FC	OR 20	15 B	ORN (CALVI	ES							
C	ALVIN	G EAS	Ē	GF	ROWTI	AM & F	TERN	AL	FERT	ILITY	CWT		C	ARCA	SE		INT	AKE			IND	EX\$	
DIR.	DTRS	GL	Bwt	200	400	600	Mwt	MILK	SS	DC	750d	EMA	RIB	RUMP	RBY%	IMF%	NFIP	NFIF	Doc	AB	D	HG	G
0.0	+0.1	-3.7	+4.3	+42	+77	+100	+88	+15	+1.7	-3.8	+56	+4.6	0.0	-0.2	+0.3	+1.6	+0.09	+0.15	+5	\$106	\$103	\$110	\$105
	Anim	als with	EBVs and	Indexes	highlighte	d with sha	ding are i	n the top	10% of th	e Angus	breed. W	ith the e	xceptio	n of fat v	vhich has	no shad	ling, and	Mature W	eight wl	nich is sha	aded if the	value is	< 100.

Lot 57 Born: 16/08/2015

Growth Carcase Marbling Angus Breeding Heavy Grass Heavy Grain

C A FUTURE DIRECTION 5321 ARDROSSAN WII COOLA V9 ARDROSSAN CONNECTION X15 Sire: PATHFINDER GOLDMARK D189(AI)

PATHFINDER BOWMAN B175 (AI) (ET)

TE MANIA BERKLEY B1 (AI) Dam: TE MANIA DANDLOO G471 (AI) VERMILLION YELLOWSTONE PATHFINDER XCUSE X242 (AI) (ET TE MANIA DANDLOO A640 TE MANIA YARNFIELD Y195 (AI) (ET) TE MANIA DANDLOO X812

\$INDEX \$123 \$106 \$139 \$116

								J	anuai	ry 201	7 Ang	jus Aı	ıstrali	a BRI	EEDPI	LAN									
	C	Calvin	g Eas	е	(Growt	h& Ma	terna	I	Fert	ility	CWT		400 k	(G Ca	rcase		Int	ake			St	ructu	re	
The state of the s	Dir	Dtrs	GL	B Wt	200	400	600	M Wt	Milk	SS	DC	750d	EMA	Rib	Rump	RBY%	IMF%	NFIP	NFIF	DOC	FC	FA	RA	RH	RS
EBV	-1.1	+1.8	-3.5	+6.6	+49	+89	+126	+138	+19	+1.5	-4.2	+71	+7.5	-0.6	-1.1	+0.5	+2.3	+0.14	+0.32	-2	-0.9	-10.6	-3.3	+0.2	-0.2
Acc	53%	46%	85%	75%	70%		68%	65%	59%		45%	61%		61%	62%	58%	56%		48%	57%	46%	48%	35%	33%	35%

L841 is a strong and powerful bull with a good set of figures across the board.

Lot 58

Structure date scored 05/12/2016

Born: 16/08/2015 Growth Marbling Angus Breeding Heavy Grass Heavy Grain

TE MANIA AMBASSADOR A134 (AI) LAWSONS HENRY VIII Y5 (AI) TUWHARETOA REGENT D145 (AI) (ET)

Sire: TE MANIA GASKIN G555 (AI) TE MANIA LOWAN D66 (AI) TE MANIA YORKSHIRE Y437 (AI) TE MANIA LOWAN B860 (AI)

TE MANIA AFRICA A217 (AI) TE MANIA LOWAN B431 (AI) (ET) Dam: TE MANIA DANDLOO F954 (AI) (ET) TE MANIA DANDLOO C404 (AI) (ET) ARDCAIRNIE MIDLAND Z57 (AI TE MANIA DANDLOO Y711 (AI)

\$INDEX \$129 \$108 \$156 \$116

								J	anuai	ry 201	7 Ang	jus Aı	ıstrali	a BRI	EEDPI	LAN									
	O	alvin	g Eas	е		Growt	h& Ma	aterna	I	Fert	ility	CWT		400 H	(G Ca	rcase		Inta	ake			St	ructu	re	
	Dir	Dtrs	GL	B Wt	200	400	600	M Wt	Milk	SS	DC	750d	EMA	Rib	Rump	RBY%	IMF%	NFIP	NFIF	DOC	FC	FA	RA	RH	RS
EBV	-0.4	-2.0	-4.3	+4.0	+47	+88	+115	+95	+20	+1.7	-5.2	+66	+4.2	+0.8	+1.6	-2.4	+4.8	+0.49	+0.46	+16	-5.9	-10.1	-4.5	+0.4	+0.3
Acc	56%	51%	85%	76%	72%	73%	71%	65%	54%	75%	43%	65%	63%	63%	66%	59%	60%	51%	53%	64%	61%	61%	55%	49%	52%
					Ti	raits Obs	erved: G	L CE BV	VT 200W	/T 400W	T SS FA	T EMA I	MF DOC	, Structr	al Score	s: FC 6,	FA 5, RA	5, RH 5	, RS 5						

Another of these powerful Gaskins sons that present so well. The dam of this ran through our donor mob in 2013 and she has contributed 20 progeny to our herd, selling sons to a high of \$21,000 and a number of others sons for in excess of \$10,000. Note the IMF of 4.8% is in the top 1% of the breed and second highest bull in this catalogue.

Lot 59

Society Id: VTML852 Growth Fertility Carcase Marbling Angus Breeding Heavy Grass Heavy Grain

\$INDEX WERNER WESTWARD 357 TE MANIA EL ORIATED E664 (AL)

HG Sire: TE MANIA JOCK J930 (AI) Dam: TE MANIA LOWAN H886 TE MANIA BEEAC G93 (AI) TE MANIA LOWAN E945 TE MANIA CHIEFTAIN C475 (AI) TE MANIA LOWAN B673 (ACR) \$150 \$129 \$168 \$141 LAWSONS TANK 61100; ..., TE MANIA BEEAC E117 (AI)

								J	anuai	ry 201	7 Ang	us Aı	ustrali	a BRI	EEDPI	LAN									
	ď	alvin	g Eas	е	·	Growt	h& Ma	aterna	I	Fert	ility	CWT		400 k	(G Ca	rcase		Inta	ake			St	ructu	re	
	Dir	Dtrs	GL	B Wt	200	400	600	M Wt	Milk	SS	DC	750d	EMA	Rib	Rump	RBY%	IMF%	NFIP	NFIF	DOC	FC	FA	RA	RH	RS
EBV	-2.0	0.0	-5.0	+7.2	+56	+102	+137	+110	+24	+2.7	-4.7	+73	+12.6	-0.1	-1.1	+1.9	+2.4	+0.17	+0.32	-5	-45.7	-13.3	-1.7	-3.1	+0.2
Acc	56%	39%	86%	76%	71%	73%	73%	72%	59%	77%	33%	63%	61%	65%	64%	55%	57%	41%	40%	57%	52%	51%	40%	36%	38%
					Traits (Observed	I: GL CE	BWT 20	0WT 40	OWT SS	FAT EM	A IMF D	OC Gen	omics, S	Structral S	Scores: F	C 7, FA	6, RA 5,	RH 5, R	S 5					

L852 is so balanced with good body length and natural thickness on display.

Lot 60 Born: 17/08/2015 Structure date scored 05/12/2016

Calving Ease Growth Fertility Carcase Marbling Angus Breeding Heavy Grass Heavy Grain

\$INDEX TE MANIA DEFLATION D367 (AI) TE MANIA BERKLEY B1 (AI) Sire: TE MANIA JEROME J131 (AI) Dam: TE MANIA JAPARA F400 (AI) (ET) \$142 \$125 \$160 \$131 TE MANIA LOWAN G694 (AI) TE MANIA JAPARA A750 (AI) TE MANIA YORKSHIRE Y437 (AI) TE MANIA JAPARA U196 (AI)

January 2017 Angus Australia BREEDPLAN **Calving Ease Growth& Maternal** Fertility CWT 400 KG Carcase Structure Rump RBY% IMF% DC NFIP NFIF B Wt Milk 750d EMA RH RS +86 +112 +107 +11 +78 +10.0 0.0 -1.5 +0.6 +2.7 +0.24 +0.44 -4 +11.7 +1.9 +1.9 +4.4 +3.1 -3.3 +2.3 +49 +3.0 -7.5 -1.7 +0.3 77% 44% 86% 60% 52% 54% 44%

73% 75% 74% 72% 61% 79% 40% 64% 64% 67% 66% 57% 59% 45% 45% 6 Traits Observed: GL CE BWT 200WT 400WT SS FAT EMA IMF DOC Genomics, Structral Scores: FC 6, FA 6, RA 5, RH 5, RS 6

Good frame and body length shown here. The dam of this bull, as a rising seven year old cow remains active within the stud herd. He is well suited for use over heifers.

							BRE	EED A	VERA	GE EB	VS FC	OR 20	15 B	ORN (CALV	ES							
	CALVING	G EAS	Ë	GF	ROWTI	AM & F	TERNA	٩L	FERT	ILITY	CWT		C	ARCA	SE		INT	AKE			IND	EX\$	
DIR.	DTRS	GL	Bwt	200	400	600	Mwt	MILK	SS	DC	750d	EMA	RIB	RUMP	RBY%	IMF%	NFIP	NFIF	Doc	AB	D	HG	G
0.0	+0.1	-3.7	+4.3	+42	+77	+100	+88	+15	+1.7	-3.8	+56	+4.6	0.0	-0.2	+0.3	+1.6	+0.09	+0.15	+5	\$106	\$103	\$110	\$105
	Anim	als with	EBVs and	d Indexes	highlighte	d with sha	iding are i	n the top	10% of th	e Angus	breed. W	ith the e	xceptio	n of fat w	vhich has	no shad	ling, and	Mature W	eight wh	nich is sha	ded if the	value is	< 100.

Born: 17/08/2015 Society Id: VTML885 AMFU/NHFU/CAFU/DDFU Structure date scored 05/12/2016

Calving Ease Growth Fertility Marbling Angus Breeding Heavy Grass Heavy Grain

TE MANIA YORKSHIRE Y437 (AI) TE MANIA LOWAN Z53 (AI) (ET) TE MANIA BERKLEY B1 (AI) Sire: TE MANIA JEROME J131 (AI)

TE MANIA LOWAN G694 (AI)

TUWHARETOA REGENT D145 (AI) (ET) TE MANIA LOWAN A626 (AI) (ET)

TE MANIA 07 436 AB TE MANIA BARUNAH D256 (ACR) (AI) TE MANIA FLAME F565 (AI) Dam: TE MANIA JEDDA H321 (AI) TE MANIA JEDDA D450 (AI)

\$139 \$118 \$164 \$124

								J	anuaı	ry 201	7 Ang	jus Αι	ıstrali	a BRI	EEDPI	LAN									
	C	alvin	g Eas	е	(Growt	h& Ma	iterna	I	Fert	ility	сwт		400 k	(G Ca	rcase		Int	ake			St	ructu	re	
	Dir	Dtrs	GL	B Wt	200	400	600	M Wt	Milk	SS	DC	750d	EMA	Rib	Rump	RBY%	IMF%	NFIP	NFIF	DOC	FC	FA	RA	RH	RS
EBV	+3.0	+2.1	-6.5	+3.5	+45	+82	+107	+94	+19	+2.9	-8.2	+64	+4.2	+2.5	+1.3	-1.2	+4.0	+0.33	+0.54	+2	-5.2	-7.0	-6.2	-1.5	+0.4
Acc	59%	43%	86%	76%		74%	74%	72%	59%	79%	40%	64%	63%		65%	56%	58%		45%	59%	52%	52%	44%	41%	43%

Balanced and well suited for use over heifers. Some great old cows of our herd sit back in the pedigree of this bull, VTMW85 and VTMY32. He has a small amount of white in the groin area.

Lot 62

Structure date scored 05/12/2016

Growth Fertility Marbling Angus Breeding Heavy Grass Heavy Grain

LEACHMAN BOOM TIME TE MANIA BARUNAH A439 (AI) TE MANIA DECLARER D285 (AI)

\$INDEX

TE MANIA ULONG U41 (AI) (ET) TE MANIA JEDDA Y32 (AI) (ET) Sire: TE MANIA GARTH G67 (AI) Dam: TE MANIA MITTAGONG H559 (AI) \$130 \$114 \$144 \$121 TE MANIA MITTAGONG E28 (AI) TE MANIA MITTAGONG D313 (AI)

							J	anua	ry 201	7 Ang	jus Αι	ıstrali	a BRE	EEDPI	LAN									
C	Calving	g Eas	е	(Growt	h& Ma	aterna	I	Fert	ility	CWT		400 H	(G Ca	rcase		Int	ake			St	ructu	re	
Dir	Dtrs	GL	B Wt	200	400	600	M Wt	Milk	SS	DC	750d	EMA	Rib	Rump	RBY%	IMF%	NFIP	NFIF	DOC	FC	FA	RA	RH	RS
-1.8	+2.3	-3.9	+4.5	+49	+87	+115	+79	+26	+3.0	-6.9	+59	+4.5	+0.2	+0.1	0.0	+2.9	+0.27	+0.20	+21	-0.7	-15.8	-12.9	+0.1	+0.4
55%	50%	85%	75%		71%	69%	65%	52%	73%	42%	63%				58%			51%	60%	58%	58%	52%	49%	51%
	Dir -1.8	Dir Dtrs -1.8 +2.3	Dir Dtrs GL -1.8 +2.3 -3.9	-1.8 +2.3 -3.9 +4.5	Dir Dtrs GL BWt 200 -1.8 +2.3 -3.9 +4.5 +49 55% 50% 85% 75% 70%	Dir Dtrs GL B Wt 200 400 -1.8 +2.3 -3.9 +4.5 +49 +87 55% 50% 85% 75% 70% 71%	Dir Dtrs GL BWt 200 400 600 -1.8 +2.3 -3.9 +4.5 +49 +87 +115 55% 50% 85% 75% 70% 71% 69%	Calving Ease Growth& Maternal Dir Dtrs GL B Wt 200 400 600 M Wt -1.8 +2.3 -3.9 +4.5 +49 +87 +115 +79 55% 50% 85% 75% 70% 71% 69% 65%	Calving Ease Growth& Maternal Dir Dtrs GL B Wt 200 400 600 M Wt Milk -1.8 +2.3 -3.9 +4.5 +49 +87 +115 +79 +26 55% 50% 85% 75% 70% 71% 69% 65% 52%	Calving Ease Growth& Maternal Fert Dir Dtrs GL B Wt 200 400 600 M Wt Milk SS -1.8 +2.3 -3.9 +4.5 +49 +87 +115 +79 +26 +3.0 55% 50% 85% 75% 70% 71% 69% 65% 52% 73%	Calving Ease Growth& Maternal Fertility Dir Dtrs GL B Wt 200 400 600 M Wt Milk SS DC -1.8 +2.3 -3.9 +4.5 +49 +87 +115 +79 +26 +3.0 -6.9 55% 50% 85% 75% 70% 71% 69% 65% 52% 73% 42%	Calving Ease Growth& Maternal Fertility CWT Dir Dtrs GL B Wt 200 400 600 M Wt Milk SS DC 750d -1.8 +2.3 -3.9 +4.5 +49 +87 +115 +79 +26 +3.0 -6.9 +59 55% 50% 85% 75% 70% 71% 69% 65% 52% 73% 42% 63%	Calving Ease Growth& Maternal Fertility CWT Dir Dtrs GL B Wt 200 400 600 M Wt Milk SS DC 750d EMA -1.8 +2.3 -3.9 +4.5 +49 +87 +115 +79 +26 +3.0 -6.9 +59 +4.5 55% 50% 85% 75% 70% 71% 69% 65% 52% 73% 42% 63% 62%	Calving Ease Growth& Maternal Fertility CWT 400 M Dir Dtrs GL B Wt 200 400 600 M Wt Milk SS DC 750d EMA Rib -1.8 +2.3 -3.9 +4.5 +49 +87 +115 +79 +26 +3.0 -6.9 +59 +4.5 +0.2 55% 50% 85% 75% 70% 71% 69% 65% 52% 73% 42% 63% 62% 62%	Calving Ease* Growth& Maternal Fertility CWT 400 KG Ca Dir Dtrs GL BWt 200 400 600 MWt Milk SS DC 750d EMA Rib Rump -1.8 +2.3 -3.9 +4.5 +49 +87 +115 +79 +26 +3.0 -6.9 +59 +4.5 +0.2 +0.1 55% 50% 85% 75% 70% 71% 69% 65% 52% 73% 42% 63% 62% 62% 65%	Dir Dtrs GL BWt 200 400 600 MWt Milk SS DC 7500 EMA Rib Rump RBY% -1.8 +2.3 -3.9 +4.5 +49 +87 +115 +79 +26 +3.0 -6.9 +59 +4.5 +0.2 +0.1 0.0 55% 50% 85% 75% 70% 71% 69% 65% 52% 73% 42% 63% 62% 62% 65% 58%	Calving Ease Growth& Maternal Fertility CWT 400 KG Carcase Dir Dtrs GL BWt 200 400 600 MWt Mile SS DC 750d EMA Rib Rump RBY% MF% -1.8 +2.3 -3.9 +4.5 +49 +87 +115 +79 +26 +3.0 -6.9 +59 +4.5 +0.2 +0.1 0.0 +2.9 55% 50% 85% 75% 70% 69% 65% 52% 73% 42% 63% 62% 65% 58% 59%	Calving Ease Growth& Maternal Fertility CWT 400 KG Carcase Int. Dir Dtrs GL B Wt 200 400 600 M Wt Milk SS DC 750d EMA Rib Rump RBY% IMF% NFIP -1.8 +2.3 -3.9 +4.5 +49 +87 +115 +79 +26 +3.0 -6.9 +59 +4.5 +0.2 +0.1 0.0 +2.9 +0.27 55% 50% 85% 75% 70% 71% 69% 65% 52% 73% 42% 63% 62% 62% 65% 58% 59% 49%	Calving Ease Growth& Maternal Fertility CWT 400 KG Carcase Intake Dir Dtrs GL B Wt 200 400 600 M Wt Milk SS DC 750d EMA Rib Rump RBY% IMF% NFIP NFIF -1.8 +2.3 -3.9 +4.5 +49 +87 +115 +79 +26 +3.0 -6.9 +59 +4.5 +0.2 +0.1 0.0 +2.9 +0.27 +0.20 55% 50% 85% 75% 70% 71% 69% 65% 52% 73% 42% 63% 62% 62% 65% 58% 59% 49% 51%	Dir Dtr GL S S S S S S S S S	Calving Ease Growth& Maternal Fertility CWT 400 KG Carcase Intake Intake Doc Fertility CWT 400 KG Carcase Intake Doc FC -1.8 +2.3 -3.9 +4.5 +49 +87 +115 +79 +26 +3.0 -6.9 +59 +4.5 +0.2 +0.1 0.0 +2.9 +0.27 +0.27 +0.20 +21 -0.7 55% 50% 85% 75% 70% 65% 65% 52% 73% 42% 63% 62% 65% 58% 59% 49% 51% 60% 58%	Calving Ease Growth& Maternal Fertility CWT 400 KG Carcase Intake St Dir Dtr GL 8 Wt 200 400 600 M Wt Milk SS DC 750d EMA Rib Rump RBY% IMF% NFIP NFIP DOC FC FA -1.8 +2.3 -3.9 +4.5 +49 +87 +115 +79 +26 +3.0 -6.9 +59 +4.5 +0.2 +0.1 0.0 +2.9 +0.27 +0.27 +0.27 +0.2 +2.1 0.0 +2.9 +0.27 +0.2 +0.1 0.0 +2.9 +0.27 +0.2 +0.1 0.0 +2.9 +0.27 +0.2 +0.1 0.0 +2.9 +0.27 +0.2 +0.1 0.0 59% 59% 49% 51% 60% 58% 58% 58% 59% 49% 51% 60% 58% 58% <t< td=""><td>Calving Ease Growth& Maternal Fertility CWT 400 KG Carcase Intake Structure Dir Dtr GL B Wt 200 400 600 M Wt Milk SS DC 750d EMA Rib Rump RBY% IMF% NFIP NFIF DOC FC FA RA -1.8 +2.3 -3.9 +4.5 +49 +87 +115 +79 +26 +3.0 -6.9 +59 +4.5 +0.2 +0.1 0.0 +2.9 +0.27 +0.20 +21 -0.7 -15.8 -12.9</td><td>Dir Dtr GL BWt 200 400 600 MWt MWt MWt SS DC 750d EM Rib Rib NFIP NFIP NFIP DOC FA FA RA RB -1.8 +2.3 -3.9 +4.5 +49 +87 +115 +79 +26 +3.0 -6.9 +59 +4.5 +0.2 +0.1 0.0 +2.9 +0.27 +0.2 +21 -0.7 -15.8 -12.9 +0.1 50% 85% 75% 70% 71% 69% 65% 52% 73% 42% 63% 62% 65% 58% 58% 51% 60% 58% 58% 52% 49%</td></t<>	Calving Ease Growth& Maternal Fertility CWT 400 KG Carcase Intake Structure Dir Dtr GL B Wt 200 400 600 M Wt Milk SS DC 750d EMA Rib Rump RBY% IMF% NFIP NFIF DOC FC FA RA -1.8 +2.3 -3.9 +4.5 +49 +87 +115 +79 +26 +3.0 -6.9 +59 +4.5 +0.2 +0.1 0.0 +2.9 +0.27 +0.20 +21 -0.7 -15.8 -12.9	Dir Dtr GL BWt 200 400 600 MWt MWt MWt SS DC 750d EM Rib Rib NFIP NFIP NFIP DOC FA FA RA RB -1.8 +2.3 -3.9 +4.5 +49 +87 +115 +79 +26 +3.0 -6.9 +59 +4.5 +0.2 +0.1 0.0 +2.9 +0.27 +0.2 +21 -0.7 -15.8 -12.9 +0.1 50% 85% 75% 70% 71% 69% 65% 52% 73% 42% 63% 62% 65% 58% 58% 51% 60% 58% 58% 52% 49%

erved: GL CE BWT 200WT 400WT SS FAT EMA IMF DOC, Structral

Well balanced and one of the 39 Garth sons being offered in this catalogue. He has a small amount of white in the groin area.

Lot 63

Growth Carcase Marbling Angus Breeding Heavy Grass Heavy Grain

ARDROSSAN CONNECTION X15 Sire: PATHFINDER GOLDMARK D189(AI)

PATHFINDER BOWMAN B175 (AI) (ET) VERMILLION YELLOWSTONE PATHFINDER XCUSE X242 (AI) (ET)

TE MANIA MODEST 7565 (AI) Dam: TE MANIA MITTAGONG E1151 TE MANIA MITTAGONG Z945 (AI) (ET) TE MANIA ULONG U41 (AI) (ET) TE MANIA MITTAGONG V217 (AI) (ET)

\$INDEX \$116 \$103 \$126 \$112

								J	anua	ry 201	7 Ang	jus Αι	ıstrali	a BRI	EEDPI	LAN									
	C	alvin	g Eas	е	·	Growt	h& Ma	terna	I	Fert	ility	CWT		400 F	(G Ca	rcase		Inta	ake			St	ructu	re	
THE STATE OF	Dir	Dtrs	GL	B Wt	200	400	600	M Wt	Milk	SS	DC	750d	EMA	Rib	Rump	RBY%	IMF%	NFIP	NFIF	DOC	FC	FA	RA	RH	RS
EBV	-3.6	-1.7	-2.7	+6.2	+48	+87	+122	+101	+24	+4.0	-3.0	+65	+7.7	-0.4	-0.4	+0.9	+2.3	+0.24	+0.49	+7	+3.5	-11.1	-2.1	NA	+0.2
Acc	53%	45%	85%	75%	70%	71%	69%	67%	60%	73%	44%	61%	62%	63%	64%	59%	58%	48%	48%	58%	43%	45%	29%		27%
					T	raits Ohs	erved: G	I CF BV	VT 200W	/T 400W	T SS FA	T FMA I	MF DOC	Structr	al Score	s: FC 6	FA 6 RA	6 RH 5	RS 6						

A strong and powerful son of Goldmark. The dam of this bull as a rising eight year old cow, remains active within our stud herd.

Lot 64

Structure date scored 05/12/2016

Born: 20/08/2015 Calving Ease Growth Carcase Marbling Angus Breeding Heavy Grass Heavy Grain

G A R TWINHEARTS 8418 Sire: TE MANIA JENKINS J89 (AI)

BOOROOMOOKA UNDERTAKEN Y145 Dam: TE MANIA BARUNAH E608 (AI) TE MANIA BARUNAH C360 (AI)

\$INDEX \$134 \$125 \$150 \$126

T	TE MANIA JAPARA G115 (AI) LAWSONS INVINCIBLE C402(AI) TE MANIA JAPARA E649 (AI)								TE	MANIA B	ARUNAH	C360 (AI)			NGONGO BU MANIA BARU				\$134	\$1	25	\$150	\$1	126	
								J	lanua	ry 201	7 Ang	jus Aı	ıstrali	a BRI	EEDPI	_AN									
		Calvin	g Eas	e	•	Growt	th& Ma	aterna	ı	Fert	tility	CWT		400 F	(G Ca	rcase		Int	ake			S	tructur	е	
THE STATE OF THE S	Dir	Dtrs	GL	B Wt	200	400	600	M Wt	Milk	SS	DC	750d	EMA	Rib	Rump	RBY%	IMF%	NFIP	NFIF	DOC	FC	FA	RA	RH	RS
EBV	+3.2	+1.5	-2.1	+2.3	+46	+86	+109	+78	+20	+2.0	-3.8	+56	+8.0	-1.5	-1.7	+1.2	+3.0	+0.21	+0.21	+10	+9.3	+1.5	-4.0	+1.5	+0.2
Acc	49%	40%	85%	75%	69%	70%	66%	63%	49%	73%	39%	59%	59%	60%	61%	56%	55%	44%	44%	59%	48%	47%	36%	32%	35%

Traits Observed: GL CE BWT 200WT 400WT SS FAT EMA IMF DOC, Structral Scores: FC 6, FA 6, RA 6, RH 5, RS 5

Balanced with good body length on display. The dam of this bull, as a rising eight year old, remains active within our stud herd. We have sold her sons to a high of \$11,000. L999 is well suited for use over heifers.

							BRI	EED A	VERA	GE EB	VS F	OR 20	15 B	ORN (CALV	S							
C	ALVIN	G EAS	SE.	GI	ROWTI	H & MA	TERN	AL	FERT	ILITY	CWT		C	ARCA	SE		INT	AKE			IND	EX\$	
DIR.	DTRS	GL	Bwt	200	400	600	Mwt	MILK	SS	DC	750d	EMA	RIB	RUMP	RBY%	IMF%	NFIP	NFIF	Doc	AB	D	HG	G
0.0	+0.1	-3.7	+4.3	+42	+77	+100	+88	+15	+1.7	-3.8	+56	+4.6	0.0	-0.2	+0.3	+1.6	+0.09	+0.15	+5	\$106	\$103	\$110	\$105
	Anin	nals with	EBVs and	Indexes	highlighte	ed with sha	iding are i	n the top	10% of the	e Angus I	oreed. W	ith the e	xceptio	n of fat w	hich has	no shad	ling, and	Mature W	eight wh	nich is sha	ded if the	value is <	< 100.

Lot 65 Born: 13/09/2015 Structure date scored 05/12/2016

Growth Fertility Carcase Marbling Angus Breeding Heavy Grass Heavy Grain

TE MANIA BERKLEY B1 (AI) TE MANIA LOWAN Z74 (AI) (ET) C A FUTURE DIRECTION 5321 ARDROSSAN WILCOOL A V9 ARDROSSAN CONNECTION X15 TE MANIA EMPEROR E343 (AI)

Sire: PATHFINDER GOLDMARK D189(AI) Dam: TE MANIA BEEAC G256 (AI)

\$134 \$116 \$151 \$126 PATHFINDER BOWMAN B175 (AI) (ET) VERMILLION YELLOWSTONE PATHFINDER XCUSE X242 (AI) (ET TE MANIA BEEAC C108 (AI) (ET)

							J	anuai	ry 201	7 Ang	jus Ai	ıstrali	a BRI	EEDPI	_AN									
C	Calvin	g Eas	е	C	Growt	h& Ma	aterna	ı	Fert	ility	сwт		400 F	(G Ca	rcase		Inta	ake			St	ructu	re	
Dir	Dtrs	GL	B Wt	200	400	600	M Wt	Milk	SS	DC	750d	EMA	Rib	Rump	RBY%	IMF%	NFIP	NFIF	DOC	FC	FA	RA	RH	RS
+2.1	+3.6	-5.3	+4.9	+47	+86	+120	+116	+18	+2.0	-4.8	+63	+6.4	-0.1	-0.4	+0.4	+2.6	+0.14	+0.27	+2	+4.1	+5.3	+5.6	+0.4	-1.0
61%	47%	73%	76%	73%	74%	75%	74%	66%	79%	43%	66%				58%			48%	58%	48%	48%	36%	34%	36%
	Dir +2.1	Dir Dtrs +2.1 +3.6	Dir Dtrs GL +2.1 +3.6 -5.3	+2.1 +3.6 -5.3 +4.9	Dir Dtrs GL B Wt 200 +2.1 +3.6 -5.3 +4.9 +47 61% 47% 73% 76% 73%	Dir Dtrs GL BWt 200 400 +2.1 +3.6 -5.3 +4.9 +47 +86 61% 47% 73% 76% 73% 74%	Dir Dtrs GL BWt 200 400 600 +2.1 +3.6 -5.3 +4.9 +47 +86 +120 61% 47% 73% 76% 73% 74% 75%	Calving Ease Growth& Materna Dir Dtrs GL B Wt 200 400 600 M Wt +2.1 +3.6 -5.3 +4.9 +47 +86 +120 +116 61% 47% 73% 76% 73% 74% 75% 74%	Calving Ease Growth& Maternal Dir Dtrs GL B Wt 200 400 600 M Wt Milk +2.1 +3.6 -5.3 +4.9 +47 +86 +120 +116 +18 61% 47% 73% 76% 73% 74% 75% 74% 66%	Calving Ease Growth& Maternal Fert Dir Dtrs GL B Wt 200 400 600 M Wt Milk SS +2.1 +3.6 -5.3 +4.9 +47 +86 +120 +116 +18 +2.0 61% 47% 73% 76% 73% 74% 75% 74% 66% 79%	Calving Ease Growth& Maternal Fertility Dir Dtrs GL B Wt 200 400 600 M Wt Milk SS DC +2.1 +3.6 -5.3 +4.9 +47 +86 +120 +116 +18 +2.0 -4.8 61% 47% 73% 76% 73% 74% 75% 74% 66% 79% 43%	Calving Ease Growth& Maternal Fertility CWT Dir Dtrs GL B Wt 200 400 600 M Wt Milk SS DC 750d +2.1 +3.6 -5.3 +4.9 +47 +86 +120 +116 +18 +2.0 -4.8 +63 61% 47% 73% 76% 73% 75% 75% 74% 66% 79% 43% 66%	Calving Ease Growth& Maternal Fertility CWT Dir Dtrs GL B Wt 200 400 600 M Wt Milk SS DC 750d EMA +2.1 +3.6 -5.3 +4.9 +47 +86 +120 +116 +18 +2.0 -4.8 +6.4 66%	Calving Ease Growth& Maternal Fertility CWT 400 M Dir Dtrs GL B Wt 200 400 600 M Wt Milk SS DC 750d EMA Rib +2.1 +3.6 -5.3 +4.9 +47 +86 +120 +116 +18 +2.0 -4.8 +6.3 +6.4 -0.1 61% 47% 73% 76% 73% 74% 66% 66% 79% 43% 66% 64% 67%	Calving Ease Growth& Maternal Fertility CWT 400 KG Ca Dir Dtrs GL B Wt 200 400 600 M Wt Milk SS DC 750d EMA Rib Rump +2.1 +3.6 -5.3 +4.9 +47 +86 +120 +116 +18 +2.0 -4.8 +63 +6.4 -0.1 -0.4 61% 47% 73% 76% 73% 74% 66% 66% 79% 43% 66% 64% 67% 66%	Dir Dtrs GL BWt 200 400 600 MWt Milk SS DC 7500 EMA Rib Rump RBY% +2.1 +3.6 -5.3 +4.9 +47 +86 +120 +116 +18 +2.0 -4.8 +63 +6.4 -0.1 -0.4 +0.4 61% 47% 73% 76% 73% 74% 75% 74% 66% 79% 43% 66% 64% 67% 66% 58%	Calving Ease Growth& Maternal Fertility CWT 400 KG Carcase Dir Dtr GL B Wt 200 400 600 M Wt Milk SS DC 750d EMA Rib Rump RBY% IMF% +2.1 +3.6 -5.3 +4.9 +47 +86 +120 +116 +18 +2.0 -4.8 +63 +6.4 -0.1 -0.4 +0.4 +2.6 61% 47% 73% 76% 75% 74% 66% 79% 43% 66% 66% 66% 58% 59%	Calving Ease Growth& Maternal Fertility CWT 400 KG Carcase Intraction Dir Dtrs GL B Wt 200 400 600 M Wt Milk SS DC 750d EMA Rib Rump RBY% IMF% NFIP +2.1 +3.6 -5.3 +4.9 +47 +86 +120 +116 +18 +2.0 -4.8 +6.4 -0.1 -0.4 +0.4 +2.6 +0.14 61% 47% 73% 76% 73% 74% 75% 74% 66% 79% 43% 66% 64% 67% 66% 58% 59% 48%	Calving Ease* Growth& Maternal Fertility CWT 400 KG Carcase Intake Dir Dtrs GL B Wt 200 400 600 M Wt Milk SS DC 750d EMA Rib Rump RBY IMF% NFIP NFIF +2.1 +3.6 -5.3 +4.9 +47 +86 +120 +116 +18 +2.0 -4.8 +63 +6.4 -0.1 -0.4 +0.4 +2.6 +0.14 +0.27 61% 47% 73% 76% 73% 74% 75% 74% 66% 79% 43% 66% 6	Calving Ease Growth& Maternal Fertility CWT 400 KG Carcase Intake Dir Dtrs GL B Wt 200 400 600 M Wt Milk SS DC 750d EMA Rib Rump RB7% IMF% NFIP NFIF DOC +2.1 +3.6 -5.3 +4.9 +47 +86 +120 +116 +18 +2.0 -4.8 +63 +6.4 -0.1 -0.4 +0.4 +2.6 +0.14 +0.27 +2 61% 47% 73% 76% 73% 74% 75% 74% 66% 79% 43% 66% 66% 66% 66% 66% 66% 66% 58% 59% 48% 48% 58%	Calving Ease Growth& Maternal Fertility CWT 400 KG Carcase Intake Intake	Calving Ease Growth& Maternal Fertility CWT 400 KG Carcase Intake St Dir Dtr GL BWt 200 400 600 M Wt Milk SS DC 750d EMA Rib Rump RBY% IMF% NFIP NFIP DOC FC FA +2.1 +3.6 -5.3 +4.9 +47 +86 +120 +116 +18 +2.0 -4.8 +6.4 -0.1 -0.4 +0.4 +2.6 +0.14 +0.27 +2 +4.1 +5.3 61% 47% 73% 76% 75% 74% 66% 79% 43% 66% 66% 66% 66% 66% 66% 66% 66% 66% 58% 59% 48% 48% 58% 48% 48% 48%	Calving Ease* Growth& Maternal Fertility CWT 400 KG Carcase Intake Structue Dir Dtrs GL B Wt 200 400 600 M Wt Milk SS DC 750d EMA Rib Rump RBY% IMF% NFIP DOC FC FA RA +2.1 +3.6 -5.3 +4.9 +47 +86 +120 +116 +18 +2.0 -4.8 +63 +6.4 -0.1 -0.4 +0.4 +2.6 +0.14 +0.27 +2 +4.1 +5.3 +5.6	Dir Order Calving Ease Calving Calving Ease Calving Ease

This bull is strong and balanced. On the dams side of this bull pedigree there are some prominent cows from within our herd, VTMU343 & VTMR342 to name a few. Combined they have contributed 176 progeny to our herd.

Lot 66

Born: 01/10/2015 Society Id: VTML1515

Growth Fertility Carcase Marbling Angus Breeding Heavy Grass Heavy Grain

TE MANIA AMBASSADOR A134 (AI) LAWSONS HENRY VIII Y5 (AI) TE MANIA KNIGHT K206 (AI) (ET) TE MANIA LOWAN Q42 (AI) (ET) \$INDEX TUWHARETOA REGENT D145 (AI) (ET)

Sire: TE MANIA GLENCOE G872 (AI) Dam: TE MANIA MOONGARA A10 (AI) \$124 \$108 \$139 \$116 TE MANIA BARUNAH D576 TE MANIA MOONGARA Y524 (AI) (ET) VERMILLION YELL TE MANIA MOONG

January 2017 Angus Australia BREEDPLAN CWT Fertility Calving Ease **Growth& Maternal** 400 KG Carcase Intake Structure 600 M Wt Rump RBY% IMF% NFIP NFIF RS GL B Wt 200 400 Milk SS 750d EMA Rib DOC FC FΑ RA Dir Dtrs DC -1.8 -1.9 -6.6 +5.7 +48 +60 +4.3 -0.8 -1.2 +0.7 +2.4 +0.14 +0.25 -9 -11.6 -9.8 -11.8 -1.1 +84 +118 +99 +14 +2.0 -5.7 +0.4 45% 67% 75% 70% 68% 68% 66% 57% 61% 44% 62% 55% 58% Fraits Observed: CE BWT 200WT 400WT SS FAT EMA IMF DOC, Structral 59% 54% 57% 47% 49' Scores: FC 7, FA 6, RA 6, RH 6, RS 6 49% 61% 51% 52% 43% 34% 38%

One of the youngest bulls in the catalogue. He is balanced with good body length and presence.

Lot 67 Society Id: VTML63

Calving Ease Growth Fertility Marbling Angus Breeding Heavy Grass Heavy Grain

TE MANIA ULONG U41 (AI) (ET) TE MANIA JEDDA Y32 (AI) (ET) TE MANIA YORKSHIRE Y437 (AI \$INDEX TE MANIA AFRICA A217 (AI) TE MANIA BERKI EY B1 (AI)

Dam: TE MANIA BARUNAH J339 (AI) (ET) Sire: TE MANIA GARTH G67 (AI) TE MANIA MITTAGONG E28 (AI) TE MANIA BARUNAH E493 (AI) (ET) \$151 \$128 \$176 \$137 TE MANIA MODEST Z565 (AI) TE MANIA BARUNAH Z269 (AI) (ET

January 2017 Angus Australia BREEDPLAN Calving Ease Fertility CWT 400 KG Carcase **Growth& Maternal** Intake Structure Dtrs GL B Wt 200 400 600 M Wt Milk SS DC 750d Rib Rump RBY% IMF% NFIP NFIF DOC FC FA RA EMA **EBV** +3.1 +2.9 -8.5 +3.6 +49 +94 +120 +99 +22 +2.8 -6.9 +62 +6.5 +1.6 +1.7 -0.9 +3.9 +0.52 +0.69 +28 -14.2 -11.9 -14.3 +0.9 +0.4 75% 75% 73% 62% 79% 59% 62% 51% 53% 61% 58% 58% 52% 50% 51% 64% 54% 86% 77% 73% 45% 67% 65% 67% 67%

Traits Observed: GL CE BWT 200WT 400WT SS FAT EMA IMF DOC Genomics, Structral Scores: FC 7, FA 6, RA 6, RH 5, RS 5

A stylish son of Garth with so much presence. Well suited for use over heifers and is the first calf out of a two year old heifer. The past three generations on both sides of this bulls pedigree are Te Mania blood. The past four generations of females on the dams side have been ET conceived and each of them have run through our donor program, combined they have contributed 143 progeny to our herd. The Barunah cow family line is our second most prominent line with 780 direct descendants currently active within our herd

Lot 68

Born: 01/08/2015 Society Id: VTML148 Heavy Grain

Calving Ease Growth Carcase Marbling Angus Breeding Heavy Grass

B A R EXT TRAVELER 205 CRA LADY JAYE 608 498 S EASY \$INDEX C R A BEXTOR 872 5205 608 TE MANIA GOVERNOR G576 (AI)

Sire: G A R PROPHET Dam: TE MANIA BEEAC J379 (AI) \$134 \$124 \$146 \$128 GAR OBJECTIVE 1885 S S OBJECTIVE T510 0T26 GAR 1407 NEW DESIGN 2 TE MANIA BEEAC E315 (AI) TE MANIA CHELMSFORD C440 (AI) TE MANIA BEEAC Z570 (AI)

									J	anuaı	y 201	7 Ang	us Aı	ıstrali	a BRI	EEDPI	LAN									
THE PERSON NAMED IN		С	alvin	g Eas	е	0	Growt	h& Ma	terna	ı	Fert	ility	CWT		400 F	(G Ca	rcase		Inta	ake			St	ructu	re	
THE STATE OF THE S	9	Dir	Dtrs	GL	B Wt	200	400	600	M Wt	Milk	SS	DC	750d	EMA	Rib	Rump	RBY%	IMF%	NFIP	NFIF	DOC	FC	FA	RA	RH	RS
EBV	+	1.3	+1.5	-4.8	+2.4	+54	+91	+115	+82	+25	-0.4	-3.9	+66	+9.2	-0.8	-0.5	+0.4	+3.2	+0.18	+0.07	+9	-8.4	+5.1	-5.5	-1.0	0.0
Acc	6	1%	50%	86%	76%	72%	74%	74%	74%	63%	78%	37%	67%	64%	66%	66%	57%	60%	42%	43%	58%	54%	52%	46%	35%	39%

Traits Observed: GL CE BWT 200WT 400WT SS FAT EMA IMF DOC Genomics, Structral Scores: FC 6, FA 6, RA 6, RH 6, RS 6

L148 is the first calf out of a two year old heifer and well suited for use over heifers. He has a small amount of white in the groin area.

							BRI	EED A	VERA	GE EB	VS F	OR 20	15 B	ORN (CALV	ES							
	CALVIN	G EAS	E	GF	ROWTH	⊢& MA	TERN	AL	FERT	ILITY	CWT		C	ARCA	SE		INT	AKE			IND	EX\$	
DIR.	DTRS	GL	Bwt	200	400	600	Mwt	MILK	SS	DC	750d	EMA	RIB	RUMP	RBY%	IMF%	NFIP	NFIF	Doc	AB	D	HG	G
0.0	+0.1	-3.7	+4.3	+42	+77	+100	+88	+15	+1.7	-3.8	+56	+4.6	0.0	-0.2	+0.3	+1.6	+0.09	+0.15	+5	\$106	\$103	\$110	\$105
	Anin	nals with I	EBVs and	Indexes	highlighte	d with sha	ding are i	n the top	10% of the	e Angus	breed. W	ith the e	xceptio	n of fat w	hich has	no shac	ling, and	Mature W	eight wl	hich is sha	aded if the	value is	< 100.

_ot 69

Society Id: VTML149 AMFU/NHFU/CAFU/DDFU

Growth Marbling Angus Breeding Heavy Grain

TE MANIA JAPARA D159 (AI)

TUWHARETOA REGENT D145 (AI) (ET) Sire: TE MANIA GASKIN G555 (AI)

Born: 01/08/2015

TE MANIA LOWAN D66 (AI)

TE MANIA YORKSHIRE Y437 (AI) TE MANIA I OWAN B860 (AI)

CARABAR DOCKLANDS D62(AI) Dam: TE MANIA JAPARA J1215 (AI)

KAROO W109 DIRECTION Z181 CARABAR BLACKCAP MARY B12(AI)(ET) TE MANIA XAMINED X60 (AI) (ET) TE MANIA JAPARA A293 (AI)

\$INDEX \$112 \$93 \$119 \$108

								J	anua	ry 201	7 Ang	us Aı	ıstrali	a BRI	EDPI	_AN									
	C	alvin	g Eas	е	(Growt	h& Ma	terna	ı	Fert	ility	CWT		400 F	(G Ca	rcase		Int	ake			St	ructu	re	
	Dir	Dtrs	GL	B Wt	200	400	600	M Wt	Milk	SS	DC	750d	EMA	Rib	Rump	RBY%	IMF%	NFIP	NFIF	DOC	FC	FA	RA	RH	RS
EBV	-1.2	-4.6	-5.7	+4.2	+45	+82	+117	+103	+17	+0.5	-5.9	+71	+4.2	+1.7	+2.5	-2.0	+2.6	+0.37	+0.29	+9	+3.6	-0.6	-2.9	+1.1	+0.4
Acc	54%	49%	85%	74%	70%	71%	69%	63%	51%	73%	41%	63%	61%	62%	64%	57%	58%	48%	50%	59%	57%	57%	51%	44%	48%
					Tı	raits Ohs	erved: G	L CF BV	/T 200W	T 400W	T SS FA	TEMAI	MF DOC	Structr	al Score	s: FC 6	FA 6 RA	6 RH	RS 5						

Another Al conceived Gaskin son that presents well. He is the first calf out of a two year old heifer.

CONNEALY ONWARD RIVERBEND BLACKBIRD 4301

Lot 70

Calving Ease Growth Carcase Marbling Angus Breeding Heavy Grass Heavy Grain

BOYD NEW DAY 8005 B/R RUBY 1224 Sire: V A R RESERVE 1111(ET)

SANDPOINT BLACKBIRD 8809

HYLINE RIGHT TIME 338 Dam: TE MANIA JEDDA J1105 (AI) (ET) TE MANIA JEDDA E480 (AI) (ET)

LEACHMAN RIGHT TIME HYLINE PRIDE 265(ET) LAWSONS DINKY-DI Z191 TE MANIA JEDDA W85 (AI) (ET)

\$INDEX **\$124 \$120 \$131 \$121**

								J	anua	ry 201	7 Ang	jus Aı	ıstrali	a BRI	EDP	LAN									
	C	Calvin	g Eas	е	(Growt	h& Ma	aterna	I	Fert	tility	cwt		400 F	(G Ca	rcase		Inta	ake			St	tructu	re	
THE STATE OF	Dir	Dtrs	GL	B Wt	200	400	600	M Wt	Milk	SS	DC	750d	EMA	Rib	Rump	RBY%	IMF%	NFIP	NFIF	DOC	FC	FA	RA	RH	RS
EBV	+3.1	+0.2	-3.6	+3.6	+49	+85	+108	+79	+20	+1.7	-4.5	+61	+6.5	-1.7	-1.3	+1.6	+2.0	-0.03	-0.23	+14	-1.3	+2.3	+1.1	-4.6	-1.3
Acc	52%	46%	84%	74%	69%	70%	68%	61%	52%	73%	39%	59%	61%	61%	61%	56%	56%	45%	45%	59%	52%	52%	41%	33%	38%

Traits Observed: GL CE BWT 200WT 400WT SS FAT EMA IMF DOC, Structral Scores: FC 7, FA 6, RA 6, RH 5, RS 5

Good natural thickness and body length on display. The past four generations of this bull on his dams side have all been ET conceived. First calf out of a two year old heifer.

Lot 71

Growth Fertility Carcase Marbling Angus Breeding Heavy Grass Heavy Grain TE MANIA FITZPATRICK F528 (AI) (FT)

TE MANIA AFRICA A217 (AI) Sire: TE MANIA GARTH G67 (AI)

TE MANIA MITTAGONG E28 (AI)

Dam: TE MANIA MOONGARA J290 (AI) TE MANIA MOONGARA G678 (AI)

\$INDEX G \$147 \$127 \$172 \$135

								J	anua	ry 201	7 Ang	jus Αι	ıstrali	a BRI	EEDPI	LAN									
	C	alvin	g Eas	е	·	Growt	h& Ma	terna	I	Fert	ility	CWT		400 k	(G Ca	rcase		Inta	ake			St	ructui	re	
THE COLUMN	Dir	Dtrs	GL	B Wt	200	400	600	M Wt	Milk	SS	DC	750d	EMA	Rib	Rump	RBY%	IMF%	NFIP	NFIF	DOC	FC	FA	RA	RH	RS
EBV	-3.1	-0.3	-3.9	+5.5	+55	+103	+134	+97	+32	+4.3	-4.8	+67	+9.3	-1.1	-0.7	+0.9	+3.6	+0.32	+0.32	+30	+6.2	-16.4	-15.0	+0.5	+0.3
Acc	63%	52%	87%	77%	73%	75%	75%	73%	62%	79%	42%	67%	65%	67%	67%	58%	62%	49%	51%	60%	58%	58%	54%	50%	51%
					Traits (hserver	t GLCE	RWT 20	0WT 40	OWT SS	FAT FM	A IMF D	OC Gen	omics S	Structral 9	Scores: F	C 6 FA	6 RA 6	RH 6 R	5.6					

A stylish son of Garth with good frame, body length and natural thickness. Solid Te Mania breeding on both sides of this bulls pedigree. First calf out of a two year old heifer.

Lot 72 Born: 07/08/2015

Calving Ease Growth Fertility Marbling Angus Breeding Heavy Grass Heavy Grain

\$INDEX LAWSONS INVINCIBLE C402(AI) TE MANIA AFRICA A217 (AI)

Sire: TE MANIA GARTH G67 (AI) TE MANIA MITTAGONG F28 (AI) TE MANIA BEFAC F988

Dam: TE MANIA BEEAC G21 (AI) TE MANIA CHIEFTAIN C475 (AI) TE MANIA BEEAC B886 (AI) (ET \$133 \$116 \$152 \$123

	January 2017 Angus Australia BREEDPLAN															EEDPI	_AN									
		Calv	ing E	ase	•	C	Growt	h& Ma	aterna	ı	Fert	tility	CWT		400 F	(G Ca	rcase		Inta	ake			S	tructu	re	
A CONTRACTOR	Dir	Dtr	s G	L	B Wt	200	400	600	M Wt	Milk	SS	DC	750d	EMA	Rib	Rump	RBY%	IMF%	NFIP	NFIF	DOC	FC	FA	RA	RH	RS
EBV	+4.	5 +3.	6 -8	.6	+1.1	+41	+80	+104	+102	+24	+2.0	-6.1	+56	+8.5	+0.9	+1.3	-0.6	+3.5	+0.59	+0.76	+36	+9.9	-5.1	-11.9	-0.3	+0.5
Acc	57%	529	67	%	75%	70%	71%	69%	65%	53%	72%	43%	63%	63%	63%	65%	59%	60%	50%	51%	63%	58%	58%	52%	48%	50%

Traits Observed: BWT 200WT 400WT SS FAT EMA IMF DOC, Structral Scores: FC 6, FA 6, RA 6, RH 5, RS 5

Balanced with good body length shown here. Well suited for use over heifers and the first calf out of a two year old heifer. He has a small amount of white in the groin area. Flush brother to lot 87.

							BRI	EED A	VERA	GE EB	VS FO	OR 20	15 B	ORN (CALV	ES							
	ALVIN	G EAS	Ë	GI	ROWTI	H & MA	TERN	٩L	FERT	ILITY	CWT		C	ARCA	SE		INT	AKE			IND	EX\$	
DIR.	DTRS	GL	Bwt	200	400	600	Mwt	MILK	SS	DC	750d	EMA	RIB	RUMP	RBY%	IMF%	NFIP	NFIF	Doc	AB	D	HG	G
0.0	+0.1	-3.7	+4.3	+42	+77	+100	+88	+15	+1.7	-3.8	+56	+4.6	0.0	-0.2	+0.3	+1.6	+0.09	+0.15	+5	\$106	\$103	\$110	\$105
	Anim	nals with I	EBVs and	Indexes	highlighte	d with sha	ding are i	n the top	10% of the	e Angus	breed. W	ith the e	xceptio	n of fat v	vhich has	no shac	ling, and	Mature W	eight wh	nich is sha	ded if the	value is <	< 100.

Lot 73 Born: 07/08/2015

Calving Ease Growth Fertility Carcase Marbling Angus Breeding Heavy Grass Heavy Grain

G A R TWINHEARTS 8418 Sire: TE MANIA JOE J963 (AI)

TE MANIA JEDDA G949

S A F FOCUS OF ER TE MANIA LOWAN U275 (AI) (ET) TE MANIA YORKSHIRE Y437 (AI) Dam: TE MANIA JEDDA E127 (AI) TE MANIA JEDDA C22 (AI) (ET) TE MANIA ZAMBIA Z69 (AI) (ET) TE MANIA JEDDA Y303 (AI) (ET)

\$146 \$128 \$169 \$134

								J	anuai	ry 201	7 Ang	jus Aı	ıstrali	ia BRI	EEDPI	LAN									
	C	Calvin	g Eas	е	(Growt	h& Ma	aterna	ı	Fert	ility	CWT		400 k	(G Ca	rcase		Int	ake			St	ructu	re	
	Dir	Dtrs	GL	B Wt	200	400	600	M Wt	Milk	SS	DC	750d	EMA	Rib	Rump	RBY%	IMF%	NFIP	NFIF	DOC	FC	FA	RA	RH	RS
EBV	+4.4	+3.9	-8.5	+2.3	+51	+98	+129	+127	+20	+3.9	-7.5	+72	+4.0	-2.4	-2.3	+0.8	+2.5	+0.12	+0.15	+16	+13.9	+2.3	-4.2	-0.1	+0.1
Acc	56%	40%	86%	76%	72%	73%	73%	72%	60%	78%	38%	64%	62%	65%	64%	55%	57%	43%	42%	57%	44%	44%	32%	27%	29%
					Traite (hearyar	I GL CE	BWT 20	UMT 4U						Structral	Scores: F	C 6 FA	6 RA 6	PH 6 P	\$ 5					

A stylish, strong and powerful bull. Small amount of white in the groin area.

Lot 74

Born: 07/08/2015 Structure date scored 06/12/2016 Society Id: VTML308

Calving Ease Growth Fertility Marbling Angus Breeding Heavy Grass Heavy Grain

S S OBJECTIVE T510 0T26 G A R YIELD GRADE 2015 G A R TWINHEARTS 8418 Sire: TE MANIA JOE J963 (AI)

TE MANIA JEDDA G949 TE MANIA EARNINGS E38 (AI)

TE MANIA ANMOL A888 (AI) (ET) Dam: TE MANIA DANDLOO G353 (AI) TE MANIA DANDLOO C345 (AI) GARDENS HIGHMARK TE MANIA DANDI OO X

VERMILLION YELLOWSTONE TE MANIA BEEAC U343 (AI) (ET)

\$138 \$123 \$161 \$127

					11.11	INITIA JEDE	/A D314 (A1)								I L	WAIN DAIN	DLOO X331	(AI) (LI)		•			•		-
								J	anua	ry 201	7 Ang	jus Aı	ustrali	a BRI	EEDPI	_AN									
	Calving Ease Growth& Maternal										ility	CWT		400 F	(G Ca	rcase		Inta	ake			St	tructu	re	
	Dir	Dtrs	GL	B Wt	200	400	600	M Wt	Milk	SS	DC	750d	EMA	Rib	Rump	RBY%	IMF%	NFIP	NFIF	DOC	FC	FA	RA	RH	RS
EBV	+2.8	+2.7	-8.1	+3.9	+50	+95	+123	+103	+19	+3.3	-5.0	+63	+1.4	-2.1	-0.5	-0.2	+3.4	+0.20	+0.23	+20	+7.8	-1.1	-4.6	-0.1	0.0
Acc	54%	37%	86%	76%	71%	73%	72%	71%	58%	78%	34%	62%	60%	64%	63%	53%	55%	40%	40%	55%	48%	48%	36%	32%	35%

Traits Observed: GL CE BWT 200WT 400WT SS FAT EMA IMF DOC Genomics, Structral Scores: FC 6, FA 6, RA 5, RH 5, RS 5

Good natural thickness and body length shown by this bull.

Lot 75

Calving Ease Growth Fertility Marbling Angus Breeding Heavy Grass Heavy Grain

TE MANIA YORKSHIRE Y437 (AI) TE MANIA LOWAN Z53 (AI) (ET) \$INDEX TE MANIA AFRICA A217 (AI)

Sire: TE MANIA GARTH G67 (AI)

TE MANIA MITTAGONG E28 (AI)

TE MANIA BERKI EY B1 (AI) Dam: TE MANIA BEEAC E225 (AI) TE MANIA BEEAC W112 (AI)

C A FUTURE DIRECTION 5321 TE MANIA BEEAC U340 (AI) (ET)

\$155 \$128 \$179 \$142

	January 2017 Angus Australia BREEDPLAN																								
	C	Calvin	g Eas	е	0	Growt	h& Ma	aterna	ı	Fert	tility	CWT		400 F	(G Ca	rcase		Inta	ake			St	ructu	re	
THE OWNER OF THE PARTY OF THE P	Dir	Dtrs	GL	B Wt	200	400	600	M Wt	Milk	SS	DC	750d	EMA	Rib	Rump	RBY%	IMF%	NFIP	NFIF	DOC	FC	FA	RA	RH	RS
EBV	+4.0	+4.6	-9.7	+3.1	+47	+85	+115	+89	+22	+2.4	-8.2	+60	+9.8	+1.4	+1.2	-0.4	+3.6	+0.48	+0.60	+28	-0.1	-23.3	-15.6	+0.3	+0.5
Acc	65%	55%	74%	78%	74%	76%	76%	74%	63%	80%	46%	69%	66%	68%	68%	60%	64%	53%	55%	64%	56%	58%	50%	45%	47%

Traits Observed: BWT 200WT 400WT SS FAT EMA IMF DOC Genomics, Structral Scores: FC 6, FA 6, RA 6, RH 5, RS 5

Balanced and well suited for use over heifers. The dam of this bull ran through our donor program in 2012, 2014 and 2016 and she remains active within the stud herd as a rising eight year old cow. L342 is a flush brother to lot 78. There is some white on the belly of this bull.

Lot 76

Society Id: VTML407 Structure date scored 06/12/2016 Calving Ease Carcase Marbling Angus Breeding Heavy Grass Heavy Grain

B/R NEW DAY 454 Sire: V A R RESERVE 1111(ET)

Born: 08/08/2015

TUWHARETOA REGENT D145 (AI) (ET) Dam: TE MANIA BARUNAH J897 (AI) (ET) TE MANIA BARUNAH E601 (AI)

\$INDEX \$121 \$114 \$135 \$113

SAI	NDPOINT	BLACKBIF	RD 8809			NNEALY ON ERBEND BL		301		TE	MANIA B	ARUNAH I	E601 (AI)			OROOMOOK MANIA BARI				\$12 1	1 \$1	14	\$13 5	<u>; \$</u>	113
								J	lanuai	ry 201	7 Ang	jus Aı	ıstrali	a BRI	EDPI	LAN									
	C	alvin	g Eas	е	O	Growt	h& Ma	aterna	ıl	Fert	tility	CWT		400 H	(G Ca	rcase		Inta	ake			S	tructui	re	
THE STATE OF THE S	Dir	Dtrs	GL	B Wt	200	400	600	M Wt	Milk	SS	DC	750d	EMA	Rib	Rump	RBY%	IMF%	NFIP	NFIF	DOC	FC	FA	RA	RH	RS
EBV	+2.1	-2.6	-2.0	+2.6	+41	+78	+97	+75	+20	+1.6	-4.9	+58	+7.9	-0.4	-0.9	+0.7	+3.0	+0.37	+0.53	+15	+14.9	+0.9	+1.0	-3.0	+0.1
Acc	52%	46%	84%	74%	69%	70%	68%	63%	52%	73%	38%	59%	61%	61%	61%	57%	56%	45%	45%	59%	52%	52%	43%	36%	40%

Traits Observed: GL CE BWT 200WT 400WT SS FAT EMA IMF DOC, Structral Scores: FC 6, FA 6, RA 5, RH 5, RS 5

Natural thickness and body length on display in this first calf out of a two year old heifer.

	BREED AVERAGE EBVS FOR 2015 BORN CALVES																						
С	ALVIN	G EAS	βE	GF	ROWTH	H & MA	TERNA	٩L	FERT	ILITY	CWT		C	ARCA	SE		INT	AKE			IND	EX\$	
DIR.	DTRS	GL	Bwt	200	400	600	Mwt	MILK	SS	DC	750d	EMA	RIB	RUMP	RBY%	IMF%	NFIP	NFIF	Doc	AB	D	HG	G
0.0	+0.1	-3.7	+4.3	+42	+77	+100	+88	+15	+1.7	-3.8	+56	+4.6	0.0	-0.2	+0.3	+1.6	+0.09	+0.15	+5	\$106	\$103	\$110	\$105
	Anim	als with	EBVs and	d Indexes	highlighte	ed with sha	ding are i	n the top	10% of the	e Angus I	breed. W	ith the e	xceptio	n of fat w	hich has	no shac	ling, and	Mature W	eight wh	nich is sha	ded if the	value is	< 100.

Born: 11/08/2015 Society Id: VTML508 Structure date scored 06/12/2016

TE MANIA EMPEROR E343 (AI)

Calving Ease Growth Fertility Marbling Angus Breeding Heavy Grass Heavy Grain TE MANIA BERKLEY B1 (AI) TE MANIA LOWAN Z74 (AI) (ET)

TE MANIA ULONG U41 (AI) (ET) TE MANIA JEDDA Y32 (AI) (ET) TE MANIA AFRICA A217 (AI) Sire: TE MANIA GARTH G67 (AI)

Dam: TE MANIA WARGOONA G350 (AI) TE MANIA MITTAGONG E28 (AI) TE MANIA CANTON C138 (AI) (ET) TE MANIA MITTAGONG C900 (ACI TE MANIA WARGOONA B136 (AI) (ET)

B/R NEW DESIGN 036 TE MANIA WARGOONA X254 (AI

\$INDEX \$133 \$120 \$149 \$124

								J	anua	ry 201	7 Ang	jus Αι	ıstrali	a BRI	EEDPI	_AN									
	C	alvin	g Eas	е	(Growt	h& Ma	terna	I	Fert	ility	CWT		400 F	(G Ca	rcase		Inta	ake			S	tructu	re	
THE STATE OF	Dir	Dtrs	GL	B Wt	200	400	600	M Wt	Milk	SS	DC	750d	EMA	Rib	Rump	RBY%	IMF%	NFIP	NFIF	DOC	FC	FA	RA	RH	RS
EBV	+2.8	+3.8	-7.7	+2.6	+43	+82	+103	+79	+22	+2.2	-7.1	+49	+5.0	+1.1	+1.1	-0.5	+3.2	+0.33	+0.40	+34	-1.9	-12.1	-14.4	+1.2	+0.5
Acc	58%	52%	68%	75%	71%	71%	70%	66%	54%	74%	44%	64%	63%	63%	65%	59%	61%		53%	64%	61%	61%	55%	51%	52%

Balanced with good body length. There is solid Te Mania breeding on both sides of this bulls pedigree. The dam of this bull ran through our donor program in 2014 and 2016. Half brother to lots 79 and 82. Well suited for use over heifers.

Lot 78

Structure date scored 06/12/2016

Growth Marbling Angus Breeding Heavy Grass Heavy Grain

TE MANIA ULONG U41 (AI) (ET) TE MANIA JEDDA Y32 (AI) (ET) Sire: TE MANIA GARTH G67 (AI)

Born: 14/08/2015

Born: 15/08/2015

TE MANIA MITTAGONG E28 (AI)

Dam: TE MANIA BEEAC E225 (AI)

TE MANIA BEEAC W112 (AI) C A FUTURE DIRECTION 5321 TE MANIA BEEAC U340 (AI) (ET)

\$INDEX \$149 \$125 \$169 \$138

	January 2017 Angus Australia BREEDPLAN																								
	C	Calvin	g Eas	ө	(Growt	h& Ma	terna		Fert	ility	CWT		400 K	(G Ca	rcase		Inta	ake			St	ructu	re	
	Dir	Dtrs	GL	B Wt	200	400	600	M Wt	Milk	SS	DC	750d	EMA	Rib	Rump	RBY%	IMF%	NFIP	NFIF	DOC	FC	FA	RA	RH	RS
EBV	+2.7	+4.1	-10.0	+4.5	+51	+88	+120	+102	+19	+1.5	-7.0	+64	+9.6	+1.3	+0.4	0.0	+3.1	+0.34	+0.33	+17	-0.1	-23.3	-15.6	+0.3	+0.5
Acc	65%	55%	74%	78%	74%	76%	76%	74%	63%	80%	46%	69%	66%	68%	68%	60%	64%	53%	55%	65%	56%	58%	50%	45%	47%

Traits Observed: BWT 200WT 400WT SS FAT EMA IMF DOC Genomics, Structral Scores: FC 6, FA 6, RA 6, RH 5, RS 5

Balanced with good body length on display. Another of the 39 sons of Garth being offered in this catalogue. The dam of this bull ran through our donor program in 2012, 2014 and 2016 and she remains active within the stud herd as a rising eight year old cow. Flush brother to lot 75. There is some white in the groin area.

Lot 79 I FGWOR

Growth Marbling Angus Breeding Heavy Grass Heavy Grain

TUWHARETOA REGENT D145 (AI) (ET) Sire: TE MANIA GASKIN G555 (AI)

TE MANIA LOWAN D66 (AI)

TE MANIA BERKLEY B1 (AI) TF MANIA LOWAN Z74 (AI) (ET) TE MANIA EMPEROR E343 (AI) Dam: TE MANIA WARGOONA G350 (AI) TE MANIA WARGOONA B136 (AI) (ET)

\$INDEX G \$126 \$108 \$148 \$117

								J	anuai	ry 201	7 Ang	jus Αι	ıstrali	a BRI	EEDPI	LAN									
	C	alvin	g Eas	е	(Growt	h& Ma	terna		Fert	ility	CWT		400 F	(G Ca	rcase		Inta	ake			St	ructu	re	
	Dir	Dtrs	GL	B Wt	200	400	600	M Wt	Milk	SS	DC	750d	EMA	Rib	Rump	RBY%	IMF%	NFIP	NFIF	DOC	FC	FA	RA	RH	RS
EBV	+0.9	-1.1	-5.3	+4.4	+49	+91	+124	+106	+17	-0.8	-3.8	+75	+3.9	-0.3	-1.0	-1.4	+3.7	+0.17	-0.05	+16	+7.2	+13.2	+6.1	+1.6	+0.3
Acc	57%	52%	86%	77%	72%	73%	71%	66%	54%	76%	44%	65%	64%	64%	66%	60%	61%	51%	53%	64%	61%	60%	54%	49%	52%
					Tı	aits Ohs	erved: G	I CE RW	/T 200\n	/T 400W	T SS FA	TEMAI	ME DOC	: Structr	al Score	s: FC 6 1	FA 6 RA	6 RH 5	RS 5						

Another impressive son of Gaskin. L697 has style and presence. The dam of this bull ran through our donor program in 2014 and 2016 and each of the females on the dams side for the past three generations have been donors. Half brother to lots 77 and 82.

Lot 80

Society Id: VTML740 Growth Fertility Carcase Marbling Angus Breeding Heavy Grass Heavy Grain

\$INDEX TE MANIA NEW DESIGN Z496 (AI) TE MANIA AFRICA A217 (AI)

Sire: TE MANIA GARTH G67 (AI) Dam: TE MANIA LOWAN G317 (AI) (ET) \$128 \$117 \$145 \$119 TE MANIA MITTAGONG F28 (AI) TE MANIA LOWAN Z291 (AI) (ET) B/R NEW DESIGN 036 TE MANIA LOWAN V104 (AI) (ET)

									J	anuai	ry 201	7 Ang	jus Αι	ıstrali	a BRE	EDPI	_AN									
	2	C	alvin	g Eas	е	(Growt	h& Ma	iterna	I	Fert	ility	CWT		400 K	G Ca	rcase		Inta	ake			St	ructu	re	
ALCO MACO	9	Dir	Dtrs	GL	B Wt	200	400	600	M Wt	Milk	SS	DC	750d	EMA	Rib	Rump	RBY%	IMF%	NFIP	NFIF	DOC	FC	FA	RA	RH	RS
EB\	/	-2.1	+1.9	-5.4	+4.8	+48	+84	+106	+83	+18	+3.4	-6.0	+50	+6.8	0.0	0.0	+0.7	+3.1	+0.32	+0.37	+36	+3.7	-18.3	-15.7	+1.3	+0.4
Acc		57%	52%	85%	75%	71%	72%	70%	66%	54%	74%	44%	64%	63%	63%	65%	59%	60%	50%	52%	61%	58%	60%	52%	48%	50%

Traits Observed: GL CE BWT 200WT 400WT SS FAT EMA IMF DOC, Structral Scores: FC 6, FA 6, RA 6, RH 5, RS 5

Balanced with good body length on display. We have sold sons to a high \$12,000 from this bull and the past five generations on the dams side have all been ET conceived and combined they have contributed 194 progeny to our herd.

							BR	EED A	VERA	GE EB	VS FO	OR 20	15 B	orn (CALV	ES							
C	ALVIN	G EAS	E	GF	ROWTI	AM & F	TERNA	AL	FERT	ILITY	CWT		C	ARCA	SE		INT	AKE			IND	EX\$	
DIR.	DTRS	GL	Bwt	200	400	600	Mwt	MILK	SS	DC	750d	EMA	RIB	RUMP	RBY%	IMF%	NFIP	NFIF	Doc	AB	D	HG	G
0.0	+0.1	-3.7	+4.3	+42	+77	+100	+88	+15	+1.7	-3.8	+56	+4.6	0.0	-0.2	+0.3	+1.6	+0.09	+0.15	+5	\$106	\$103	\$110	\$105
	Anim	nals with I	EBVs and	Indexes	highlighte	d with sha	ding are i	n the top	10% of th	e Angus	breed. W	ith the e	xceptio	n of fat w	vhich has	no shac	ling, and	Mature W	eight wh	nich is sha	ded if the	value is <	< 100.

Lot 81 Born: 17/08/2015 AMFU/NHFU/CAFU/DDFU red 06/12/2016

Growth Carcase Marbling Angus Breeding Heavy Grass Heavy Grain

G A R TWINHEARTS 8418 Sire: TE MANIA JOE J963 (AI)

TE MANIA JEDDA G949

Born: 18/08/2015

S S OBJECTIVE T510 0T26 RITA 5M46 OF 2536 PRED RITO 7065 OF RITA 5M46 OBJ Dam: TE MANIA LOWAN H714 (AI) TE MANIA LOWAN A132 (AI) TE MANIA YARNFIELD Y195 (AI) (ET) TE MANIA LOWAN Y575 (ACR) (AI)

\$INDEX \$122 \$114 \$138 \$116

January 2017 Angus Australia BREEDPLAN Fertility CWT 400 KG Carcase **Calving Ease Growth& Maternal** Structure 400 600 M Wt Milk Rib Dir Dtrs GL SS DC 750d Rump RBY% IMF% NFIP NFIF FA RA B Wt 200 EMA DOC FC **EBV** -1.9 -1.0 -3.3 +5.2 +55 +96 +124 +104 +20 +0.3 -3.3 +69 +6.0 -2.4 -2.0 +0.5 +2.9 +0.15 -0.19 +6 +7.1 +6.7 -2.3 +1.0 -4.5 33% 85% 74% 68% 69% 66% 62% 46% 72% 32% 57% 58% 59% 60% 54% 53% 40% 39% 57% 48% 47% 36% 30%

Traits Observed: GL CE BWT 200WT 400WT SS FAT EMA IMF DOC, Structral Scores: FC 6, FA 6, RA 5, RH 6, RS 4

Balanced and good body length shown by this fellow.

Lot 82 Calving Ease Growth Fertility Carcase Marbling Angus Breeding Heavy Grass Heavy Grain LEACHMAN RIGHT TIME SITZ EVERELDA ENTENSE 1905 TE MANIA BERKLEY B1 (AI) TE MANIA LOWAN Z74 (AI) (ET) \$INDEX TE MANIA EMPEROR E343 (AI) Sire: VERMONT DRAMBUIE D057(AI)(ET) Dam: TE MANIA WARGOONA G350 (AI) \$130 \$121 \$141 \$124 VERMONT WILCOOLA X55(AI)(ET) TE MANIA WARGOONA B136 (AI) (ET)

January 2017 Angus Australia BREEDPLAN CWT Fertility Calving Ease **Growth& Maternal** 400 KG Carcase Intake Structure GL 600 M Wt NFIP NFIF RS Dtrs B Wt 200 400 Milk SS DC 750d EMA Rib Rump RBY% IMF% DOC FC FΑ RA Dir +2.4 +1.7 -5.6 +3.8 +47 +86 +108 +92 +16 +61 +7.1 +0.7 +0.6 +0.3 +2.5 +0.05 -0.03 -2 +1.5 -5.4 0.0 +1.9 -5.8 -0.7 +2.4 51% 67% 75% 70% 71% 71% 69% 67% 60% 73% 46% 63% 63% 64% 65% 61% 60% 52% 53% 63% 60% Traits Observed: BWT 200WT 400WT SS FAT EMA IMF DOC, Structral Scores: FC 6, FA 6, RA 6, RH 6, RS 5 60% 52% 49%

Good natural thickness and body length on display. The dam of this bull ran through our donor program in 2014 and 2016. Half brother to lots 77 and 79. There is some white in the groin area.

Lot 83 Born: 18/08/2015 Society Id: VTML917 ed 06/12/2016 Calving Ease Growth Fertility Marbling Angus Breeding Heavy Grass Heavy Grain

TE MANIA ULONG U41 (AI) (ET) TF. MANIA JEDDA Y32 (AI) (ET) TE MANIA AMBASSADOR A134 (AI) LAWSONS HENRY VIII Y5 (AI) \$INDEX TE MANIA AFRICA A217 (AI) TUWHARETOA REGENT D145 (AI) (ET)

G Sire: TE MANIA GARTH G67 (AI) Dam: TE MANIA LOWAN G694 (AI) TE MANIA MITTAGONG E28 (AI) TE MANIA LOWAN A626 (AI) (ET) \$145 \$124 \$169 \$131 B/R NEW DIMENSION 7127 TE MANIA LOWAN V130 (AI) (ET)

January 2017 Angus Australia BREEDPLAN **Calving Ease** Fertility CWT 400 KG Carcase Intake **Growth& Maternal** Structure 750d NFIP NFIF Dir Dtrs GL B Wt 200 400 600 M Wt Milk SS DC EMA Rib Rump RBY% IMF% DOC FC FA RA RH RS +1.4 +1.2 -6.9 +2.5 +42 +79 +102 +63 +27 | +3.3 -7.2 | +58 | +7.6 | +2.7 | +1.9 | -0.2 | +4.2 | +0.48 | +0.73 | +25 +4.4 -12.4 -9.9 +0.5 73% 68% 66% 68% 60% 64% 52% 65% 55% 74% 78% 74% 76% 75% 63% 79% 45% 68% 54% | 65% | 58% 60% 54% 51% 52% ved: BWT 200WT 400WT SS FAT EMA IMF DOC Genomics, Structral Scores: FC 6, FA 6, RA 6, RH 6, RS

L917 is balanced and well suited for use over heifers. Flush brother to lot 93. The dam of this bull is also the dam of the sire Te Mania Jerome VTMJ131 who has many sons in this sale.

Lot 84

Structure date scored 06/12/2016 Growth Carcase Angus Breeding Heavy Grass Heavy Grain

TC ABERDEEN 759 LEACHMAN BOOM TIME

\$INDEX Sire: RENNYLEA H7 (AI) (ET) Dam: TE MANIA LOWAN D229 (AI) \$118 \$110 \$118 \$118 LAWSONS NEW DESIGN 1407 Z1393(AI) TE MANIA LOWAN A915 (AI) (ET) S A F FOCUS OF ER TE MANIA LOWAN V

January 2017 Angus Australia BREEDPLAN Calving Ease Fertility CWT 400 KG Carcase **Growth& Maternal** Intake Rump RBY% IMF% GL B Wt DC 750d EMA NFIP NFIF EBV +66 +9.5 -0.8 -2.5 +2.0 +0.9 -0.03 -0.18 -4.1 +5.2 +52 +89 +123 +108 +19 +15 -10.1 +12.7 +5.0 -0.2 +0.5 -1.8 +1.7 +1.1 -3.9 6 71% 70% 65% 53% 74% 43% 60% 62% 62% 63% 58% 57% 47% 48% Traits Observed: GL CE BWT 200WT 400WT SS FAT EMA IMF DOC, Structral Scores: FC 7, FA 6, RA 6, RH 6, RS 5 47% 85% 75% 48% | 62% | 52% 52% 39% 32%

L918 is well balanced with good body length. The dam of this bull ran through our donor program in 2011 and she is from our most prominent cow family line.

							BRI	ED A	VERA	GE EB	VS F	OR 20	15 B	ORN (CALV	ES							
С	ALVIN	LVING EASE GROWTH & MATERNAL FERTILITY CWT CARCASE INTAKE																IND	EX\$				
DIR.	DTRS	GL	Bwt	200	400	600	Mwt	MILK	SS	DC	750d	EMA	RIB	RUMP	RBY%	IMF%	NFIP	NFIF	Doc	AB	D	HG	G
0.0	+0.1	-3.7	+4.3	+42	+77	+100	+88	+15	+1.7	-3.8	+56	+4.6	0.0	-0.2	+0.3	+1.6	+0.09	+0.15	+5	\$106	\$103	\$110	\$105
	Anim	als with	EBVs and	Indexes	highlighte	d with sha	ding are i	n the top	10% of the	e Angus I	breed. W	/ith the e	xceptio	n of fat w	hich has	no shad	ling, and	Mature W	eight wh	nich is sha	ded if the	value is	< 100.

Calving Ease Growth Marbling Angus Breeding Heavy Grass Heavy Grain

G A R SOLUTION LAWSONS PREDESTINED A598(AI) LAWSONS INVINCIBLE C402(AI) Sire: TE MANIA GALAXY G49 (AI)

TE MANIA LOWAN E428 (AI) (ET)

Born: 20/08/2015

TE MANIA ULONG U41 (AI) (ET) TE MANIA BARUNAH X248 (AI) TE MANIA ULONG Z773 (AI) Dam: TE MANIA MITTAGONG B112 (AI) ARDROSSAN MODEST W37 (AI) TE MANIA MITTAGONG X380 (ACR) (AI) LAWSONS DINKY-DI Z191 TE MANIA LOWAN Y1000 (AI) (ET) TE MANIA MITTAGONG Z447 (AI)

\$120 \$115 \$134 \$113

								J	anua	ry 201	7 Ang	jus Aı	ıstrali	a BRI	EEDPI	_AN									
	C	Calvin	g Eas	е	(Growt	h& Ma	aterna	ı	Fert	ility	CWT		400 F	(G Ca	rcase		Inta	ake			S	tructu	re	
THE STATE OF	Dir	Dtrs	GL	B Wt	200	400	600	M Wt	Milk	SS	DC	750d	EMA	Rib	Rump	RBY%	IMF%	NFIP	NFIF	DOC	FC	FA	RA	RH	RS
EBV	+2.1	+0.6	-4.3	+2.6	+46	+84	+101	+65	+21	+2.7	-3.9	+54	+0.7	-0.3	+1.4	-0.9	+3.8	+0.24	+0.25	+6	+9.2	+5.3	-10.1	-1.3	+0.4
Acc	57%	52%	68%	76%	73%	73%	72%	68%	58%	76%	46%	66%	65%	65%	67%	62%	62%	52%	53%	66%	62%	62%	55%	47%	51%

Balanced and ET conceived. The dam of this bull ran through our donor program in 2009, 2012 and 2014 and has contributed 44 progeny to our herd. We have sold sons to a high of \$17,000 from her. L989 is well suited for use over heifers.

Lot 86

Calving Ease Growth Fertility Marbling Angus Breeding Heavy Grass Heavy Grain

TE MANIA ULONG U41 (AI) (ET) TE MANIA JEDDA Y32 (AI) (ET) TE MANIA YORKSHIRE Y437 (AI) TE MANIA LOWAN Z53 (AI) (ET) TE MANIA BERKLEY B1 (AI) Sire: TE MANIA GARTH G67 (AI) Dam: TE MANIA JEDDA J67 (AI)

TE MANIA MITTAGONG E28 (AI) TE MANIA JEDDA G891 (AI) TE MANIA CANTON C138 (AI) (ET) TE MANIA MITTAGONG C900 (ACR

\$145 \$125 \$170 \$130

								J	anuai	ry 201	7 Ang	jus Aı	ıstrali	a BRI	EDPI	_AN									
	C	Calvin	g Eas	е	0	Growt	h& Ma	iterna	ı	Fert	ility	CWT		400 H	G Ca	rcase		Inta	ake			St	ructui	re	
	Dir	Dtrs	GL	B Wt	200	400	600	M Wt	Milk	SS	DC	750d	EMA	Rib	Rump	RBY%	IMF%	NFIP	NFIF	DOC	FC	FA	RA	RH	RS
EBV	+1.9	+3.4	-8.9	+3.4	+46	+87	+108	+93	+18	+3.2	-8.7	+54	+4.1	+1.5	+1.7	-1.0	+3.9	+0.45	+0.64	+29	-7.7	-28.3	-26.0	-1.2	+0.5
Acc	63%	53%	86%	77%	73%	75%	75%	73%	62%	79%	45%	67%	65%	67%	67%	58%	62%	51%	52%	59%	58%	58%	52%	50%	51%

Traits Observed: GL CE BWT 200WT 400WT SS FAT EMA IMF DOC Genomics, Structral Scores: FC 6, FA 6, RA 6, RH 6, RS 6

Balanced and well suited for use over heifers. L1032 is the first calf out of a two year old heifer. He has a small amount of white in the groin area.

Lot 87

Society Id: VTML1053 Calving Ease Growth Fertility Marbling Angus Breeding Heavy Grass Heavy Grain

G A R SOLUTION TE MANIA ULONG U41 (AI) (ET) TE MANIA JEDDA Y32 (AI) (ET) \$INDEX TE MANIA AFRICA A217 (AI) LAWSONS INVINCIBLE C402(AL)

Sire: TE MANIA GARTH G67 (AI) Dam: TE MANIA BEEAC G21 (AI) TE MANIA MITTAGONG E28 (AI)

TE MANIA BEEAC E988 \$140 \$120 \$162 \$129

TE MANIA EARNINGS E38 (AI) TF MANIA WARGOONA D235 (AI) (ET)

						*** **** * **** * * *	17100110 000	0 (1011)								MD CENT DELD	10 2000 (11)	(=-)		•					
								J	lanua	ry 201	7 Ang	jus Aı	ıstrali	a BRI	EEDPI	LAN									
	Calving Ease Growth& Maternal										tility	CWT		400 k	(G Ca	rcase		Inta	ake			St	tructu	re	
THE STATE OF THE S	Dir	Dtrs	GL	B Wt	200	400	600	M Wt	Milk	SS	DC	750d	EMA	Rib	Rump	RBY%	IMF%	NFIP	NFIF	DOC	FC	FA	RA	RH	RS
EBV	+3.8	+3.3	-9.6	+1.9	+46	+84	+113	+101	+25	+1.8	-5.3	+59	+8.6	+1.0	+0.9	-0.4	+3.8	+0.47	+0.52	+36	+9.9	-5.1	-11.9	-0.3	+0.5
Acc	64%	53%	74%	77%	73%	75%	75%	73%	62%	78%	43%	67%	65%	67%	67%	50%	62%	50%	51%	63%	58%	58%	52%	48%	50%

Traits Observed: BWT 200WT 400WT SS FAT EMA IMF DOC Genomics, Structral Scores: FC 6, FA 6, RA 6, RH 6, RS 6

Well suited for use over heifers. L1053 is a flush brother to lot 72

I ot 88

TE MANIA YORKSHIRE Y437 (AI) TE MANIA LOWAN B860 (AI)

Structure date scored 06/12/2016

Society Id: VTML1070 Growth Marbling Angus Breeding Heavy Grass Heavy Grain

TUWHARETOA REGENT D145 (AI) (ET) Sire: TE MANIA GASKIN G555 (AI)

TE MANIA LOWAN D66 (AI)

BT RIGHT TIME 24J VERMONT WILCOOLA X55(AI)(ET) VERMONT DRAMBUIE D057(AI)(ET) Dam: TE MANIA WARGOONA J990 (AI)

\$INDEX \$118 \$100 \$136 \$110

								J	anuai	y 201	7 Ang	us Aı	ıstrali	a BRI	EDPI	_AN									
	C	alvin	g Eas	е	(Growt	h& Ma	terna	ı	Fert	ility	CWT		400 H	(G Ca	rcase		Inta	ake			St	tructu	re	
THE STATE OF	Dir	Dtrs	GL	B Wt	200	400	600	M Wt	Milk	SS	DC	750d	EMA	Rib	Rump	RBY%	IMF%	NFIP	NFIF	DOC	FC	FA	RA	RH	RS
EBV	-1.7	-4.4	-3.0	+4.7	+50	+89	+123	+103	+19	+1.4	-3.9	+79	+3.6	+0.3	+0.3	-1.4	+3.6	+0.24	+0.17	+10	-19.5	-4.2	+0.4	+1.2	+0.4
Acc	53%	48%	85%	74%	69%	70%	69%	63%	50%	73%	40%	62%	61%	61%	64%	57%	58%	48%	50%	59%	57%	57%	51%	45%	48%

TE MANIA WARGOONA G378 (AI) (TW)

Traits Observed: GL CE BWT 200WT 400WT SS FAT EMA IMF DOC, Structral Scores: FC 7, FA 6, RA 6, RH 6, RS 5

Another stylish and balanced son of Gaskin with natural thickness and body length on display. One of the fifteen sons of Gaskin offered in this catalogue. He is the first calf out of a two year old heifer.

							BRI	EED A	VERA	GE EB	VS FO	OR 20	15 B	ORN (CALV	ΞS							
(CALVIN	IG EAS	E	GF	ROWTH	⊢& MA	TERN	٩L	FERT	ILITY	CWT		C	ARCA	SE		INT	AKE			INDI	EX\$	
DIR.	DTRS	GL	Bwt	200	400	600	Mwt	MILK	SS	DC	750d	EMA	RIB	RUMP	RBY%	IMF%	NFIP	NFIF	Doc	AB	D	HG	G
0.0	+0.1	-3.7	+4.3	+42	+77	+100	+88	+15	+1.7	-3.8	+56	+4.6	0.0	-0.2	+0.3	+1.6	+0.09	+0.15	+5	\$106	\$103	\$110	\$105
	Anir	mals with	EBVs and	Indexes	highlighte	d with sha	iding are i	n the top	10% of th	e Angus	breed. W	ith the e	xceptio	n of fat w	hich has	no shac	ling, and	Mature W	eight wh	nich is sha	aded if the	value is	< 100.

Society Id: VTML1120 AMFU/NHFU/CAFU/DDFU

Calving Ease Growth Fertility Marbling Angus Breeding Heavy Grass Heavy Grain

S A F FOCUS OF ER TE MANIA LOWAN U275 (AI) (ET) TE MANIA YORKSHIRE Y437 (AI) Sire: TE MANIA BERKLEY B1 (AI)

Born: 30/08/2015

KENNYS CREEK SANDY S15 (AI) TE MANIA I OWAN V129 (AI) (ET) TE MANIA LOWAN Z53 (AI) (ET)

TE MANIA YESHIVA Y490 (AI) Dam: TE MANIA BEEAC A282 (AI)

\$143 \$124 \$165 \$129 TE MANIA UNLIMITED U3271 (AI) (ET) TE MANIA BEEAC V135 (AI)

								J	anuai	ry 201	7 Ang	jus Aı	ıstrali	a BRI	EEDPI	_AN									
	C	alvin	g Eas	е	(Growt	h& Ma	terna	I	Fert	ility	сwт		400 F	(G Ca	rcase		Inta	ake			St	tructu	re	
THE STATE OF	Dir	Dtrs	GL	B Wt	200	400	600	M Wt	Milk	SS	DC	750d	EMA	Rib	Rump	RBY%	IMF%	NFIP	NFIF	DOC	FC	FA	RA	RH	RS
EBV	+5.9	+5.8	-10.9	+0.7	+40	+81	+103	+86	+15	+3.0	-9.2	+61	+4.4	+0.8	+0.1	-0.6	+3.3	+0.21	+0.63	+11	-18.3	-0.2	-4.7	+0.7	-0.4
Acc	65%	56%	74%	78%		76%	76%	76%	69%	80%	56%		68%	70%		64%	64%	57%	56%	62%	57%	56%	51%	47%	49%

Good frame and body length with prominent and solid Te Mania breeding on both sides of this bulls pedigree. ET conceived and the dam of this bull ran through our donor program in 2013. L1120 is well suited for use over heifers.

TE MANIA BEEAC Y1004

Lot 90

Structure date scored 06/12/2016

Born: 30/08/2015 Growth Carcase Marbling Angus Breeding Heavy Grass Heavy Grain

G A R PREDESTINED THOMAS MISS LUCY 4206 THOMAS GRADE UP 6849

TE MANIA LOWAN E2 (AI)

Sire: TE MANIA HAMPER H199 (AI) TE MANIA BADMINTON B41 (AI) TE MANIA LOWAN C305 (AI) Dam: TE MANIA LOWAN J75 (AI) TE MANIA LOWAN G605 (AI)

S S OBJECTIVE T510 0T26 G A R YIELD GRADE 2015 L T 598 BANDO 9074 TE MANIA LOWAN E1 (AI)

\$INDEX \$137 \$130 \$153 \$129

								J	anua	ry 201	7 Ang	jus Aı	ıstrali	a BRI	EEDP	LAN									
	C	Calvin	g Eas	е	0	Growt	h& Ma	aterna	ı	Fert	ility	cwt		400 F	(G Ca	rcase		Inta	ake			S	tructu	re	
THE STATE OF	Dir	Dtrs	GL	B Wt	200	400	600	M Wt	Milk	SS	DC	750d	EMA	Rib	Rump	RBY%	IMF%	NFIP	NFIF	DOC	FC	FA	RA	RH	RS
EBV	+1.3	+3.1	-9.5	+4.9	+53	+94	+115	+87	+18	+1.1	-4.1	+68	+7.0	-1.4	-1.5	+1.2	+2.9	+0.15	+0.20	+19	-4.2	-6.8	-14.7	-0.2	+0.3
Acc	57%	39%	73%	76%	71%	73%	73%	71%	57%	77%	35%	62%	61%	64%	63%	54%	56%	40%	40%	53%	46%	45%	33%	27%	30%

Traits Observed: CE BWT 200WT 400WT SS FAT EMA IMF DOC Genomics, Structral Scores: FC 6, FA 6, RA 6, RH 5, RS 5

Good natural thickness and body length on display in this first calf out of a two year old heifer.

Lot 91

ociety Id: VTML1185 Calving Ease Growth Carcase Marbling Angus Breeding Heavy Grass Heavy Grain

C A FUTURE DIRECTION 5321 SCR QUEEN 2167 SCR PROMISE 4042 Sire: SYDGEN TRUST 6228

SYDGEN FOREVER LADY 4413 (ET)

BON VIEW DESIGN 1407 SAF FOREVER LADY 0182 (ET)

ARDROSSAN FOLIATOR A241 (AI) (FT) Dam: TE MANIA JEDDA G145 (AI) TE MANIA JEDDA E333 (AI) (ET)

PAPA EQUATOR 2928 ARDROSSAN PRINCESS W38 B/R MIDLAND TE MANIA JEDDA W85 (AI) (ET)

\$INDEX \$119 \$111 \$122 \$118

								J	anua	ry 201	7 Ang	jus Αι	ıstrali	a BRI	EEDP	LAN									
	C	alvin	g Eas	е	•	Growt	h& Ma	terna	ı	Fert	ility	CWT		400 k	(G Ca	rcase		Inta	ake			St	tructu	re	
	Dir	Dtrs	GL	B Wt	200	400	600	M Wt	Milk	SS	DC	750d	EMA	Rib	Rump	RBY%	IMF%	NFIP	NFIF	DOC	FC	FA	RA	RH	RS
EBV	+1.9	+3.9	-4.9	+3.4	+49	+80	+110	+93	+12	+1.0	-4.7	+70	+6.6	-1.2	-1.5	+0.8	+1.6	+0.07	-0.06	+5	-1.9	+0.2	+1.5	+1.2	+0.4
Acc	59%	53%	66%	75%	71%	71%	70%	68%	60%	73%	46%	64%	64%	65%	65%	62%	60%	53%	54%	63%	57%	57%	50%	43%	46%
						Traite (Oheonio	4. DIVIT (DOUNT A	UU/VIT C	CEATE	DAA INAE	DOC S	truotral C	Corner E	C 6 EA	S DAG	DH 5 DG	2.6						

Traits Observed: BWT 200WT 400WT SS FAT EMA IMF DOC, Structral Scores: FC 6, FA 6, RA 6, RH 5, RS 6

Good natural thickness and body length shown by this ET conceived bull. The dam of this bull ran through our donor program in 2014. He is well suited for use over heifers.

Lot 92 Born: 03/09/2015

Structure date scored 06/12/2016

Calving Ease Growth Marbling Angus Breeding Heavy Grass Heavy Grain

G A R PREDESTINED Sire: WERNER WESTWARD 357

BEF EVEREL DA ENTENSE 4015

TE MANIA AFRICA A217 (AI) Dam: TE MANIA JEDDA G76 (AI) TE MANIA JEDDA F46 (AI)

\$INDEX \$122 \$110 \$135 \$117

									J	anua	ry 201	7 Ang	jus Αι	ıstrali	a BRI	EEDP	LAN									
	2	С	alvin	g Eas	е	0	Growt	h& Ma	aterna	ı	Fert	ility	CWT		400 F	(G Ca	rcase		Inta	ake			St	ructu	re	
THE SHEET		Dir	Dtrs	GL	B Wt	200	400	600	M Wt	Milk	SS	DC	750d	EMA	Rib	Rump	RBY%	IMF%	NFIP	NFIF	DOC	FC	FA	RA	RH	RS
EBV	<i>1</i>	+0.8	+2.7	-3.9	+3.9	+42	+77	+107	+74	+23	+0.4	-3.3	+49	+5.9	-0.2	-0.2	+0.2	+3.0	+0.11	+0.11	-8	+12.3	+15.9	+7.5	-1.7	+0.5
Acc		57%	52%	67%	76%	71%	72%	70%	66%	59%	74%	44%	63%	63%	63%	64%	60%	59%	51%	53%	65%	58%	60%	51%	45%	48%

Traits Observed: BWT 200WT 400WT SS FAT EMA IMF DOC, Structral Scores: FC 6, FA 6, RA 6, RH 6, RS 5

Stylish and balanced. Flush brother to lot 101. The dam of this bull has been a prolific donor cow having run through the donor mob in 2014 and 2016 and has contributed 42 progeny

	BREED AVERAGE EBVS FOR 2015 BORN CALVES																						
C	ALVIN	G EAS	E	GI	ROWTH	H & MA	TERN	٩L	FERT	ILITY	CWT		C	ARCA	SE		INT	AKE			IND	EX\$	
DIR.	DTRS	GL	Bwt	200	400	600	Mwt	MILK	SS	DC	750d	EMA	RIB	RUMP	RBY%	IMF%	NFIP	NFIF	Doc	AB	D	HG	G
0.0	+0.1	-3.7	+4.3	+42	+77	+100	+88	+15	+1.7	-3.8	+56	+4.6	0.0	-0.2	+0.3	+1.6	+0.09	+0.15	+5	\$106	\$103	\$110	\$105
	Anim	als with	EBVs and	Indexes	highlighte	d with sha	ading are i	n the top	10% of the	e Angus l	breed. W	ith the e	xceptio	n of fat w	hich has	no shad	ding, and	Mature W	eight wh	nich is sha	ded if the	value is	< 100.

Society Id: VTML1223

TE MANIA CANTON C138 (AI) (ET) TE MANIA MITTAGONG C900 (ACR)

AMFU/NHFU/CAFU/DDFU Structure date scored 06/12/2016

Calving Ease Growth Fertility Marbling Angus Breeding Heavy Grass Heavy Grain

TE MANIA AFRICA A217 (AI) Sire: TE MANIA GARTH G67 (AI)

TE MANIA MITTAGONG E28 (AI)

Born: 04/09/2015

Born: 04/09/2015

TE MANIA AMBASSADOR A134 (AI) LAWSONS HENRY VIII Y5 (AI) TUWHARETOA REGENT D145 (AI) (ET) Dam: TE MANIA LOWAN G694 (AI) TE MANIA LOWAN A626 (AI) (ET) B/R NEW DIMENSION 7127 TE MANIA LOWAN V130 (AI) (ET)

\$INDEX \$147 \$127 \$171 \$133

								J	anuai	ry 201	7 Ang	jus Aı	ustrali	a BRI	EEDPI	LAN									
	(Calvin	g Eas	е	(Growt	h& Ma	terna	ı	Fert	ility	CWT		400 k	(G Ca	rcase		Int	ake			St	ructu	re	
	Dir	Dtrs	GL	B Wt	200	400	600	M Wt	Milk	SS	DC	750d	EMA	Rib	Rump	RBY%	IMF%	NFIP	NFIF	DOC	FC	FA	RA	RH	RS
EBV	+1.7	+1.3	-6.1	+2.2	+41	+82	+103	+58	+31	+2.3	-6.8	+59	+10.3	+1.9	+1.2	-0.2	+4.2	+0.52	+0.79	+25	+4.2	-12.4	-9.9	+0.5	+0.5
Acc	65%	55%	74%	78%	74%	76%	75%	73%	63%	79%	45%	68%	66%	68%	68%	60%	64%	52%	54%	65%	58%	60%	54%	51%	52%
Acc	65%	55%	74%	78%	,.								66% Genomi								58%	60%	54%	51%	_

Garth and Regent bloodlines have combined well in this son that presents with good natural thickness and body length. The dam of this bull ran through our donor program in 2014. He is a flush brother to lot 83. The dam of this bull is also the dam of the sire Te Mania Jerome VTMJ131 who has many sons in this catalogue. Small amount of white in the groin area

TE MANIA LODGER L1225 (**Lot 94**

Structure date scored 06/12/2016

Growth Fertility Marbling Angus Breeding Heavy Grass Heavy Grain

TE MANIA ULONG U41 (AI) (ET) TE MANIA JEDDA Y32 (AI) (ET) Sire: TE MANIA GARTH G67 (AI)

TUWHARETOA REGENT D145 (AI) (ET) Dam: TE MANIA MITTAGONG G705

TE MANIA AMBASSADOR A134 (AI) LAWSONS HENRY VIII Y5 (AI)

\$INDEX \$128 \$110 \$146 \$118

TEN	TE MANIA MITTAGONG E28 (AI) TE MANIA CANTON C138 (AI) (ET) TE MANIA MITTAGONG C900 (ACR) January							TE	MANIA M	ITTAGON	G Z251 (A	I) (ET)		NEW DIMEN				\$128	\$1	10	\$140	6 \$'	118		
	-						ry 201	7 Ang	jus Aı	ıstrali	a BRE	EDP	LAN												
							ı	Fert	tility	CWT		400 H	(G Ca	rcase		Inta	ake			S	tructu	re			
THE STATE OF	Dir	Dtrs	GL	B Wt	200	400	600	M Wt	Milk	SS	DC	750d	EMA	Rib	Rump	RBY%	IMF%	NFIP	NFIF	DOC	FC	FA	RA	RH	RS
EBV	-1.8	-0.8	-4.7	+4.7	+46	+81	+109	+83	+21	+2.4	-6.4	+60	+7.2	+0.7	+0.1	0.0	+3.3	+0.37	+0.39	+27	-4.4	-14.3	-6.7	+0.6	+0.5
Acc	58%	53%	64%	76%	72%	73%	71%	66%	54%	75%	46%	65%	64%	64%	66%	60%	62%	53%	56%	65%	60%	62%	54%	50%	52%

Traits Observed: BWT 200WT 400WT SS FAT EMA IMF DOC, Structral Scores: FC 6, FA 6, RA 6, RH 6, RS 5

Balanced with good body length and a good set of numbers. The dam of this ran through our donor program in 2014 and she has contributed 25 progeny to our herd. L1225 is a flush brother to lot 97.

Lot 95 Born: 07/09/2015 Society Id: VTML1285

Calving Ease Growth Carcase Marbling Angus Breeding Heavy Grass Heavy Grain

C R A BEXTOR 872 5205 608 TC BLACKBIRD 4034 TE MANIA CANTON C138 (AI) (ET) TE MANIA BARWON C308 (AI) \$INDEX TC ARERDEEN 759 TE MANIA FARNINGS F38 (AI)

Sire: RENNYLEA H7 (AI) (ET) Dam: TE MANIA LOWAN G1018 LAWSONS NEW DESIGN 1407 Z1393(AI) TE MANIA YORKSHIRE Y437 (AI) TE MANIA LOWAN Y1034 (AI) (ET \$126 \$118 \$127 \$124 TE MANIA LOWAN D1208 (AI) (ET) LAWSONS FUTURE DIRECTION W75(AI)

								J	anuai	ry 201	/ Ang	us At	ıstran	a DK	ואטם:	_AN									
	O	alving	g Eas	е	•	Growt	h& Ma	aterna	ı	Fert	ility	CWT		400 K	(G Ca	rcase		Inta	ake			St	tructui	re	
	Dir	Dtrs	GL	B Wt	200	400	600	M Wt	Milk	SS	DC	750d	EMA	Rib	Rump	RBY%	IMF%	NFIP	NFIF	DOC	FC	FA	RA	RH	RS
EBV	+2.3	+3.5	-6.4	+2.5	+43	+82	+106	+73	+22	+0.8	-5.7	+59	+8.6	+1.0	+0.4	+0.6	+1.6	+0.23	+0.20	+3	+6.3	+1.8	-11.2	-1.8	+0.5
Acc	49%	43%	85%	74%	69%	70%	68%	63%	51%	73%	38%	59%	60%	61%	62%	56%	56%	45%	45%	59%	49%	49%	37%	31%	34%
					T	raits Obs	erved: G	L CE BV	VT 200W	/T 400W	T SS FA	T EMA I	MF DOC	, Structr	al Score:	s: FC 6, I	-A 6, RA	5, RH 5	, RS 5						

L1285 is well balanced across the board and ideal for use over heifers. He has a small amount of white in the groin area.

Lot 96 Born: 07/09/2015 Structure date scored 06/12/2016

Growth Fertility Marbling Angus Breeding Heavy Grass Heavy Grain

\$INDEX TE MANIA AFRICA A217 (AI) TE MANIA DECLARER D285 (AI)

Sire: TE MANIA GARTH G67 (AI) Dam: TE MANIA MITTAGONG G345 (AI) (ET) \$133 \$117 \$153 \$123 TE MANIA MITTAGONG E28 (AI) TE MANIA MITTAGONG A398 (AI) TE MANIA XPO X84 (AI) (ET) TE MANIA MITTAGONG V164 (AI) (ET)

								J	anua	ry 201	7 Ang	jus Αι	ıstrali	a BRE	EDPI	LAN									
	C	Calvin	g Eas	е	0	Growt	h& Ma	iterna	I	Fert	ility	CWT		400 K	(G Ca	rcase		Inta	ake			St	ructu	re	
NO.	Dir	Dtrs	GL	B Wt	200	400	600	M Wt	Milk	SS	DC	750d	EMA	Rib	Rump	RBY%	IMF%	NFIP	NFIF	DOC	FC	FA	RA	RH	RS
EBV	-1.2	+2.4	-5.9	+4.8	+51	+92	+118	+92	+23	+3.1	-6.1	+62	+3.9	+0.6	+1.1	-0.8	+3.6	+0.41	+0.33	+30	-3.4	-14.8	-14.8	0.0	+0.5
Acc	57%	51%	64%	76%	72%	72%	70%	65%	54%	74%	43%	64%	63%	63%	65%	59%	61%	50%	52%	65%	62%	63%	56%	51%	52%

Traits Observed: BWT 200WT 400WT SS FAT EMA IMF DOC, Structral Scores: FC 6, FA 6, RA 6, RH 6, RS 6

Solid Te Mania blood on both sides of this ET conceived bulls pedigree. Stylish and balanced with good body length. His dam is from our Mittagong cow family line, one of our more prominent lines. She ran through our donor program in 2014.

							BRI	EED A	VERA	GE EB	VS FC	OR 20	15 B	ORN (CALVE	ES							
C	ALVIN	IG EAS	SE	GF	ROWTI	H & MA	TERNA	AL	FERT	ILITY	CWT		C	ARCA	SE		INT	AKE			IND	EX\$	
DIR.	DTRS	GL	Bwt	200	400	600	Mwt	MILK	SS	DC	750d	EMA	RIB	RUMP	RBY%	IMF%	NFIP	NFIF	Doc	AB	D	HG	G
0.0	+0.1	-3.7	+4.3	+42	+77	+100	+88	+15	+1.7	-3.8	+56	+4.6	0.0	-0.2	+0.3	+1.6	+0.09	+0.15	+5	\$106	\$103	\$110	\$105
	Anir	mals with	EBVs and	d Indexes	highlighte	ed with sha	iding are i	n the top	10% of the	e Angus	breed. W	ith the e	xceptio	n of fat w	hich has	no shac	ling, and	Mature W	eight wh	nich is sha	ded if the	value is	< 100.

"We use Te Mania genetics because they are the most progressive performance based Angus stud in Australia. There are no 'smoke and mirrors'. Performance is backed by hard data, collected via Team Te Mania herds and feedlot feedback. This gives producers confidence when selecting Te Mania sires to use in their herds. I've invested a lot of money in Te Mania genetics during the last seven years and have been more than happy with the results".

Duncan Clowes, Valdemar NSW

Over the last two years, 14,740 progeny by Te Mania Angus sires have been recorded on Angus Breedplan. The analysis of this data fine tunes early genetic predictions of sires and improves the accuracy of all the sires within the breeding herd.

Society Id: VTML1292 AMFU/NHFU/CAFU/DDFU

Growth Fertility Marbling Angus Breeding Heavy Grass Heavy Grain TUWHARETOA REGENT D145 (AI) (ET)

TE MANIA AFRICA A217 (AI) Sire: TE MANIA GARTH G67 (AI)

Born: 07/09/2015

Lot 100

Dam: TE MANIA MITTAGONG G705 TE MANIA MITTAGONG E28 (AI) TE MANIA MITTAGONG Z251 (AI) (ET)

B/R NEW DIMENSION 7127 TE MANIA MITTAGONG V254 (AI) (ET)

TE MANIA AMBASSADOR A134 (AI) LAWSONS HENRY VIII Y5 (AI) \$INDEX \$130 \$111 \$150 \$119

06/12/2016

							J	anua	ry 201	7 Ang	jus Αι	ıstrali	a BRE	EEDPI	_AN									
C	alvin	g Eas	е	(Growt	h& Ma	aterna	ı	Fert	ility	сwт		400 H	(G Ca	rcase		Inta	ake			St	ructu	re	
Dir	Dtrs	GL	B Wt	200	400	600	M Wt	Milk	SS	DC	750d	EMA	Rib	Rump	RBY%	IMF%	NFIP	NFIF	DOC	FC	FA	RA	RH	RS
-1.6	-0.7	-4.9	+4.8	+47	+84	+112	+86	+21	+2.7	-6.8	+61	+5.3	+0.7	+0.3	-0.4	+3.5	+0.37	+0.33	+16	-4.4	-14.3	-6.7	+0.6	+0.5
58%	53%	64%	76%	72%	73%	71%	66%	54%	75%	46%	65%	64%	64%	66%	60%	62%	53%	56%	65%	60%	62%	54%	50%	52%
	Dir -1.6	Dir Dtrs -1.6 -0.7	Dir Dtrs GL -1.6 -0.7 -4.9	-1.6 -0.7 -4.9 +4.8	Dir Dtrs GL B Wt 200 -1.6 -0.7 -4.9 +4.8 +47	Dir Dtrs GL BWt 200 400 -1.6 -0.7 -4.9 +4.8 +47 +84 58% 53% 64% 76% 72% 73%	Dir Dtrs GL BWt 200 400 600 -1.6 -0.7 -4.9 +4.8 +47 +84 +112 58% 53% 64% 76% 72% 73% 71%	Calving Ease Growth& Materna Dir Dtrs GL B Wt 200 400 600 M Wt -1.6 -0.7 -4.9 +4.8 +47 +84 +112 +86 58% 53% 64% 76% 72% 73% 71% 66%	Calving Ease Growth& Maternal Dir Dtrs GL B Wt 200 400 600 M Wt Milk -1.6 -0.7 -4.9 +4.8 +47 +84 +112 +86 +21 58% 53% 64% 76% 72% 73% 71% 66% 54%	Calving Ease Growth& Maternal Fert Dir Dtrs GL B Wt 200 400 600 M Wt Milk SS -1.6 -0.7 -4.9 +4.8 +47 +84 +112 +86 +21 +2.7 58% 53% 64% 76% 72% 73% 71% 66% 54% 75%	Calving Ease Growth& Maternal Fertility Dir Dtrs GL B Wt 200 400 600 M Wt Milk SS DC -1.6 -0.7 -4.9 +4.8 +47 +84 +112 +86 +21 +2.7 -6.8 58% 53% 64% 76% 72% 73% 71% 66% 54% 75% 46%	Calving Ease Growth& Maternal Fertility CWT Dir Dtrs GL BWt 200 400 600 MWt Milk SS DC 750d -1.6 -0.7 -4.9 +4.8 +47 +84 +112 +86 +21 +2.7 -6.8 +61	Calving Ease Growth& Maternal Fertility CWT Dir Dtrs GL B Wt 200 400 600 M Wt Milk SS DC 750d EMA -1.6 -0.7 -4.9 +4.8 +47 +84 +112 +86 +21 +2.7 -6.8 +61 +5.3	Calving Ease Growth& Maternal Fertility CWT 400 M Dir Dtrs GL B Wt 200 400 600 M Wt Milk SS DC 750d EMA Rib -1.6 -0.7 -4.9 +4.8 +47 +84 +112 +86 +21 +2.7 -6.8 +61 +5.3 +0.7	Calving Ease Growth& Maternal Fertility CWT 400 KG Calving Dir Dtrs GL B Wt 200 400 600 M Wt Milk SS DC 750d EMA Rib Rump -1.6 -0.7 -4.9 +4.8 +47 +84 +112 +86 +21 +2.7 -6.8 +61 +5.3 +0.7 +0.3	Dir Dtrs GL BWt 200 400 600 MWt Milk SS DC 7500 EMA Rib Rump RBY% -1.6 -0.7 -4.9 +4.8 +47 +84 +112 +86 +21 +2.7 -6.8 +61 +5.3 +0.7 +0.3 -0.4	Calving Ease Growth& Maternal Fertility CWT 400 KG Carcase Dir Dtrs GL B Wt 200 400 600 M Wt Milk SS DC 750d EMA Rib Rump RBY% IMF% -1.6 -0.7 -4.9 +4.8 +47 +84 +112 +86 +21 +2.7 -6.8 +61 +5.3 +0.7 +0.3 -0.4 +3.5	Calving Ease Growth& Maternal Fertility CWT 400 KG Carcase Intraction Dir Dtrs GL B Wt 200 400 600 M Wt Milk SS DC 750d EMA Rib Rump RBY% IMF% NFIP -1.6 -0.7 -4.9 +4.8 +47 +84 +112 +86 +21 +2.7 -6.8 +61 +5.3 +0.7 +0.3 -0.4 +3.5 +0.37	Calving Ease Growth& Maternal Fertility CWT 400 KG Carcase Intake Dir Dtrs GL B Wt 200 400 600 M Wt Milk SS DC 750d EMA Rib Rump RBY IMF% NFIP NFIF -1.6 -0.7 -4.9 +4.8 +47 +84 +112 +86 +21 +2.7 -6.8 +61 +5.3 +0.7 +0.3 -0.4 +3.5 +0.37 +0.33	Calving Ease Growth& Maternal Fertility CWT 400 KG Carcase Intake Dir Dtrs GL B Wt 200 400 600 M Wt Milk SS DC 750d EMA Rib Rump RBY% IMF% NFIP NFIF DOC -1.6 -0.7 -4.9 +4.8 +47 +84 +112 +86 +2.1 +2.7 -6.8 +61 +5.3 +0.7 +0.3 -0.4 +3.5 +0.37 +0.37 +0.37 +0.3 +0.4 +3.5 +0.37 +0.3 +0.8 +0.37 +0.3 +0.8 +0.37 +0.3 +0.8 +0.37 +0.3 +0.8 +0.37 +0.3 +0.8 +0.37 +0.3 +0.8 +0.37 +0.3 +0.8 +0.37 +0.3 +0.8 +0.37 +0.3 +0.8 +0.37 +0.3 +0.8 +0.37 +0.8 +0.37 +0.8 +0.37 +0.3 +0.8 <td>Calving Ease Growth& Maternal Fertility CWT 400 KG Carcase Intake Intake Log Dir Dtrs GL B Wt 200 400 600 M Wt Milk SS DC 750d EMA Rib Rump RBY% IMF% NFIF DOC FC -1.6 -0.7 -4.9 +4.8 +47 +84 +112 +86 +21 +2.7 -6.8 +61 +5.3 +0.7 +0.3 -0.4 +3.5 +0.37 +0.33 +16 -4.4 58% 53% 64% 76% 73% 71% 66% 54% 75% 46% 65% 66% 66% 60% 62% 53% 56% 65% 60%</td> <td>Calving Ease Growth& Maternal Fertility CWT 400 KG Carcase Intake St Dir Dtrs GL B Wt 200 400 600 M Wt Milk SS DC 750d EMA Rib Rump RBY% IMF% NFIP NFIF DOC FC FA -1.6 -0.7 -4.9 +4.8 +47 +84 +112 +86 +21 +2.7 -6.8 +61 +5.3 +0.7 +0.3 -0.4 +3.5 +0.37 +0.33 +16 -4.4 -14.3</td> <td>Calving Ease* Growth& Maternal Fertility CWT 400 KG Carcase Intake Structure Dir Dtrs GL B Wt 200 400 600 M Wt Milk SS DC 750d EMA Rib Rump RBY% IMF% NFIP NFIF DOC FC FA RA -1.6 -0.7 -4.9 +4.8 +47 +84 +112 +86 +21 +2.7 -6.8 +61 +5.3 +0.7 +0.3 -0.4 +3.5 +0.37 +0.33 +16 -4.4 -14.3 -6.7 58% 53% 64% 76% 72% 73% 71% 66% 54% 75% 46% 65% 64% 66% <td< td=""><td>Calving Ease* Growth& Maternal Fertility CWT 400 KG Carcase Intake Intake Structure Dir Dirs GL B Wt 200 400 600 M Wt Milk SS DC 750d EMA Rib Rump RBY% IMF% NFIP NFIF DOC FC FA RA RH -1.6 -0.7 -4.9 +4.8 +47 +84 +112 +86 +21 +2.7 -6.8 +61 +5.3 +0.7 +0.3 -0.4 +3.5 +0.37 +0.37 +0.3 +0.7 +0.6 53% 56% 65% 60% 56% 65% 54% 50%</td></td<></td>	Calving Ease Growth& Maternal Fertility CWT 400 KG Carcase Intake Intake Log Dir Dtrs GL B Wt 200 400 600 M Wt Milk SS DC 750d EMA Rib Rump RBY% IMF% NFIF DOC FC -1.6 -0.7 -4.9 +4.8 +47 +84 +112 +86 +21 +2.7 -6.8 +61 +5.3 +0.7 +0.3 -0.4 +3.5 +0.37 +0.33 +16 -4.4 58% 53% 64% 76% 73% 71% 66% 54% 75% 46% 65% 66% 66% 60% 62% 53% 56% 65% 60%	Calving Ease Growth& Maternal Fertility CWT 400 KG Carcase Intake St Dir Dtrs GL B Wt 200 400 600 M Wt Milk SS DC 750d EMA Rib Rump RBY% IMF% NFIP NFIF DOC FC FA -1.6 -0.7 -4.9 +4.8 +47 +84 +112 +86 +21 +2.7 -6.8 +61 +5.3 +0.7 +0.3 -0.4 +3.5 +0.37 +0.33 +16 -4.4 -14.3	Calving Ease* Growth& Maternal Fertility CWT 400 KG Carcase Intake Structure Dir Dtrs GL B Wt 200 400 600 M Wt Milk SS DC 750d EMA Rib Rump RBY% IMF% NFIP NFIF DOC FC FA RA -1.6 -0.7 -4.9 +4.8 +47 +84 +112 +86 +21 +2.7 -6.8 +61 +5.3 +0.7 +0.3 -0.4 +3.5 +0.37 +0.33 +16 -4.4 -14.3 -6.7 58% 53% 64% 76% 72% 73% 71% 66% 54% 75% 46% 65% 64% 66% <td< td=""><td>Calving Ease* Growth& Maternal Fertility CWT 400 KG Carcase Intake Intake Structure Dir Dirs GL B Wt 200 400 600 M Wt Milk SS DC 750d EMA Rib Rump RBY% IMF% NFIP NFIF DOC FC FA RA RH -1.6 -0.7 -4.9 +4.8 +47 +84 +112 +86 +21 +2.7 -6.8 +61 +5.3 +0.7 +0.3 -0.4 +3.5 +0.37 +0.37 +0.3 +0.7 +0.6 53% 56% 65% 60% 56% 65% 54% 50%</td></td<>	Calving Ease* Growth& Maternal Fertility CWT 400 KG Carcase Intake Intake Structure Dir Dirs GL B Wt 200 400 600 M Wt Milk SS DC 750d EMA Rib Rump RBY% IMF% NFIP NFIF DOC FC FA RA RH -1.6 -0.7 -4.9 +4.8 +47 +84 +112 +86 +21 +2.7 -6.8 +61 +5.3 +0.7 +0.3 -0.4 +3.5 +0.37 +0.37 +0.3 +0.7 +0.6 53% 56% 65% 60% 56% 65% 54% 50%

L1292 presents very well with good body length. The dam of this bull ran through our donor program in 2014. He is a flush brother to lot 94. There is some white in the groin area.

Lot 98 OOMBA Society Id: VTML1317 Calving Ease Growth Fertility Carcase Marbling Angus Breeding Heavy Grass Heavy Grain G A R SOLUTION LAWSONS PREDESTINED A598(AI) TE MANIA BADMINTON B41 (AI) TE MANIA WARGOONA Y408 (AI) \$INDEX TE MANIA DEFLATION D367 (AI) Sire: TE MANIA GALAXY G49 (AI) Dam: TE MANIA BARUNAH G358 (AI) (ET) \$141 \$125 \$164 \$128 TE MANIA LOWAN E428 (AI) (ET) TE MANIA BARUNAH A96 (AI) (ET) TE MANIA ULONG U41 (AI) (ET TE MANIA BARUNAH X101 (AI)

								J	anua	ry 201	7 Ang	us Aı	ıstrali	a BRI	EEDP	LAN									
	C	alvin	g Eas	е	0	Growt	h& Ma	iterna	I	Fert	ility	CWT		400 F	(G Ca	rcase		Inta	ake			St	ructu	re	
	Dir	Dtrs	GL	B Wt	200	400	600	M Wt	Milk	SS	DC	750d	EMA	Rib	Rump	RBY%	IMF%	NFIP	NFIF	DOC	FC	FA	RA	RH	RS
EBV	+3.2	+1.8	-4.4	+3.5	+50	+84	+108	+84	+13	+3.7	-5.8	+57	+6.1	-1.7	-0.5	+0.3	+3.8	+0.29	+0.33	+5	+11.0	+0.9	-7.8	-1.7	+0.5
Acc	61%	48%	71%	77%		75%	75%	73%	62%	78%	40%	67%	65%	67%	67%	58%	61%	47%	47%	63%	57%	58%	50%	42%	45%

served: BWT 200WT 400WT SS FAT EMA IMF DOC Genomics. Structral Scores: FC 6. FA 6. RA 6. RH 5. RS 5

This is an ET conceived bull whose dam ran through our donor program in 2014 and 2016. He is well suited for use over heifers and a good outcross option to go over Berkley and Regent bloodlines

Lot 99 Structure date scored 06/12/2016

Calving Ease Fertility Marbling Angus Breeding Heavy Grass Heavy Grain

VERMILLION YELLOWSTONE TE MANIA BEEAC U343 (AI) (ET) \$INDEX TE MANIA AFRICA A217 (AI) TE MANIA ANMOL A888 (AI) (ET)

HG G Dam: TE MANIA LOWAN G3 (AI) Sire: TE MANIA GARTH G67 (AI) TE MANIA MITTAGONG E28 (AI) TE MANIA LOWAN E478 (AI) TE MANIA BADMINTON B41 (AI) TE MANIA LOWAN C396 (AI) \$138 \$121 \$158 \$127

January 2017 Angus Australia BREEDPLAN **Calving Ease** Fertility CWT 400 KG Carcase Intake **Growth& Maternal** Structure Dtrs GL B Wt 200 400 600 M Wt Milk SS DC 750d EMA Rib Rump RBY% IMF% NFIP NFIF DOC FC FA RA RS +3.4 +3.8 -9.4 +2.3 +43 +75 +98 +58 +23 | +3.1 -7.3 | +42 +4.0 +0.9 +1.2 -0.2 +3.8 +0.32 +0.53 +36 +5.0 -12.6 -14.0 +0.6 -1.7 76% 73% 67% | 65% 59% 63% 51% 74% 77% 74% 75% 62% 79% 42% 67% 67% 62% | 49% 50% | 63% | 57% 58% 51% 48%

ved: BWT 200WT 400WT SS FAT EMA IMF DOC Genomics, Structral Scores: FC 6, FA 6, RA 6, RH 5, RS 4

Stylish, balanced and ET conceived. The dam of this bull is from our most prominent cow family line, the Lowan family. She ran through our donor mob in 2014 and has

contributed 17 progeny to our herd. Well suited for use over heifers.

Born: 15/09/2015 Society Id: VTML1415

Calving Ease Growth Fertility Carcase Marbling Angus Breeding Heavy Grass Heavy Grain

\$INDEX RITO 7065 OF RITA 5M46 OBJ G A R TWINHEARTS 8418 Sire: TE MANIA JENKINS J89 (AI)

Dam: TE MANIA JEDDA H554 (AI) \$130 \$139 \$125 \$156 TE MANIA JAPARA G115 (AI) TE MANIA JEDDA B762 (AI)

								J	anuai	ry 201	7 Ang	jus Αι	ıstrali	a BRE	EDPI	LAN									
	C	Calvin	g Eas	е	·	Growt	h& Ma	aterna	ı	Fert	ility	CWT		400 H	(G Ca	rcase		Inta	ake			St	ructu	re	
THE STATE OF	Dir	Dtrs	GL	B Wt	200	400	600	M Wt	Milk	SS	DC	750d	EMA	Rib	Rump	RBY%	IMF%	NFIP	NFIF	DOC	FC	FA	RA	RH	RS
EBV	+2.5	+1.7	-4.9	+2.8	+49	+94	+122	+102	+23	+2.4	-5.2	+66	+5.4	-1.6	-1.2	+0.8	+2.7	+0.19	+0.13	+11	+4.5	-2.2	-0.2	+1.5	+0.4
Acc	45%	35%	67%	74%	69%	69%	66%	62%	46%	72%	34%	57%	59%	60%	61%	55%	53%	41%	40%	57%	52%	52%	42%	37%	39%
						Traits Ol	bserved:	CE BWT	200WT	400WT	SS FAT	EMA IM	F DOC,	Structral	Scores:	FC 6, FA	4 6, RA 6	3, RH 5, I	RS 5						

Balanced and one of the few naturally conceived sons in the sale. He is well suited for use over heifers.

							BRI	ED A	VERA	GE EB	VS FC	OR 20	15 B	ORN (CALV	ES							
С	ALVIN	G EAS	Ē	GF	ROWTH	H & MA	TERN	٩L	FERT	ILITY	CWT		C	ARCA	SE		INT	AKE			IND	EX\$	
DIR.	DTRS	GL	Bwt	200	400	600	Mwt	MILK	SS	DC	750d	EMA	RIB	RUMP	RBY%	IMF%	NFIP	NFIF	Doc	AB	D	HG	G
0.0	+0.1	-3.7	+4.3	+42	+77	+100	+88	+15	+1.7	-3.8	+56	+4.6	0.0	-0.2	+0.3	+1.6	+0.09	+0.15	+5	\$106	\$103	\$110	\$105
	Anim	als with I	EBVs and	Indexes	highlighte	d with sha	ding are i	n the top	10% of th	e Angus I	breed. W	ith the e	xceptio	n of fat w	hich has	no shac	ling, and	Mature W	eight wh	nich is sha	ded if the	value is	< 100.

Born: 15/09/2015

Society Id: VTML1418

Growth Carcase Marbling Angus Breeding Heavy Grass Heavy Grain

G A R PREDESTINED TE MANIA AFRICA A217 (AI)

Sire: WERNER WESTWARD 357 Dam: TE MANIA JEDDA G76 (AI) \$124 \$110 \$136 \$119 TE MANIA JEDDA E46 (AI) BFF EVERELDA ENTENSE 4015 C A FUTURE DIRECTION 5321 THREE TREES EVERELDA C2

\$INDEX

							J	anuai	ry 201	7 Ang	us Aı	ıstrali	a BRE	EDPI	_AN									
С	alving	g Eas	е	(Growt	h& Ma	aterna	I	Fert	ility	CWT		400 H	G Ca	rcase		Inta	ake			St	ructu	re	
Dir	Dtrs	GL	B Wt	200	400	600	M Wt	Milk	SS	DC	750d	EMA	Rib	Rump	RBY%	IMF%	NFIP	NFIF	DOC	FC	FA	RA	RH	RS
+0.5	+2.6	-3.8	+4.3	+43	+78	+110	+78	+22	+0.5	-3.4	+51	+6.2	-0.2	-0.2	+0.4	+2.8	+0.09	+0.06	-8	+12.3	+15.9	+7.5	-1.7	+0.5
57%	52%	67%	76%	71%	72%	70%	66%	59%	74%	44%	63%	63%	63%	64%	60%				65%	58%	60%	51%	45%	48%
	Dir +0.5	Dir Dtrs +0.5 +2.6	Dir Dtrs GL +0.5 +2.6 -3.8	+0.5 +2.6 -3.8 +4.3	Dir Dtrs GL B Wt 200 +0.5 +2.6 -3.8 +4.3 +43	Dir Dtrs GL B Wt 200 400 +0.5 +2.6 -3.8 +4.3 +43 +78 57% 52% 67% 76% 71% 72%	Dir Dtrs GL B Wt 200 400 600 +0.5 +2.6 -3.8 +4.3 +43 +78 +110 57% 52% 67% 76% 71% 72% 70%	Calving Ease Growth& Maternal Dir Dtrs GL B Wt 200 400 600 M Wt +0.5 +2.6 -3.8 +4.3 +43 +78 +110 +78 57% 52% 67% 76% 71% 72% 70% 66%	Calving Ease Growth& Maternal Dir Dtrs GL B Wt 200 400 600 M Wt Milk +0.5 +2.6 -3.8 +4.3 +43 +78 +110 +78 +22 57% 52% 67% 76% 71% 72% 70% 66% 59%	Calving Ease Growth& Maternal Fert Dir Dtrs GL B Wt 200 400 600 M Wt Milk SS +0.5 +2.6 -3.8 +4.3 +43 +78 +110 +78 +22 +0.5 57% 52% 67% 76% 71% 72% 70% 66% 59% 74%	Calving Ease Growth& Maternal Fertility Dir Dtrs GL B Wt 200 400 600 M Wt Milk SS DC +0.5 +2.6 -3.8 +4.3 +43 +78 +110 +78 +22 +0.5 -3.4 57% 52% 67% 76% 71% 72% 70% 66% 59% 74% 44%	Calving Ease* Growth& Maternal Fertility CWT Dir Dtrs GL B Wt 200 400 600 M Wt Milk SS DC 750d +0.5 +2.6 -3.8 +4.3 +43 +78 +110 +78 +22 +0.5 -3.4 +51 57% 52% 67% 76% 71% 72% 70% 66% 59% 74% 44% 63%	Calving Ease Growth& Maternal Fertility CWT Dir Dtrs GL B Wt 200 400 600 M Wt Milk SS DC 750d EMA +0.5 +2.6 -3.8 +4.3 +43 +78 +110 +78 +22 +0.5 -3.4 +51 +6.2 57% 52% 67% 76% 71% 72% 70% 66% 59% 74% 44% 63% 63%	Calving Ease Growth& Maternal Fertility CWT 400 M Dir Dtrs GL B Wt 200 400 600 M Wt Milk SS DC 750d EMA Rib +0.5 +2.6 -3.8 +4.3 +43 +78 +110 +78 +22 +0.5 -3.4 +51 +6.2 -0.2 57% 52% 67% 76% 71% 72% 70% 66% 59% 74% 44% 63% 63% 63%	Calving Ease Growth& Maternal Fertility CWT 400 KG Cal Dir Dtrs GL B Wt 200 400 600 M Wt Milk SS DC 750d EMA Rib Rump +0.5 +2.6 -3.8 +4.3 +43 +78 +110 +78 +22 +0.5 -3.4 +51 +6.2 -0.2 -0.2 -0.2 57% 52% 67% 76% 71% 72% 70% 66% 59% 74% 44% 63% 63% 63% 64%	Dir Dtrs GL BWt 200 400 600 MWt Milk SS DC 750d EMA Rib Rump RBY% +0.5 +2.6 -3.8 +4.3 +43 +78 +110 +78 +22 +0.5 -3.4 +51 +6.2 -0.2 -0.2 +0.4 57% 52% 67% 76% 71% 72% 70% 66% 59% 74% 44% 63% 63% 63% 63% 64% 60%	Calving Ease Growth& Maternal Fertility CWT 400 KG Carcase Dir Dtrs GL B Wt 200 400 600 M Wt Mile SS DC 750d EMA Rib Rump RBY% IMF% +0.5 +2.6 -3.8 +4.3 +43 +78 +110 +78 +22 +0.5 -3.4 +51 +6.2 -0.2 -0.2 -0.2 +0.4 +2.8 57% 52% 67% 76% 71% 72% 70% 66% 59% 74% 44% 63% 63% 63% 64% 60% 59%	Calving Ease Growth& Maternal Fertility CWT 400 KG Carcase Intra Dir Dtrs GL B Wt 200 400 600 M Wt Milk SS DC 750d EMA Rib Rump RBY% IMF% NFIP +0.5 +2.6 -3.8 +4.3 +43 +78 +110 +78 +22 +0.5 -3.4 +51 +6.2 -0.2 -0.2 +0.4 +2.8 +0.09 57% 52% 67% 76% 71% 72% 70% 66% 59% 74% 44% 63% 63% 63% 64% 60% 59% 51%	Calving Ease* Growth& Maternal Fertility CWT 400 KG Carcase Intake Dir Dtrs GL B Wt 200 400 600 M Wt Mik SS DC 750d EMA Rib RBY IMF% NFIP NFIF +0.5 +2.6 -3.8 +4.3 +43 +78 +110 +78 +22 +0.5 -3.4 +51 +6.2 -0.2 -0.2 -0.4 +2.8 +0.09 +0.06 57% 52% 67% 76% 71% 72% 70% 66% 59% 74% 44% 63% 63% 63% 64% 60% 59% 51% 53%	Calving Ease* Growth& Maternal Fertility CWT 400 KG Carcase Intake Dir Dtrs GL B Wt 200 400 600 M Wt Milk SS DC 750d EMA Rib Rump RBY IMF% NFIP NFIF DOC +0.5 +2.6 -3.8 +4.3 +43 +78 +110 +78 +22 +0.5 -3.4 +51 +6.2 -0.2 -0.2 +0.4 +2.8 +0.09 +0.06 -8 57% 52% 67% 76% 71% 72% 70% 66% 59% 74% 44% 63% 63% 63% 64% 60% 59% 51% 53% 65%	Calving Ease* Growth& Maternal Fertility CWT 400 KG Carcase* Intake Intake Dix Dir Dtrs GL B Wt 200 400 600 M Wt Milk SS DC 750d EMA Rib Rump RBY% IMF% NFIP NFIF DOC FC +0.5 +2.6 -3.8 +4.3 +43 +78 +110 +78 +22 +0.5 -3.4 +51 +6.2 -0.2 -0.2 -0.2 +0.4 +2.8 +0.09 +0.06 -8 +12.3 57% 52% 67% 76% 71% 72% 70% 66% 59% 74% 44% 63% 63% 63% 64% 60% 59% 51% 53% 65% 58%	Calving Ease Growth& Maternal Fertility CWT 400 KG Carcase Intake St Dir Dtrs GL B Wt 200 400 600 M Wt Mile SS DC 750d EMA Rib Rump RBY% IMF% NFIF DOC FC FA +0.5 +2.6 -3.8 +4.3 +43 +78 +110 +78 +22 +0.5 -3.4 +51 +6.2 -0.2 -0.2 -0.2 +0.4 +2.8 +0.09 +0.06 -8 +12.3 +15.9 57% 52% 67% 76% 71% 72% 70% 66% 59% 74% 44% 63% 63% 63% 64% 60% 59% 51% 55% 65% 58% 60%	Calving Ease Growth& Maternal Fertility CWT 400 KG Carcase Intake Structu Dir Dtrs GL B Wt 200 400 600 M Wt Milk SS DC 750d EMA Rib Rump RBY% IMF% NFIP DOC FC FA RA +0.5 +2.6 -3.8 +4.3 +43 +78 +110 +78 +22 +0.5 -3.4 +51 +6.2 -0.2 -0.2 -0.4 +2.8 +0.09 +0.06 -8 +12.3 +15.9 +7.5	Calving Ease Structure Fertility CWT Structure Fertility CWT Structure CWT Struc

Balanced with good body length. We have sold sons from the sire of this bull to a high of \$18,000. He is ET conceived and a flush brother to lot 92. The dam of this bull ran through our donor program in 2014 and 2016 and has contributed 42 progeny to our herd.

Lot 102 TE MANIA LUST`

Born: 23/09/2015

Growth Fertility Carcase Marbling Angus Breeding Heavy Grass Heavy Grain

SS TRAVELER 6807 T510 S S MISS RITA R011 7R8 TE MANIA BADMINTON B41 (AI) TE MANIA WARGOONA Y408 (AI \$INDEX TE MANIA DEFLATION D367 (AI)

Sire: G A R TWINHEARTS 8418 Dam: TE MANIA BEEAC F913 (AI) \$138 G A R YIELD GRADE 2015 TE MANIA BEEAC Z670 (AI) **\$151 \$132 \$177** TE MANIA UL TE MANIA BE

January 2017 Angus Australia BREEDPLAN CWT Fertility Calving Ease **Growth& Maternal** 400 KG Carcase Intake Structure Rump RBY% IMF% Milk NFIP NFIF RA GL B Wt 200 400 600 M Wt SS 750d EMA Rib DOC FC FΑ RH RS Dir Dtrs DC +0.9 +2.3 -4.3 +4.6 +60 +111 +144 +134 +17 +76 +3.5 -4.7 -3.2 +0.7 +2.9 +0.06 -0.21 +4 +17.9 +13.6 -4.8 -0.1 +0.1 +2.3 -5.7 59% 45% 73% 76% 72% 74% 74% 73% 63% 78% 38% 65% 63% 66% 64% 57% 58% 44% 44%

Traits Observed: BWT 200WT 400WT SS FAT EMA IMF DOC Genomics, Structral Scores: FC 6, FA 6, RA 6, RH 5, RS 5 44% 58% 55% 56% 46% 38% 42%

Plenty of body and shape shown by L1478. He is ET conceived and one of the youngest bulls in the catalogue. His dam ran through our donor program in 2015 and as a rising seven year old cow she remains active within the stud herd. Small amount of white in the groin area.

Lot 103 Born: 26/07/2015 Society Id: VTML29

Calving Ease Growth Fertility Marbling Angus Breeding Heavy Grass Heavy Grain

TE MANIA ULONG U41 (AI) (ET) TE MANIA JEDDA Y32 (AI) (ET) S S OBJECTIVE T510 0T26 \$INDEX TE MANIA AFRICA A217 (AI) G A R TWINHEARTS 8418

G Sire: TE MANIA GARTH G67 (AI) Dam: TE MANIA BEEAC J19 (AI) TE MANIA MITTAGONG E28 (AI) TE MANIA BEEAC G860 \$147 \$132 \$163 \$137 TE MANIA CALCINE C50 (AI TE MANIA BEEAC E106 (AI)

January 2017 Angus Australia BREEDPLAN **Calving Ease** Fertility CWT 400 KG Carcase Intake **Growth& Maternal** Structure DC Dir Dtrs GL B Wt 200 400 600 M Wt Milk SS 750d EMA Rib Rump RBY% IMF% NFIP NFIF DOC FC FA RA RH RS +4.3 -10.5 +1.5 +47 +89 +110 +73 +24 +2.8 -7.4 +54 +6.9 +0.3 +1.1 +0.1 +3.1 +0.44 +0.47 +20 +3.1 -19.5 -18.3 +0.9 +0.4 70% 39% 61% 61% 53% 48% 85% 74% 69% 68% 49% 73% 60% 63% 56% 58% 47% 49% 58% 57% 51% 46% 64% 56% 48% Traits Observed: GL CE BWT 200WT 400WT SS FAT EMA IMF DOC, Structral Scores: FC 6, FA 6, RA 6, RH 6, RS 6

Balanced and well suited for use over heifers. L29 is the first calf out of a two year old heifer. He has a small amount of white in groin area.

Lot 104

Born: 27/07/2015 Society Id: VTML40 Structure date scored 05/12/2016 Calving Ease Growth Marbling Angus Breeding Heavy Grass Heavy Grain

\$INDEX

TE MANIA AFRICA A217 (AI) WERNER WESTWARD 357 Sire: TE MANIA GARTH G67 (AI) Dam: TE MANIA MITTAGONG J612 (AI) \$122 \$146 \$128 \$134 TE MANIA MITTAGONG E28 (AI) TE MANIA MITTAGONG D22 (AI) TE MANIA ULONG U41 (AI) (ET) TE MANIA MITTAGONG B799 (A

January 2017 Angus Australia BREEDPLAN **Calving Ease Growth& Maternal** Fertility CWT 400 KG Carcase Structure 6 Rump RBY% IMF% B Wt DC 750d RH RS **EBV** +2.5 +4.0 -8.4 +2.1 +22 +47 +7.1 +0.8 +0.7 +0.2 +2.9 +0.31 +0.39 +29 -5.6 -20.8 -8.0 +43 +80 +102 +62 +1.2 -5.9 -10 +0.4 o 71% 69% 65% 52% 74% 42% 63% 62% 62% 64% 58% 59% 49% 51% Traits Observed: GL CE BWT 200WT 400WT SS FAT EMA IMF DOC, Structral Scores: FC 6, FA 6, RA 6, RH 5, RS 5 56% 51% 86% 75% 70% 51% | 60% | 58% 58% 52%

Balanced and well suited for use over heifers. Another one of the 39 sons of Garth offered in this catalogue. L40 is the first calf out of a two year old heifer.

							BRE	EED A	VERA	GE EB	VS FC	DR 20	15 B	ORN (CALVI	ES							
С	ALVIN	G EAS	Ē	GF	ROWTI	AM & F	TERNA	AL	FERT	ILITY	CWT		C	ARCA	SE		INT	AKE			IND	EX\$	
DIR.	DTRS	GL	Bwt	200	400	600	Mwt	MILK	SS	DC	750d	EMA	RIB	RUMP	RBY%	IMF%	NFIP	NFIF	Doc	AB	D	HG	G
0.0	+0.1	-3.7	+4.3	+42	+77	+100	+88	+15	+1.7	-3.8	+56	+4.6	0.0	-0.2	+0.3	+1.6	+0.09	+0.15	+5	\$106	\$103	\$110	\$105
	Anim	nals with	EBVs and	Indexes	highlighte	d with sha	ding are i	n the top	10% of th	e Angus	breed. W	ith the e	xceptio	n of fat v	vhich has	no shad	ling, and	Mature W	eight wl	nich is sha	aded if the	value is	< 100.

Lot 105 Born: 28/07/2015 Society Id: VTML60 AMFU/NHFU/CAFU/DDFU

TC ABERDEEN 759

Calving Ease Growth Fertility Carcase Marbling Angus Breeding Heavy Grass Heavy Grain

TE MANIA AFRICA A217 (AI) Sire: TE MANIA GARTH G67 (AI)

Dam: TE MANIA BARUNAH J527 (AI) (ET) TE MANIA MITTAGONG E28 (AI) TE MANIA CANTON C138 (AI) (ET) TE MANIA MITTAGONG C900 (ACR) TE MANIA BARUNAH A96 (AI) (ET)

TE MANIA ULONG U41 (AI) (ET) TE MANIA BARUNAH X101 (AI) (ET)

C R A BEXTOR 872 5205 608 TC BI ACKBIRD 4034

\$139 \$125 \$153 \$132

							J	anuai	ry 201	7 Ang	jus Aı	ıstrali	a BRE	EEDPL	-AN									
Ca	alving	Eas	е	(Growt	h& Ma	terna	I	Fert	ility	CWT		400 H	(G Ca	rcase		Inta	ake			St	ructu	re	
Dir	Dtrs	GL	B Wt	200	400	600	M Wt	Milk	SS	DC	750d	EMA	Rib	Rump	RBY%	IMF%	NFIP	NFIF	DOC	FC	FA	RA	RH	RS
2.0 ·	+3.3	-7.8	+2.9	+47	+87	+113	+85	+22	+3.1	-5.3	+52	+8.0	+0.5	+0.8	+0.5	+2.8	+0.29	+0.40	+23	-2.6	-13.9	-9.6	-0.1	+0.4
7%	52%	85%	75%	70%	71%	69%	65%	53%	74%	43%	63%	63%	63%	65%	59%	60%	50%	52%	62%	58%	58%	54%	49%	51%
2.	.0	Dtrs 0 +3.3	Dtrs GL 0 +3.3 -7.8	0 +3.3 -7.8 +2.9	Dtrs GL B Wt 200 0 +3.3 -7.8 +2.9 +47 6 52% 85% 75% 70%	Dtrs GL B Wt 200 400 0 +3.3 -7.8 +2.9 +47 +87 52% 85% 75% 70% 71%	Dtrs GL B Wt 200 400 600 0 +3.3 -7.8 +2.9 +47 +87 +113 % 52% 85% 75% 70% 71% 69%	T Dtrs GL BWt 200 400 600 MWt 0 +3.3 -7.8 +2.9 +47 +87 +113 +85 52% 85% 75% 70% 71% 69% 65%	T Dtrs GL BWt 200 400 600 MWt Milk 0 +3.3 -7.8 +2.9 +47 +87 +113 +85 +22 % 52% 85% 75% 70% 71% 69% 65% 53%	T Dtrs GL BWt 200 400 600 MWt Milk SS 0 +3.3 -7.8 +2.9 +47 +87 +113 +85 +22 +3.1 % 52% 85% 75% 70% 71% 69% 65% 53% 74%	T Dtrs GL BWt 200 400 600 MWt Milk SS DC 0 +3.3 -7.8 +2.9 +47 +87 +113 +85 +22 +3.1 -5.3 % 52% 85% 75% 70% 71% 69% 65% 53% 74% 43%	T Dtrs GL BWt 200 400 600 MWt Milk SS DC 750d 0 +3.3 -7.8 +2.9 +47 +87 +113 +85 +22 +3.1 -5.3 +52 % 52% 85% 75% 70% 71% 69% 65% 53% 74% 43% 63%	T Dtrs GL BWt 200 400 600 MWt Milk SS DC 750d EMA 0 +3.3 -7.8 +2.9 +47 +87 +113 +85 +22 +3.1 -5.3 +52 +8.0 % 52% 85% 75% 70% 71% 69% 65% 53% 74% 43% 63% 63%	T Dtrs GL B Wt 200 400 600 M Wt Milk SS DC 750d EMA Rib 0 +3.3 -7.8 +2.9 +47 +87 +113 +85 +22 +3.1 -5.3 +52 +8.0 +0.5 % 52% 85% 75% 70% 71% 69% 65% 53% 74% 43% 63% 63% 63%	Dtrs GL B Wt 200 400 600 M Wt Milk SS DC 750d EMA Rib Rump 0 +3.3 -7.8 +2.9 +47 +87 +113 +85 +22 +3.1 -5.3 +52 +8.0 +0.5 +0.8 % 52% 85% 75% 70% 71% 69% 65% 53% 74% 43% 63% 63% 63% 65%	T Dtrs GL BWt 200 400 600 MWt Milk SS DC 750d EMA Rib Rump RBY% 0 +3.3 -7.8 +2.9 +47 +87 +113 +85 +22 +3.1 -5.3 +52 +8.0 +0.5 +0.8 +0.5 52% 85% 75% 70% 71% 69% 65% 53% 74% 43% 63% 63% 63% 63% 65% 59%	T Dtrs GL BWt 200 400 600 MWt Milk SS DC 750d EMA Rib Rump RBY IMF% 0 +3.3 -7.8 +2.9 +47 +87 +113 +85 +22 +3.1 -5.3 +52 +8.0 +0.5 +0.8 +0.5 +2.8 52% 85% 75% 70% 71% 69% 65% 53% 74% 43% 63% 63% 63% 65% 59% 60%	T Dtrs GL B Wt 200 400 600 M Wt Milk SS DC 750d EMA Rib Rump RBY% IMF% NFIP 0 +3.3 -7.8 +2.9 +47 +87 +113 +85 +22 +3.1 -5.3 +52 +8.0 +0.5 +0.8 +0.5 +2.8 +0.29 6 52% 85% 75% 70% 71% 69% 65% 53% 74% 43% 63% 63% 63% 65% 59% 60% 50%	T Dtrs GL BWt 200 400 600 MWt Milk SS DC 750d EMA Rib Rump RBY% IMF% NFIP NFIF 0 +3.3 -7.8 +2.9 +47 +87 +113 +85 +22 +3.1 -5.3 +52 +8.0 +0.5 +0.8 +0.5 +2.8 +0.29 +0.40 6 52% 85% 75% 70% 71% 69% 65% 53% 74% 43% 63% 63% 63% 65% 59% 60% 50% 52%	T DITS GL BWT 200 400 600 MWT MIIK SS DC 7500 EMA RIB RUMP RBY IMF% NFIP NFIF DOC 0 +3.3 -7.8 +2.9 +47 +87 +113 +85 +22 +3.1 -5.3 +52 +8.0 +0.5 +0.8 +0.5 +2.8 +0.29 +0.40 +23 52% 85% 75% 70% 71% 69% 65% 53% 74% 43% 63% 63% 63% 65% 59% 60% 50% 52% 62%	T DITS GL BWT 200 400 600 MWT MIIK SS DC 7500 EMA RID RUMP RBY IMF6 NFIP DOC FC 0 +3.3 -7.8 +2.9 +47 +87 +113 +85 +22 +3.1 -5.3 +52 +8.0 +0.5 +0.8 +0.5 +2.8 +0.29 +0.40 +23 -2.6 % 52% 85% 75% 70% 71% 69% 65% 53% 74% 43% 63% 63% 63% 65% 59% 60% 50% 52% 62% 58%	T Dtrs GL B Wt 200 400 600 M Wt Milk SS DC 750d EMA Rib Rump RBY% IMF% NFIP NFIF DOC FC FA 0 +3.3 -7.8 +2.9 +47 +87 +113 +85 +22 +3.1 -5.3 +52 +8.0 +0.5 +0.8 +0.5 +2.8 +0.29 +0.40 +23 -2.6 -13.9	T Dtrs GL B Wt 200 400 600 M Wt Milk SS DC 750d EMA Rib Rump RBY% IMF% NFIP NFIF DOC FC FA RA 0 +3.3 -7.8 +2.9 +47 +87 +113 +85 +22 +3.1 -5.3 +52 +8.0 +0.5 +0.8 +0.5 +2.8 +0.29 +0.40 +23 -2.6 -13.9 -9.6 52% 85% 75% 70% 71% 69% 65% 53% 74% 43% 63% 63% 63% 63% 65% 59% 60% 50% 52% 62% 58% 58% 58% 54%	T DITS GL BWT 200 400 600 MWT MIIK SS DC 7500 EMA RIB RUMP RBY IMF% NFIP NFIF DOC FC FA RA RH 10 +3.3 -7.8 +2.9 +47 +87 +113 +85 +22 +3.1 -5.3 +52 +8.0 +0.5 +0.8 +0.5 +0.8 +0.5 +2.8 +0.29 +0.40 +23 -2.6 -13.9 -9.6 -0.1 12 52% 85% 75% 70% 71% 69% 65% 53% 74% 43% 63% 63% 63% 65% 59% 60% 50% 52% 62% 58% 58% 58% 54% 49%

L60 shows a lot of versatility and is well suited for use over heifers. The past four generations on the dams side of this bull have all been ET conceived and combined they have contributed 189 progeny to our herd. The Barunah cow family line is our second most prominent with 780 direct descendants that are active within our herd.

Lot 106 「E MANIA LAHEYS L97 Born: 30/07/2015 Calving Ease Carcase Marbling Angus Breeding Heavy Grass Heavy Grain BOYD NEW DAY 8005 B/R RUBY 1224 LAWSONS INVINCIBLE C402(AI) TE MANIA LOWAN E428 (AI) (ET) \$INDEX Sire: V A R RESERVE 1111(ET) Dam: TE MANIA BARUNAH J34 (AI)

\$122 \$119 \$132 \$116 SANDPOINT BLACKBIRD 8809 TE MANIA BARUNAH G308 (AI) TE MANIA EARI TE MANIA RAPI

								J	anuai	ry 201	7 Ang	us Aı	ıstrali	a BRI	EDPI	_AN									
	C	alvin	g Eas	е	(Growt	h& Ma	aterna	I	Fert	ility	CWT		400 H	(G Ca	rcase		Inta	ake			St	ructu	re	
	Dir	Dtrs	GL	B Wt	200	400	600	M Wt	Milk	SS	DC	750d	EMA	Rib	Rump	RBY%	IMF%	NFIP	NFIF	DOC	FC	FA	RA	RH	RS
EBV	+5.5	+2.0	-6.8	+1.1	+43	+80	+98	+75	+21	+1.2	-4.6	+54	+6.6	-0.8	-0.8	+0.9	+2.7	+0.29	+0.31	+13	+4.6	-14.9	-13.0	-9.3	-2.0
Acc	49%	42%	85%	74%	69%	70%	68%	63%	49%	72%	33%	58%	60%	60%	60%	55%	55%	41%	42%	58%	51%	52%	41%	34%	38%
					Tı	raits Obs	erved: G	L CE BV	/T 200W	/T 400W	T SS FA	T EMA I	MF DOC	, Structr	al Score	s: FC 6,	FA 6, RA	6, RH 7	, RS 4						

Good natural thickness and body length shown by L97. He is well suited for use over heifers and the first calf out of a two year old heifer.

Lot 107 Society Id: VTML103

Calving Ease Growth Marbling Angus Breeding Heavy Grass Heavy Grain

TE MANIA AMBASSADOR A134 (AI) LAWSONS HENRY VIII Y5 (AI) TE MANIA YORKSHIRE Y437 (AI) TF MANIA LOWAN Z53 (AI) (ET) \$INDEX TUWHARETOA REGENT D145 (AI) (ET) TE MANIA BERKI EY R1 (AI)

HG Sire: TE MANIA GASKIN G555 (AI) Dam: TE MANIA JEDDA J625 (AI) \$126 \$110 \$145 \$116 TE MANIA LOWAN D66 (AI) TE MANIA JEDDA D1225 (AI) (ET) TE MANIA YORKSHIRE Y437 (AI) TE MANIA JEDDA X723 (AI) TE MANIA YORKSHIRE Y437 (AI) TE MANIA LOWAN B860 (AI)

								J	anuai	ry 201	7 Ang	us Aı	ıstrali	a BRE	EEDPI	_AN									
	O	alving	g Eas	е	•	Growt	h& Ma	aterna	I	Fert	ility	CWT		400 H	(G Ca	rcase		Inta	ake			St	tructu	re	
THE COLUMN	Dir	Dtrs	GL	B Wt	200	400	600	M Wt	Milk	SS	DC	750d	EMA	Rib	Rump	RBY%	IMF%	NFIP	NFIF	DOC	FC	FA	RA	RH	RS
EBV	+3.3	+1.3	-6.2	+2.2	+45	+81	+109	+89	+17	+0.6	-5.7	+73	+5.1	+0.2	-1.2	-1.0	+3.5	+0.21	+0.31	-7	+2.9	+8.7	+3.2	+1.1	+0.5
Acc	56%	51%	86%	75%	71%	72%	70%	66%	53%	74%	46%	64%	63%	63%	66%	59%	60%	52%	53%	61%	58%	58%	54%	49%	52%
					Tr	raits Obs	erved: G	L CE BV	VT 200W	/T 400W	T SS FA	T EMA I	MF DOC	, Structr	al Score:	s: FC 6, I	FA 6, RA	6, RH 5	, RS 5						

Another one of these Gaskin sons that present well with good natural thickness and body length. L103 is well suited for use over heifers and the first calf out of a two year old

heifer. He has a small amount of white in the groin area.

Lot 108 Born: 30/07/2015 Structure date scored 05/12/2016

Growth Fertility Marbling Angus Breeding Heavy Grass Heavy Grain

\$INDEX TE MANIA AFRICA A217 (AI) TE MANIA GOODOOGA G843 (AI) Sire: TE MANIA GARTH G67 (AI) Dam: TE MANIA WARGOONA J216 (AI) \$147 \$127 \$166 \$137 TE MANIA MITTAGONG E28 (AI) TE MANIA CANTON C138 (AI) (ET) TE MANIA MITTAGONG C900 (ACR) TE MANIA WARGOONA G572 (AI) TUWHARETOA REGENT D145 (AI) (ET) TE MANIA WARGOONA D302 (AI)

								J	anuai	ry 201	7 Ang	us Aı	ıstrali	a BRI	EDPI	LAN									
	C	alvin	g Eas	е	(Growt	h& Ma	terna	I	Fert	ility	CWT		400 k	(G Ca	rcase		Inta	ake			St	ructu	re	
THE STATE OF	Dir	Dtrs	GL	B Wt	200	400	600	M Wt	Milk	SS	DC	750d	EMA	Rib	Rump	RBY%	IMF%	NFIP	NFIF	DOC	FC	FA	RA	RH	RS
EBV	+0.4	+1.5	-8.4	+3.2	+49	+91	+117	+67	+29	+4.0	-6.9	+62	+5.6	+2.2	+2.5	-0.5	+3.7	+0.48	+0.69	+35	+5.2	-14.3	-12.2	-0.1	+0.4
Acc	62%	51%	86%	77%	73%	75%	75%	73%	60%		42%	67%	64%	67%		57%	61%	49%	51%		56%	57%	52%	48%	49%

Plenty of natural thickness on display in this son of Garth. Well suited for use over heifers and the first calf out of a two year old heifer. There is a small amount of white in the groin area

							BRE	ED A	VERA	GE EB	VS FO	OR 20	15 B	ORN (CALV	ES							
	CALVING	G EAS	Ë	GF	ROWTI	AM & F	TERNA	٩L	FERT	ILITY	CWT		C	ARCA	SE		INT	AKE			IND	EX\$	
DIR.	DTRS	GL	Bwt	200	400	600	Mwt	MILK	SS	DC	750d	EMA	RIB	RUMP	RBY%	IMF%	NFIP	NFIF	Doc	AB	D	HG	G
0.0	+0.1	-3.7	+4.3	+42	+77	+100	+88	+15	+1.7	-3.8	+56	+4.6	0.0	-0.2	+0.3	+1.6	+0.09	+0.15	+5	\$106	\$103	\$110	\$105
	Anim	als with I	EBVs and	d Indexes	highlighte	d with sha	iding are i	n the top	10% of th	e Angus	breed. W	ith the e	xceptio	n of fat w	hich has	no shad	ling, and	Mature W	eight wh	nich is sha	ded if the	value is	< 100.

Born: 31/07/2015 Society Id: VTML125

CONNEALY ONWARD RIVERBEND BLACKBIRD 4301

Calving Ease Growth Fertility Carcase Marbling Angus Breeding Heavy Grass Heavy Grain

Sire: V A R RESERVE 1111(ET)

SANDPOINT BLACKBIRD 8809

TE MANIA BERKLEY B1 (AI) Dam: TE MANIA BARUNAH J405 (AI) (ET)

TE MANIA YORKSHIRE Y437 (AI TE MANIA LOWAN Z53 (AI) (ET) TE MANIA ULONG U41 (AI) (ET) TE MANIA BARUNAH X101 (AI) (ET) \$133 \$123 \$148 \$124

								J	anua	ry 201	7 Ang	jus Aı	ıstrali	a BR	EEDP	LAN									
	C	alvin	g Eas	е	(Growt	h& Ma	iterna	ı	Fert	ility	CWT		400 H	(G Ca	rcase		Int	ake			St	ructu	re	
THE STATE OF	Dir	Dtrs	GL	B Wt	200	400	600	M Wt	Milk	SS	DC	750d	EMA	Rib	Rump	RBY%	IMF%	NFIP	NFIF	DOC	FC	FA	RA	RH	RS
EBV	+6.0	+2.9	-6.8	+2.1	+44	+82	+102	+92	+20	+2.6	-7.1	+54	+7.5	-0.4	-0.5	+1.2	+2.5	+0.11	+0.17	+11	-2.0	-19.9	-9.5	-3.3	+0.3
Acc	61%	49%	85%	76%	73%	74%	74%	72%	62%	79%	40%	65%		67%		57%	59%		46%	61%	54%	55%	45%	39%	42%

TE MANIA BARUNAH A96 (AI) (ET)

Balanced and well suited for use over heifers. First calf out of a two year old heifer. The past four generations on the dams side of this bull have all been ET conceived and combined have contributed 190 progeny to our herd.

Lot 110

Calving Ease Growth Carcase Marbling Angus Breeding Heavy Grass Heavy Grain

TE MANIA BOORTKOI G138 (AI)

BOYD NEW DAY 8005 B/R RUBY 1224 Sire: V A R RESERVE 1111(ET)

S S OBJECTIVE T510 0T26 CIRCLE A BEAUTY 5566 Dam: TE MANIA BOORTKOI J140 (AI)

\$INDEX \$135 \$132 \$145 \$130

SANDPOINT BLACKBIRD 8809 January 2017 Angus Australia BREEDPLAN CWT Fertility 400 KG Carcase **Calving Ease Growth& Maternal** Intake Structure Ø Rump RBY% IMF% NFIP NFIF M Wt RA RS GL B Wt 200 400 600 Milk SS DC 750d EMA Rib DOC FC FA Dir Dtrs +2.7 -0.6 -4.7 +3.7 +67 +10.8 -2.1 -2.8 +2.9 +1.7 +0.13 0.00 +10 +52 +94 +114 +94 +19 +1.5 -4.6 +11.7 -7.2 +0.6 -4.5 -0.2 49% 41% 85% 74% 69% 69% 67% 62% 49% 72% 34% 57% 59% 60% 60% 54% 54% 41% 41% 57% 50% 51% 41% fraits Observed: GL CE BWT 200WT 400WT SS FAT EMA IMF DOC, Structral Scores: FC 6, FA 6, RA 6, RH 5, RS 5 32% 37%

Good body length shown by L156. He is the first calf out of a two year old heifer.

Lot 111

Calving Ease Growth Fertility Marbling Angus Breeding Heavy Grass Heavy Grain

S S OBJECTIVE T510 0T26 G A R YIELD GRADE 2015 G A R TWINHEARTS 8418 Sire: TE MANIA JACK J70 (AI)

TE MANIA LOWAN G141 (AI) (ET)

VERMONT DRAMBLIE D057(AI)(ET) Dam: TE MANIA LOWAN J343 (AI) TE MANIA LOWAN G432 (AI) (ET)

BT RIGHT TIME 24J TE MANIA CODRINGTON C737 (AI) (ET) TE MANIA LOWAN Z237 (AI) (ET)

\$INDEX \$123 \$113 \$133 \$116

								J	anuaı	ry 201	7 Ang	jus Αι	ıstrali	a BRE	EEDPI	LAN									
	С	alvin	g Eas	е	•	Growt	h& Ma	terna	ı	Fert	ility	CWT		400 H	(G Ca	rcase		Inta	ake			St	tructu	re	
	Dir	Dtrs	GL	B Wt	200	400	600	M Wt	Milk	SS	DC	750d	EMA	Rib	Rump	RBY%	IMF%	NFIP	NFIF	DOC	FC	FA	RA	RH	RS
EBV	+3.7	+2.1	-4.7	+3.1	+45	+81	+104	+101	+17	+2.3	-7.4	+60	+4.2	0.0	+0.7	-0.1	+2.3	+0.12	+0.07	-10	+12.7	+6.4	+3.4	+1.1	-0.6
Acc	46%	36%	85%	73%	67%	68%	65%	61%	45%	71%	34%	56%	57%	58%	59%	54%	52%	41%	41%	55%	49%	50%	40%	36%	39%
					Tı	raits Ohs	erved: G	I CE RV	/T 200W	T 400W	T SS FA	TEMAI	ME DOC	Structr	al Score	s: FC.6	FA 6 RA	6 RH 5	RS 5						

Well suited for use over heifers and the first calf out of a two year heifer. There is a small amount of white in the groin area.

CONNEALY ONWARD

Lot 112

Born: 01/08/2015 Structure date scored 05/12/2016 Calving Ease Growth Carcase Marbling Angus Breeding Heavy Grass Heavy Grain

TE MANIA QUEANBEYAN G726

B/R NEW DAY 454 Sire: V A R RESERVE 1111(ET)

SANDPOINT BLACKBIRD 8809

G A R TWINHEARTS 8418

Dam: TE MANIA QUEANBEYAN J46 (AI) TE MANIA EARNINGS E38 (AI)

\$INDEX \$138 \$133 \$151 \$132

					RIVE	RBEND BL	ACKBIRD 43	01							TE	MANIA QUE	ANBEYAN D	118 (AI) (ET)					T - T	- Т	
								J	anuai	y 201	7 Ang	jus Aı	ıstrali	a BRI	EEDPI	LAN									
	0	Calving Ease Growth& Maternal								Fert	ility	CWT		400 F	(G Ca	rcase		Inta	ake			St	ructu	re	
THE STATE OF	Dir	Dtrs	GL	B Wt	200	400	600	M Wt	Milk	SS	DC	750d	EMA	Rib	Rump	RBY%	IMF%	NFIP	NFIF	DOC	FC	FA	RA	RH	RS
EBV	+6.1	+3.3	-6.3	+1.4	+50	+97	+118	+104	+28	+1.5	-5.3	+69	+8.0	-1.7	-1.8	+2.1	+2.0	+0.12	+0.06	+9	+5.5	-12.6	-8.6	-5.1	+0.3
Acc	58%	44%	86%	76%	72%	74%	74%	72%	60%	78%	32%	64%	62%	65%	63%	55%	57%	41%	41%	57%	51%	52%	41%	33%	38%

Traits Observed: GL CE BWT 200WT 400WT SS FAT EMA IMF DOC Genomics, Structral Scores: FC 6, FA 5, RA 5, RH 5, RS 5

Balanced and well suited for use over heifers. L164 is the first calf out of a two year old heifer. This is a great outcross option for use over Berkley, Regent and Garth bloodlines.

							BRI	EED A	VERA	GE EB	VS FC	OR 20	15 B	ORN (CALV	ES							
С	ALVIN	G EAS	E	GF	ROWTH	1 & MA	TERN	٩L	FERT	ILITY	CWT		C	ARCA	SE		INT	AKE			IND	EX\$	
DIR.	DTRS	GL	Bwt	200	400	600	Mwt	MILK	SS	DC	750d	EMA	RIB	RUMP	RBY%	IMF%	NFIP	NFIF	Doc	AB	D	HG	G
0.0	+0.1	-3.7	+4.3	+42	+77	+100	+88	+15	+1.7	-3.8	+56	+4.6	0.0	-0.2	+0.3	+1.6	+0.09	+0.15	+5	\$106	\$103	\$110	\$105
	Anim	nals with I	EBVs and	Indexes	highlighte	d with sha	ding are i	n the top	10% of the	e Angus	breed. W	ith the e	xceptio	n of fat w	hich has	no shad	ling, and	Mature W	eight wh	hich is sha	ded if the	value is	< 100.

Born: 01/08/2015

Calving Ease Growth Carcase Marbling Angus Breeding Heavy Grass Heavy Grain

TE MANIA BEEAC A562 (AI) (ET)

Sire: TE MANIA JENKINS J89 (AI)

TE MANIA JAPARA G115 (AI)

S S OBJECTIVE T510 0T26 G A R YIELD GRADE 2015

TUWHARETOA REGENT D145 (AI) (ET) TE MANIA DANDLOO Z811 (AI) TE MANIA GENERAL G429 (AI) Dam: TE MANIA BEEAC J1304 (AI)

\$125 \$116 \$139 \$119

LAWSONS INV TE MANIA XPO X84 (AI) (ET) TE MANIA BEEAC U280 (AI) (ET) January 2017 Angus Australia BREEDPLAN **Calving Ease Growth& Maternal** Fertility | CWT 400 KG Carcase Structure 0 DOC Dir Dtrs GL B Wt 400 600 M Wt Milk SS DC 750d Rib Rump RBY% IMF% NFIP NFIF FA RA 200 EMA +55 +1.6 -0.1 -4.6 +3.5 +49 +87 +113 +102 +19 +2.3 -3.4 +7.0 -1.0 -0.3 +0.6 +2.9 +0.20 +0.15 +16 +13.1 +11.1 +3.1 +0.8 +0.5 69% 66% 60% 44% 72% 34% 57% 58% 59% 60% 54% 53% 42% 42% 57% 51% 51% 41% 37% Traits Observed: GL CE BWT 200WT 400WT SS FAT EMA IMF DOC, Structral Scores: FC 6, FA 6, RA 6, RH 5, RS 5 37% 85% 74%

Balanced and the first calf out of a two year old heifer.

Lot 114

Structure date scored 05/12/2016

Calving Ease Fertility Marbling Angus Breeding Heavy Grass Heavy Grain

TE MANIA ULONG U41 (AI) (ET) TE MANIA JEDDA Y32 (AI) (ET) Sire: TE MANIA GARTH G67 (AI)

TE MANIA MITTAGONG E28 (AI)

Born: 02/08/2015

TE MANIA CANTON C138 (AI) (ET)

BOOROOMOOKA INSPIRED E124(AI) Dam: TE MANIA MITTAGONG J530 (AI) (ET) TE MANIA MITTAGONG B112 (AI)

ARDROSSAN EQUATOR A241 (AI) (ET) BOOROOMOOKA SIGNAI R325(AI)

TE MANIA ULONG Z773 (AI)

\$121 \$114 \$132 \$114

						16.0	MANUAL WILLIAM	100110 030	io (AOIV)							16.	WANTED WILLI	AUDINU Z	1 (A1)					<u> </u>	<u>-</u>	
									J	anuai	y 201	7 Ang	jus Aı	ıstrali	a BRI	EEDPI	_AN									
100		C	alvin	g Eas	е	(Growt	h& Ma	aterna	ı	Fert	ility	CWT		400 H	(G Ca	rcase		Inta	ake			St	tructui	re	
		Dir	Dtrs	GL	B Wt	200	400	600	M Wt	Milk	SS	DC	750d	EMA	Rib	Rump	RBY%	IMF%	NFIP	NFIF	DOC	FC	FA	RA	RH	RS
E	BV	+0.5	+2.4	-4.9	+2.2	+43	+84	+99	+68	+27	+2.4	-6.7	+52	+2.7	+0.8	+2.9	-1.5	+3.4	+0.51	+0.53	+24	+4.6	-18.8	-10.0	+0.2	+0.3
Α	cc	56%	51%	85%	75%	70%	71%	69%	65%	52%	74%	42%	63%	62%	62%	65%	58%	60%	50%	52%	61%	58%	58%	54%	49%	51%

Traits Observed: GL CE BWT 200WT 400WT SS FAT EMA IMF DOC, Structral Scores: FC 6, FA 6, RA 6, RH 6, RS 6

Well suited for use over heifers and the first calf out of a two year old heifer. Small amount of white in the groin area.

Lot 115

Growth Marbling Angus Breeding Heavy Grain

TUWHARETOA REGENT D145 (AI) (ET) Sire: TE MANIA GASKIN G555 (AI)

TE MANIA LOWAN D66 (AI)

TUWHARETOA REGENT D145 (AI) (ET) Dam: TE MANIA BARUNAH J595 (AI) (ET) TE MANIA BARUNAH E601 (AI) BOOROOMOOKA UNDERTAKEN Y145 TE MANIA BARUNAH C218 (AI)

\$INDEX \$115 \$95 \$140 \$104

January 2017 Angus Australia BREEDPLAN **Calving Ease Growth& Maternal** Fertility CWT 400 KG Carcase Intake Structure Dtrs GL 200 400 600 M Wt Milk SS DC 750d EMA Rib Rump RBY% IMF% NFIP NFIF DOC FCFA RA EBV -0.3 -5.5 -4.1 +3.4 +82 +116 +97 +20 +0.6 -3.8 +78 +3.0 +0.4 -0.1 -2.3 +4.5 +0.40 +0.45 +1 +6.4 +8.7 +7.4 +1.3 +0.5 46% 65% 67% 86% 76% 73% 71% 67% 54% 76% 64% 64% 60% 61% 52% 54% | 63% 58% 60% 54% 49% 51% 57% 52% 72% Traits Observed: GL CE BWT 200WT 400WT SS FAT EMA IMF DOC, Structral Scores: FC 6, FA 6, RA 6, RH 5, RS 5

L184 is so stylish and strong. This is another of the Gaskin sons that present so well. He is the first calf out of a two year old heifer. He has a small amount of white in the groin

Lot 116

Born: 03/08/2015 Calving Ease Growth Carcase Marbling Angus Breeding Heavy Grass Heavy Grain

TE MANIA BARTEL B219 (AI) (ET) EAGLEHAWK JEDDA B32(AI) \$INDEX AYRVALE BARTEL E7(AI)(ET)

Sire: TE MANIA JENKINS J89 (AI) Dam: TE MANIA MITTAGONG J808 (AI) TE MANIA JAPARA G115 (AI) LAWSONS INVINCIBLE C402(AI) TE MANIA JAPARA E649 (AI)

TE MANIA MITTAGONG C126 (AI) BONGONGO BULLETPROOF Z3 TE MANIA MITTAGONG A274 (A \$150 \$135 \$171 \$140

								J	anua	ry 201	7 Ang	jus Aı	ıstrali	a BRI	EEDPI	LAN									
	O	alvin	g Eas	е	C	Growt	h& Ma	aterna	ı	Fert	ility	cwt		400 k	(G Ca	rcase		Inta	ake			St	ructu	re	
A STATE OF THE PARTY OF THE PAR	Dir	Dtrs	GL	B Wt	200	400	600	M Wt	Milk	SS	DC	750d	EMA	Rib	Rump	RBY%	IMF%	NFIP	NFIF	DOC	FC	FA	RA	RH	RS
EBV	+5.4	+4.7	-3.4	+0.9	+50	+92	+118	+83	+26	+1.5	-4.7	+69	+11.0	-1.7	-2.4	+1.5	+3.2	+0.26	+0.38	0	+15.8	+15.3	+1.7	-0.8	-1.8
Acc	57%	41%	86%	76%	71%	73%	73%	71%	58%	78%	36%	63%	62%	65%	64%	55%	57%	43%	43%	57%	51%	52%	42%	38%	41%

Traits Observed: GL CE BWT 200WT 400WT SS FAT EMA IMF DOC Genomics, Structral Scores: FC 6, FA 6, RA 6, RH 5, RS 4

A strong bull that presents well with good body length. He is the first calf out of a two year old heifer.

	BREED AVERAGE EBVS FOR 2015 BORN CALVES																						
С	CALVING EASE GROWTH & MATERNAL FERTILITY CWT CARCASE INTAKE INDE															EX\$							
DIR.	DTRS	GL	Bwt	200	400	600	Mwt	MILK	SS	DC	750d	EMA	RIB	RUMP	RBY%	IMF%	NFIP	NFIF	Doc	AB	D	HG	G
0.0	+0.1	-3.7	+4.3	+42	+77	+100	+88	+15	+1.7	-3.8	+56	+4.6	0.0	-0.2	+0.3	+1.6	+0.09	+0.15	+5	\$106	\$103	\$110	\$105
	Anim	als with I	EBVs and	Indexes	highlighte	d with sha	ding are i	n the top	10% of the	e Angus I	breed. W	ith the e	xceptio	n of fat w	hich has	no shad	ling, and	Mature W	eight wh	nich is sha	ded if the	value is <	< 100.

Calving Ease Growth Marbling Angus Breeding Heavy Grass Heavy Grain

G A R TWINHEARTS 8418 Sire: TE MANIA JACK J70 (AI)

TE MANIA BERKLEY B1 (AI) TE MANIA LOWAN Z74 (AI) (ET

TE MANIA LOWAN G141 (AI) (ET)

Born: 05/08/2015

LAWSONS DINKY-DI Z191 TE MANIA MITTAGONG B112 (AI) TE MANIA FITZPATRICK F528 (AI) (FT) Dam: TE MANIA DANDLOO J1163 (AI) (ET) TE MANIA DANDLOO C670 (AI) (ET)

AMFU/NHFU/CAFU/DDFU

\$118 \$109 \$132 \$112

ored 05/12/2016

								J	anua	ry 201	7 Ang	us Aı	ıstrali	a BRE	EDPL	_AN									
	C	alving	g Eas	е	(Growt	h& Ma	aterna	ı	Fert	ility	CWT		400 H	(G Ca	rcase		Inta	ake			St	ructu	re	
	Dir	Dtrs	GL	B Wt	200	400	600	M Wt	Milk	SS	DC	750d	EMA	Rib	Rump	RBY%	IMF%	NFIP	NFIF	DOC	FC	FA	RA	RH	RS
EBV	+4.3	+3.2	-3.9	+3.5	+47	+86	+112	+108	+21	+0.9	-4.9	+59	+0.7	-0.9	+0.4	-0.9	+2.9	+0.06	-0.06	-10	+9.2	+3.6	-7.3	-2.1	+0.5
Acc	46%	37%	84%	73%	67%	68%	65%	60%	45%	72%	35%	57%	57%	58%	59%	54%	52%	41%	41%	56%	51%	51%	42%	38%	41%
					Tı	aits Obs	erved: G	L CE BV	/T 200V	/T 400W	T SS FA	T EMA I	MF DOC	, Structr	al Score	s: FC 6,	FA 6, RA	6, RH 5	, RS 5						

Stylish and balanced with good frame and body length. Well suited for use over heifers and the first calf out of a two year old heifer. There is a small amount of white in the groin

Lot 118 LANGFI

Society Id: VTML273

Calving Ease Growth Carcase Marbling Angus Breeding Heavy Grass Heavy Grain

S S OBJECTIVE T510 0T26 G A R YIELD GRADE 2015 LAWSONS DINKY-DI Z191 TE MANIA MITTAGONG B112 (AI) \$INDEX TE MANIA FITZPATRICK F528 (AI) (ET) Sire: TE MANIA JENKINS J89 (AI) Dam: TE MANIA LOWAN J1298 \$139 \$127 \$154 \$133 TE MANIA JAPARA G115 (AI) TE MANIA LOWAN F714 (AI) TE MANIA CODRINGTON C737 (AI) (ET) TE MANIA LOWAN X540 (AI) (FT)

January 2017 Angus Australia BREEDPLAN CWT Fertility 400 KG Carcase Calving Ease **Growth& Maternal** Intake Structure 6 600 M Wt NFIP NFIF FA GL B Wt 400 Milk SS DC 750d EMA Rib Rump RBY% IMF% DOC FC RA RS Dir Dtrs 200 +2.9 +2.3 -2.9 +2.1 +52 +90 +120 +96 +23 +2.4 -2.6 +66 +11.2 -2.2 -2.0 +1.8 +2.8 +0.20 +0.17 +6 +7.6 +9.3 +2.7 +1.2 +0.4 39% 85% 76% 71% 71% 73% 72% 71% 57% 78% 34% 63% 61% 64% 63% 54% 56% 41% 41% 5 raits Observed: GL CE BWT 200WT 400WT SS FAT EMA IMF DOC Genomics, Structral Scores: FC 6, FA 5, RA 5, RH 5, RS 5 57% 52% 52%

A well balanced bull and the first calf out of a two year old heifer.

Lot 119 TE MANIA LANGSTON L285 (AI Structure date scored 05/12/2016

Calving Ease Growth Marbling Angus Breeding Heavy Grass Heavy Grain

TE MANIA BARTEL B219 (AI) (ET) EAGLEHAWK JEDDA B32(AI) B A R EXT TRAVELER 205 CRA LADY JAYE 608 498 S EASY \$INDEX C R A BEXTOR 872 5205 608 AYRVALE BARTEL E7(AL)(ET)

HG G Sire: G A R PROPHET Dam: TE MANIA LOWAN J210 (AI) GAR OBJECTIVE 1885 S S OBJECTIVE T510 0T26 TE MANIA LOWAN G247 (AI) (ET) TE MANIA BERKLEY B1 (AI) TE MANIA LOWAN A132 (AI \$144 \$126 \$163 \$133

January 2017 Angus Australia BREEDPLAN **Calving Ease Growth& Maternal** Fertility CWT 400 KG Carcase Intake Structure Dtrs GL B Wt 200 400 600 M Wt Milk SS DC 750d Rib Rump RBY% IMF% NFIP NFIF DOC FC FA RA RS EMA +2.8 +3.2 -0.8 +1.2 +53 +91 +114 +80 +27 +1.3 -7.6 +65 +6.2 +0.8 +1.1 -1.1 +3.9 +0.41 +0.46 0 +0.7 +20.8 +1.5 -4.3 -0.262% 52% 86% 76% 72% 74% 75% 74% 64% 79% 67% 64% 57% 60% 45% 46% 59% 54% 55% 47% 67% 66% 39% 41%

raits Observed: GL CE BWT 200WT 400WT SS FAT EMA IMF DOC Genomics, Structral Scores: FC 6, FA 5, RA 5, RH 6, RS 5

Well suited for use over heifers and the first calf out of a two year old heifer.

Lot 120 Born: 09/08/2015

Society Id: VTML433 Structure date scored 05/12/2016

Growth Marbling Angus Breeding Heavy Grass Heavy Grain

B A R EXT TRAVELER 205 CRA LADY JAYE 608 498 S EASY TE MANIA AMBASSADOR A134 (AI) LAWSONS HENRY VIII Y5 (AI) C R A BEXTOR 872 5205 608 TUWHARETOA REGENT D145 (AI) (ET)

\$INDEX Sire: G A R PROPHET Dam: TE MANIA DANDLOO J855 (AI) (ET) **\$128 \$113 \$147 \$120** GAR OBJECTIVE 1885 S S OBJECTIVE T510 0T26 GAR 1407 NEW DESIGN 2232 TE MANIA DANDLOO E95 (AI) TE MANIA BRADMAN B49 (AI) (ET) TE MANIA DANDLOO C91 (AI)

January 2017 Angus Australia BREEDPLAN Calving Ease Fertility CWT 400 KG Carcase **Growth& Maternal** 750d Rump RBY% IMF% NFIP NFIF GL B Wt EMA **EBV** +54 +23 -3.6 +74 +7.4 -0.6 -0.3 -0.9 +4.0 +0.45 +0.44 +3 -2.1 -1.7 -0.2 +3.2 +94 +122 +88 -0.3 -2.2 +15.6 +3.6 -0.4 -20 5 70% 69% 65% 57% 73% 41% 63% 62% 62% 64% 58% 59% 45% 47% Traits Observed: GL CE BWT 200WT 400WT SS FAT EMA IMF DOC, Structral Scores: FC 6, FA 6, RA 5, RH 6, RS 4 51% 84% 74% 47% | 60% | 55% 55% 48% 39%

Stylish and strong. L433 is the first calf out of a two year old heifer. There is some white in the groin area.

							BRI	ED A	VERA	GE EB	VS FC	OR 20	15 B	ORN (CALV	S							
C	ALVIN	G EAS	SE.	GF	ROWTI	H & MA	TERNA	٩L	FERT	ILITY	CWT		C	ARCA	SE		INT	AKE			IND	EX\$	
DIR.	DTRS	GL	Bwt	200	400	600	Mwt	MILK	SS	DC	750d	EMA	RIB	RUMP	RBY%	IMF%	NFIP	NFIF	Doc	AB	D	HG	G
0.0	+0.1	-3.7	+4.3	+42	+77	+100	+88	+15	+1.7	-3.8	+56	+4.6	0.0	-0.2	+0.3	+1.6	+0.09	+0.15	+5	\$106	\$103	\$110	\$105
	Anim	nals with	EBVs and	d Indexes	highlighte	d with sha	iding are i	n the top	10% of th	e Angus	breed. W	ith the e	xceptio	n of fat w	hich has	no shac	ling, and	Mature W	eight wh	nich is sha	ded if the	value is <	< 100.

AMFU/NHFU/CAFU/DDFU ed 05/12/2016

TE MANIA YORKSHIRE Y437 (AI TE MANIA LOWAN Z53 (AI) (ET)

Calving Ease Carcase Marbling Angus Breeding Heavy Grass Heavy Grain

TE MANIA BERKI EY B1 (AI)

B/R NEW DAY 454 Sire: V A R RESERVE 1111(ET)

Born: 10/08/2015

Dam: TE MANIA BARUNAH J360 (AI) (ET) SANDPOINT BLACKBIRD 8809 TE MANIA BARUNAH E493 (AI) (ET) TE MANIA MODEST Z565 (AI) TE MANIA BARUNAH Z269 (AI) \$122 \$116 \$134 \$115

								J	anuai	ry 201	7 Ang	jus Ai	ıstrali	a BRE	EDPI	LAN									
	С	alvin	g Eas	е	(Growt	h& Ma	aterna	I	Fert	ility	сwт		400 H	(G Ca	rcase		Inta	ake			St	tructu	re	
	Dir	Dtrs	GL	B Wt	200	400	600	M Wt	Milk	SS	DC	750d	EMA	Rib	Rump	RBY%	IMF%	NFIP	NFIF	DOC	FC	FA	RA	RH	RS
EBV	+4.0	-0.2	-1.5	+3.0	+43	+77	+95	+77	+18	+1.6	-5.6	+52	+7.8	+0.3	-0.3	+0.7	+2.8	+0.23	+0.32	+11	+0.6	-3.4	-9.9	-3.2	-0.4
Acc	60%	47%	85%	76%	72%	74%	74%	72%	62%	79%	38%	64%	64%	66%	64%	56%	58%	45%	45%	60%	52%	52%	43%	37%	40%
					Traits (bserved	I: GL CE	BWT 20	0WT 40	OWT SS	FAT EM	A IMF D	OC Gen	omics, S	tructral S	Scores: F	C 6, FA	6, RA 6,	RH 6, R	S 5					

Stylish and balanced with good body length on display. First calf out of a two year old heifer. The past four generations of females on the dams side have all been ET conceived and from our prominent Barunah cow family line. Combined they have contributed 144 progeny to our herd. Small amount of white in the groin area.

E MANIA LAUNCH L499 Lot 122 Born: 10/08/2015 Structure date scored 05/12/2016

Growth Marbling Angus Breeding Heavy Grass Heavy Grain

B A R EXT TRAVELER 205 CRA LADY JAYE 608 498 S EASY TE MANIA YORKSHIRE Y437 (AI) TE MANIA LOWAN Z53 (AI) (ET) \$INDEX Sire: G A R PROPHET Dam: TE MANIA BARWON J450 (AI) \$139 \$118 \$157 \$128 GAR OBJECTIVE 1885 TE MANIA BARWON C308 (AI)

January 2017 Angus Australia BREEDPLAN CWT Fertility 400 KG Carcase Calving Ease **Growth& Maternal** Intake Structure 600 NFIP NFIF FA RS GL B Wt 200 400 M Wt Milk SS DC 750d EMA Rib Rump RBY% IMF% DOC FC RA Dir Dtrs +7.6 +0.7 +0.7 -0.8 +3.4 +0.42 +0.48 +1 -0.6 +0.3 -1.6 +4.2 +91 +120 +103 +18 +0.7 -7.6 +65 -18.9 +1.5 -7.5 -0.9 -0.3 +55 69% 66% 57% 73% 42% 62% 61% 62% 63% 58% 59% 46% 47% served: GL CE BWT 200WT 400WT SS FAT EMA IMF DOC, Structral Scores: FC 6, FA 6, RA 6, RH 5, RS 5 51% 85% 74% 69% 70% Fraits Obs 47% 59% 56% 55% 49% 43%

L499 is well balanced and the first calf out of a two year old heifer. There is some white in the groin area.

Lot 123 Society Id: VTML1013 Born: 21/08/2015 Structure date scored 05/12/2016

Calving Ease Growth Fertility Marbling Angus Breeding Heavy Grass Heavy Grain

TE MANIA YORKSHIRE Y437 (AI) TE MANIA LOWAN Z53 (AI) (ET) TE MANIA BARTEL B219 (AI) (ET) \$INDEX TE MANIA BERKI EY B1 (AI) AYRVALE BARTEL E7(AI)(ET)

G Sire: TE MANIA JEROME J131 (AI) Dam: TE MANIA BARUNAH J48 (AI) TE MANIA LOWAN G694 (AI) TUWHARETOA REGENT D145 (AI) (ET) TE MANIA LOWAN A626 (AI) (ET) TE MANIA BARUNAH G868 \$153 \$129 \$180 \$137 TE MANIA DECLARER D285 (AI) TE MANIA BARUNAH A194 (AI) (ET

								J	anuai	ry 201	/ Ang	jus At	ıstran	a DK	EEDPI	_AN									
	C	alvin	g Eas	е	Č	Growt	h& Ma	iterna	ı	Fert	ility	CWT		400 H	(G Ca	rcase		Int	ake			St	ructu	re	
THE COLUMN TWO IS NOT	Dir	Dtrs	GL	B Wt	200	400	600	M Wt	Milk	SS	DC	750d	EMA	Rib	Rump	RBY%	IMF%	NFIP	NFIF	DOC	FC	FA	RA	RH	RS
EBV	+4.2	+4.5	-6.7	+2.8	+52	+89	+115	+96	+18	+3.1	-8.8	+78	+7.6	+1.7	+0.1	-0.8	+4.0	+0.37	+0.60	-20	-2.7	-7.8	-7.7	-2.9	+0.5
Acc	60%	45%	86%	76%	72%	74%	73%	72%	59%	78%	40%	64%	63%	66%	65%	56%	58%		46%		51%	52%	43%	40%	42%

Traits Observed: GL CE BWT 200WT 400WT SS FAT EMA IMF DOC Genomics, Structral Scores: FC 6, FA 6, RA 6, RH 6, RS 6

Good frame and body length on display in this son of Jerome. He is the first calf out of a two year old heifer that is well suited for use in a heifer joining programme.

Lot 124 Born: 21/08/2015 Structure date scored 05/12/2016

Calving Ease Growth Marbling Angus Breeding Heavy Grass Heavy Grain

\$INDEX TE MANIA BERKLEY B1 (AI) AYRVALE BARTEL E7(AI)(ET) Sire: TE MANIA JEROME J131 (AI) Dam: TE MANIA LOWAN J719 (AI)

\$146 \$122 \$172 \$130 TE MANIA I OWAN G694 (AI) TE MANIA I OWAN C653 (AI)

								J	anuai	ry 201	7 Ang	jus Αι	ıstrali	a BRI	EDPI	LAN									
		Calvin	g Eas	е	Č	Growt	h& Ma	terna	ı	Fert	ility	CWT		400 H	G Ca	rcase		Inta	ake			St	ructu	re	
THE STATE OF THE S	Dir	Dtrs	GL	B Wt	200	400	600	M Wt	Milk	SS	DC	750d	EMA	Rib	Rump	RBY%	IMF%	NFIP	NFIF	DOC	FC	FA	RA	RH	RS
EBV	+5.6	+5.0	-6.3	+2.0	+46	+80	+107	+95	+18	+1.4	-9.5	+70	+8.5	-0.2	-1.6	-0.3	+3.6	+0.28	+0.53	-9	+11.0	+12.1	+3.1	-1.9	+0.3
Acc	60%	46%	86%	76%	72%	74%	74%	72%	59%	79%	41%	64%	63%	66%	65%	57%	58%	46%	46%	59%	51%	51%	43%	40%	42%

Traits Observed: GL CE BWT 200WT 400WT SS FAT EMA IMF DOC Genomics, Structral Scores: FC 6, FA 6, RA 6, RH 5, RS 5

Balanced and well suited for use over heifers. L1024 is the first calf out of a two year old heifer.

							BRI	ED A	VERA	GE EB	VS FC	OR 20	15 B	ORN (CALV	S							
С	ALVIN	G EAS	Ĕ	GF	ROWTH	1 & MA	TERNA	٩L	FERT	ILITY	CWT		C	ARCA	SE		INT	AKE			IND	EX\$	
DIR.	DTRS	GL	Bwt	200	400	600	Mwt	MILK	SS	DC	750d	EMA	RIB	RUMP	RBY%	IMF%	NFIP	NFIF	Doc	AB	D	HG	G
0.0	+0.1	-3.7	+4.3	+42	+77	+100	+88	+15	+1.7	-3.8	+56	+4.6	0.0	-0.2	+0.3	+1.6	+0.09	+0.15	+5	\$106	\$103	\$110	\$105
	Anim	als with	EBVs and	Indexes	highlighte	d with sha	ding are i	n the top '	10% of the	e Angus	breed. W	ith the e	xceptio	n of fat w	hich has	no shad	ding, and	Mature W	eight wh	nich is sha	ded if the	value is <	< 100.

Lot 125 TE MANIA LINGUIST L1038 (AI)

Born: 22/08/2015 Society Id: VTML1038 AMFU/NHFU/CAFU/DDFU

oo Hoovy Croin

Calving Ease Growth Carcase Marbling Angus Breeding Heavy Grass Heavy Grain

G AR TWINHEARTS 8418 SS OBJECTIVE TS10 OT G AR TWINHEARTS 8418

Sire: TE MANIA JENKINS J89 (AI)

BOOROOMOOKA INSPIRED E124(AI)

Dam: TE MANIA JEDDA J205 (AI)

AB D HG G \$128 \$117 \$140 \$123

January 2017 Angus Australia BREEDPLAN **Calving Ease Growth& Maternal** Fertility CWT 400 KG Carcase 8 Dtrs GL 400 600 M Wt Milk SS DC 750d Rib Rump RBY% IMF% NFIP NFIF RA RH 200 EMA DOC FA +2.5 +1.7 -5.9 +2.8 +49 +87 +118 +103 +23 +2.1 -3.8 +65 +6.0 -1.9 -1.0 +1.0 +2.4 +0.26 +0.21 +21 +5.5 +1.4 +2.2 +2.0 +0.3 47% 38% 85% 74% 68% 69% 66% 62% 45% 72% 35% 57% 59% 60% 60% 55% 53% 43% 43% 57% 52%

Traits Observed: GL CE BWT 200WT 400WT SS FAT EMA IMF DOC, Structral Scores: FC 6, FA 6, RA 5, RH 5, RS 5 52% 42% 37% 41%

TE MANIA JEDDA G3271 (AI)

L1038 is ideal to use in a heifer joining programme. He is the first calf out of a two year old heifer.

Society Id: VTML1044

Lot 126 TE MANIA LINKE L1044 (AI

Structure date scored 05/12/2016

Calving Ease Growth Marbling Angus Breeding Heavy Grass Heavy Grain

C R A BEXTOR 872 5205 608

Sire: G A R PROPHET

GAR OBJECTIVE 1885

SANDPOINT BLACKBIRD 8809

LAWSONS NEW DESIGN 1407 Z1393(AI)

Born: 23/08/2015

TE MANIA JAPARA G115 (AI)

B A R EXT TRAVELER 205 CRA LADY JAYE 608 498 S EASY CARABAR DOCKLANDS D62(AI)

Dam: TE MANIA BEEAC J141 (AI)

TE MANIA BEEAC G197 (AI)

TE MANIA BEEAC G197 (AI)

KAROO W109 DIRECTION Z181 CARABAR BLACKCAP MARY B12(AI)(ET)

ARDROSSAN EQUATOR A241 (AI) (ET) TE MANIA JEDDA E156 (AI)

\$INDEX
AB D HG G
\$136 \$121 \$148 \$129

TE MANIA I January 2017 Angus Australia BREEDPLAN CWT Fertility Calving Ease **Growth& Maternal** 400 KG Carcase Intake Structure Rump RBY% IMF% NFIP NFIF RA GL B Wt 200 400 600 M Wt Milk SS DC 750d EMA Rib DOC FC FΑ RS Dir Dtrs +0.7 +0.6 -4.8 +3.4 +55 +93 +120 +100 +21 +62 | +6.9 +0.9 +1.2 -0.3 +3.0 | +0.31 +0.24 +1 -3.3 +15.5 -4.5 +0.2 -0.3 -0.2 -5.7 61% 51% 86% 76% o 74% 74% 74% 64% 79% 37% 67% 64% 66% 66% 57% 60% 43% 44% !
Observed: GL CE BWT 200WT 400WT SS FAT EMA IMF DOC Genomics, Structral Scores: FC 6, FA 5, RA 5, RH 5, RS 58% 54% 54% 47%

Another good bull that is balanced and well suited for use over heifers. First calf out of a two year old heifer. This bull is ideal as an outcross option for Berkley, Regent and Garth bloodlines.

Lot 127 TE MANIA LITCHFIELD L1097 (AI)

Born: 28/08/2015 Society ld: VTML1097 AMFU/NHFU/CAFU/DDC Structure date scored 05/12/2016

Growth Carcase Marbling Angus Breeding Heavy Grass Heavy Grain

B/R NEW DAY 454

BOYD NEW DAY 8005
BR RUBY 1224

WERNER WESTWARD 357

Sire: V A R RESERVE 1111(ET)

Dam: TE MANIA JEDDA

WERNER WESTWARD 357

Dam: TE MANIA JEDDA J269 (AI)

TE MANIA JEDDA G984 (AI)

TE MANIA JEDDA G984 (AI)

TE MANIA JEDDA G912 (AI)

January 2017 Angus Australia BREEDPLAN **Calving Ease** Fertility CWT 400 KG Carcase **Growth& Maternal** Intake Structure e DC Dir Dtrs GL B Wt 200 400 600 M Wt Milk SS 750d EMA Rib Rump RBY% IMF% NFIP NFIF DOC FC FA RA RH RS +0.8 -1.1 -1.8 +4.4 +47 +83 +106 +80 +19 +0.7 -4.9 +59 +8.7 -0.4 -1.3 +1.4 +2.4 +0.24 +0.27 +6 +10.5 +5.0 +5.3 -4.3 +0.1 70% 68% 51% 34% 58% 60% 61% 85% 74% 69% 73% 61% 56% 55% | 43% | 43% | 58% | 51% | 52% | 42% 51% 44% 63% 39% Traits Observed: GL CE BWT 200WT 400WT SS FAT EMA IMF DOC, Structral Scores: FC 6, FA 6, RA 6, RH 6, RS 5

L1097 shows a lot of balance and good figures across the board. He is a great outcross option for Berkley and Garth bloodlines and the first calf out of a two year old heifer.

Lot 128 TE MANIA LLOYDS L1173 (AI)

Born: 02/09/2015 Society Id: VTML173 AMFU/NHFU/CAFU/DDFU

Structure date scored 05/12/2016

Growth Carcase Marbling Angus Breeding Heavy Grass Heavy Grain

TC ABERDEEN 759 CR A BEXTOR 872 5205 608 TE MANIA DEFLATION D367 (AI) TE MANIA Sire: RENNYLEA H7 (AI) (ET) Dam: TE MANIA MOONGARA F79

TE MANIA DEFLATION D367 (AI)

TE MANIA WARGOONA Y408

TE MANIA MOONGARA F790 (AI)

TE MANIA MOONGARA C326 (AI)

TE MANIA MOONGARA C326 (AI)

\$INDEX
AB D HG G
\$124 \$118 \$127 \$122

January 2017 Angus Australia BREEDPLAN **Calving Ease** Fertility CWT 400 KG Carcase **Growth& Maternal** Rib Rump RBY% IMF% NFIP NFIF GL B Wt DC 750d EMA +0.3 +2.2 -6.9 +4.1 +86 +111 +90 +16 +64 +11.0 0.0 -0.9 +1.3 +1.7 +0.11 +0.16 +6 +13.8 +12.2 +7.0 +49 +0.8 -4.0 -37 +0.5 o 70% 68% 63% 51% 73% 38% 59% 60% 61% 62% 56% 56% 44% 44% Traits Observed: GL CE BWT 200WT 400WT SS FAT EMA IMF DOC, Structral Scores: FC 6, FA 6, RA 5, RH 6, RS 5 42% 85% 74% 44% 59% 47% 49% 36%

Stylish and so balanced. The dam of this bull as a rising seven year old remains active within the stud herd. L1173 is an outcross option for Berkley and Garth bloodlines.

							BRE	EED A	VERA	GE EB	VS FC	OR 20	15 B	ORN (CALVI	ES							
С	ALVIN	G EAS	Ē	GF	ROWTH	1 & MA	TERNA	AL	FERT	ILITY	CWT		C	ARCA	SE		INT	AKE			IND	EX\$	
DIR.	DTRS	GL	Bwt	200	400	600	Mwt	MILK	SS	DC	750d	EMA	RIB	RUMP	RBY%	IMF%	NFIP	NFIF	Doc	AB	D	HG	G
0.0	+0.1	-3.7	+4.3	+42	+77	+100	+88	+15	+1.7	-3.8	+56	+4.6	0.0	-0.2	+0.3	+1.6	+0.09	+0.15	+5	\$106	\$103	\$110	\$105
	Anim	nals with	EBVs and	Indexes	highlighte	d with sha	ding are i	n the top	10% of th	e Angus	breed. W	ith the e	xceptio	n of fat v	vhich has	no shac	ling, and	Mature W	eight wh	nich is sha	ded if the	value is	< 100.

Lot 129 TE MANIA LOCKSLEY L1206 (AI)

Society Id: VTML1206

TE MANIA CANTON C138 (AI) (ET) TE MANIA MITTAGONG C900 (ACR) AMFU/NHFU/CAFU/DDFU Structure date score

TE MANIA ULONG U41 (AI) (ET) TE MANIA BARUNAH Y677 (ACR) (AI)

Calving Ease Growth Fertility Marbling Angus Breeding Heavy Grass Heavy Grain

TE MANIA AFRICA A217 (AI)

TE MANIA AFRICA A217 (AI)

TE MANIA JEDDA Y32 (AI) (ET)

TE MANIA JEDDA Y32 (AI) (ET)

TE MANIA MITTAGONG E28 (AI)

Born: 03/09/2015

TE MANIA DECLARER D285 (AI)

LEACHMAN BOOM TIME
TE MANIA BARUNAH A39 (A)

TE MANIA BARUNAH A59 (AI) (ET)

TE MANIA BARUNAH A194 (AI) (ET)

TE MANIA BARUNAH X10 (AI) (ET)

AB D HG G \$129 \$120 \$141 \$121

								J	anuai	ry 201	7 Ang	jus Aı	ıstrali	a BRE	EDPI	_AN									
2000	C	Calvin	g Eas	е	(Growt	h& Ma	aterna	I	Fert	ility	CWT		400 H	(G Ca	rcase		Inta	ake			St	ructu	re	
	Dir	Dtrs	GL	B Wt	200	400	600	M Wt	Milk	SS	DC	750d	EMA	Rib	Rump	RBY%	IMF%	NFIP	NFIF	DOC	FC	FA	RA	RH	RS
EBV	+2.0	+4.2	-7.6	+2.0	+44	+82	+100	+63	+25	+2.9	-6.6	+52	+4.6	+1.0	+1.3	-0.6	+3.2	+0.33	+0.33	+26	+3.8	-12.6	-14.3	-0.2	+0.5
Acc	57%	52%	85%	76%	71%	72%	70%	66%	55%	74%	43%	64%	62%	63%	65%	59%	60%	50%	52%	62%	58%	60%	54%	49%	51%
					71%	72%		66%	55%	74%	43%	64%	62%	63%	65%	59%	60%	50%	52%						

This Garth son is well balanced with good body length. His calving ease figures make him ideal for use over heifers.

Lot 130 TE MANIA LOGBOOK L1236 (AI)

Structure date scored 05/12/2016

Born: 04/09/2015 Society Id: VTML1236 AMEU/NHEU/CAFU/DDFU Structure
Growth Fertility Marbling Angus Breeding Heavy Grass Heavy Grain

TE MANIA AFRICA A217 (AI)

Sire: TE MANIA GARTH G67 (AI)

TE MANIA MITTAGONG E28 (AI)

TE MANIA ULONG U41 (AI) (ET)
TE MANIA JEDDA Y32 (AI) (ET)

TE MANIA CANTON C138 (AI) (ET) TE MANIA MITTAGONG C900 (ACR TE MANIA EMPEROR E343 (AI)

TE MANIA EMPEROR E343 (AI)

TE MANIA LOWAN 274 (AI) (ET)

TE MANIA BARUNAH G827 (AI)

\$INDEX
AB D HG G
\$140 \$122 \$156 \$130

								J	anuai	ry 201	7 Ang	us Aı	ıstrali	a BRI	EDPI	_AN									
	C	alvin	g Eas	е	(Growt	h& Ma	aterna	ı	Fert	ility	CWT		400 H	(G Ca	rcase		Inta	ake			St	ructu	re	
The same of the sa	Dir	Dtrs	GL	B Wt	200	400	600	M Wt	Milk	SS	DC	750d	EMA	Rib	Rump	RBY%	IMF%	NFIP	NFIF	DOC	FC	FA	RA	RH	RS
EBV	+0.6	+2.6	-7.7	+4.4	+47	+88	+113	+93	+19	+3.6	-8.3	+49	+4.8	+1.9	+2.5	-0.5	+2.9	+0.32	+0.37	+35	+4.5	-8.7	-9.9	+0.7	+0.4
Acc	56%	51%	86%	75%	71%	71%	70%	66%	53%	74%	44%	63%	62%	63%	65%	59%	60%	50%	52%	60%	57%	58%	52%	48%	50%

TE MANIA BARUNAH A296 (AI)

Traits Observed: GL CE BWT 200WT 400WT SS FAT EMA IMF DOC, Structral Scores: FC 6, FA 6, RA 6, RH 5, RS 5

Balanced with good body length and sired by Te Mania Garth. The past three generations on both sides of this bulls pedigree are Te Mania blood.

Lot 131 TE MANIA LOMAS L1254 (AI)

Growth Fertility Carcase Marbling Angus Breeding Heavy Grass Heavy Grain

ARDROSSAN CONNECTION X15 CAPUTURE DIRECTION S21

ARDROSSAN CONNECTION X15 CAPUTURE DIRECTION S21

ARDROSSAN WILCOOLA V9 TE MANIA ZAMBIA Z69 (AI) (ET)

TE MANIA ZAMBIA Z69 (AI) (ET)

SA FFOCUS OF RE
TE MANIA ZAMBIA Z69 (AI) (ET)

SA FFOCUS OF RE
TE MANIA ZAMBIA Z69 (AI) (ET)

SA FFOCUS OF RE
TE MANIA ZAMBIA Z69 (AI) (ET)

SA FFOCUS OF RE
TE MANIA ZAMBIA Z69 (AI) (ET)

SA FFOCUS OF RE
TE MANIA ZAMBIA Z69 (AI) (ET)

SA FFOCUS OF RE
TE MANIA ZAMBIA Z69 (AI) (ET)

SA FFOCUS OF RE
TE MANIA ZAMBIA Z69 (AI) (ET)

SA FFOCUS OF RE
TE MANIA ZAMBIA Z69 (AI) (ET)

SA FFOCUS OF RE
TE MANIA ZAMBIA Z69 (AI) (ET)

SA FFOCUS OF RE
TE MANIA ZAMBIA Z69 (AI) (ET)

SA FFOCUS OF RE
TE MANIA Z69 (AI) (ET)

SA FFOCUS OF RE
TE MANIA Z69 (AI) (ET)

SA FFOCUS OF RE
TE MANIA Z69 (AI) (ET)

SA FFOCUS OF RE
TE MANIA Z69 (AI) (ET)

SA FFOCUS OF RE
TE MANIA Z69 (AI) (ET)

SA FFOCUS OF RE
TE MANIA Z69 (AI) (ET)

SA FFOCUS OF RE
TE MANIA Z69 (AI) (ET)

SA FFOCUS OF RE
TE MANIA Z69 (AI) (ET)

SA FFOCUS OF RE
TE MANIA Z69 (AI) (ET)

SA FFOCUS OF RE
TE MANIA Z69 (AI) (ET)

SA FFOCUS OF RE
TE MANIA Z69 (AI) (ET)

SA FFOCUS OF RE
TE MANIA Z69 (AI) (ET)

SA FFOCUS OF RE
TE MANIA Z69 (AI) (ET)

SA FFOCUS OF RE
TE MANIA Z69 (AI) (ET)

SA FFOCUS OF RE
TE MANIA Z69 (AI) (ET)

SA FFOCUS OF RE
TE MANIA Z69 (AI) (ET)

SA FFOCUS OF RE
TE MANIA Z69 (AI) (ET)

SA FFOCUS OF RE
TE MANIA Z69 (AI) (ET)

SA FFOCUS OF RE
TE MANIA Z69 (AI) (ET)

SA FFOCUS OF RE
TE MANIA Z69 (AI) (ET)

SA FFOCUS OF RE
TE MANIA Z69 (AI) (ET)

SA FFOCUS OF RE
TE MANIA Z69 (AI) (ET)

SA FFOCUS OF RE
TE MANIA Z69 (AI) (ET)

SA FFOCUS OF RE
TE MANIA Z69 (AI) (ET)

SA FFOCUS OF RE
TE MANIA Z69 (AI) (ET)

SA FFOCUS OF RE
TE MANIA Z69 (AI) (ET)

SA FFOCUS OF RE
TE MANIA Z69 (AI) (ET)

SA FFOCUS OF RE
TE MANIA Z69 (AI) (ET)

SA FFOCUS OF RE
TE MANIA Z69 (AI) (ET)

SA FFOCUS OF RE
TE MANIA Z69 (AI) (ET)

SA FFOCUS OF RE
TE MANIA Z69 (AI) (ET)

SA FFOCUS OF RE
TE MANIA Z69 (AI) (ET)

SA FFOCUS OF RE
TE MANIA Z69 (AI) (ET)

SA FFOCUS OF RE
TE MANIA Z69 (AI) (ET)

SA FFOCUS OF RE
TE MANIA Z69 (AI)

ARDROSSAN CONNECTION X15 ARDROSSAN (CONNECTION X15 ARDROSSAN (CONNECTI

								J	anuai	ry 201	7 Ang	us Aı	ıstrali	a BRI	EEDPI	_AN									
	O	alving	g Eas	e		Growt	h& Ma	aterna	I	Fert	ility	CWT		400 H	(G Ca	rcase		Inta	ake			St	ructu	re	
THE COLUMN	Dir	Dtrs	GL	B Wt	200	400	600	M Wt	Milk	SS	DC	750d	EMA	Rib	Rump	RBY%	IMF%	NFIP	NFIF	DOC	FC	FA	RA	RH	RS
EBV	+2.6	+2.4	-4.9	+4.5	+43	+76	+108	+107	+18	+2.8	-4.5	+57	+5.1	-0.8	-1.2	+1.1	+1.9	+0.10	+0.29	-9	+14.0	+10.5	+6.1	-0.4	-1.1
Acc	54%	45%	85%	75%	70%	71%	69%	66%	61%	74%	45%	62%	62%	63%	64%	59%	58%	49%	49%	58%	50%	51%	37%	35%	37%
					Ti	raits Obs	erved: G	L CE BV	VT 200W	/T 400W	T SS FA	T EMA I	MF DOC	, Structr	al Score	s: FC 6, I	FA 6, RA	5, RH 5	, RS 5						

Good natural thickness and body length on display. The past three generations on the dams side of this bull have all been ET conceived.

Lot 132 TE MANIA LOMBARD L1256 (AI)

Born: 05/09/2015 Society Id: VTML1256 AMFU/NHFU/CAFU/DDFU Structure date scored 05/12/2016

Calving Ease Growth Carcase Marbling Angus Breeding Heavy Grass Heavy Grain

G A R TWINHEARTS 8418 S SOBJECTIVE TS10 0T26

G A R TWINHEARTS 8418 G A R VIELD GRADE 2015

TE MANIA EARNINGS E38 (AI)

TE MANIA BARWON C308 (A)

SINDEX

G AR IVININEARIS 8418 G AR YIELD GRADE 2015 IE MANIA EARNINGS E38 (A) TE MANIA BARNON C388 (A) TE MANIA BARNON C388 (A) TE MANIA JENKINS J89 (AI)

TE MANIA JAPARA G115 (AI) LAWONS INVINCIBLE C402(AI)

TE MANIA JAPARA G115 (AI) TE MANIA JAPARA G40 (AI)

TE MANIA JAPARA G115 (AI) TE MANIA JAPARA G40 (AI)

TE MANIA JAPARA G115 (AI) TE MANIA JAPARA G40 (AI)

TE MANIA JAPARA G115 (AI) TE MANIA JAPARA G40 (AI)

TE MANIA JAPARA G115 (AI) TE MANIA JAPARA G40 (AI)

TE MANIA JAPARA G115 (AI) TE MANIA JAPARA G40 (AI)

TE MANIA JAPARA G115 (AI) TE MANIA JAPARA G40 (AI)

TE MANIA JAPARA G115 (AI) TE MANIA JAPARA G40 (AI)

TE MANIA JAPARA G115 (AI) TE MANIA JAPARA G40 (AI)

TE MANIA JAPARA G115 (AI) TE MANIA JAPARA G40 (AI)

TE MANIA JAPARA G115 (AI) TE MANIA JAPARA G40 (AI)

TE MANIA JAPARA G115 (AI) TE MANIA JAPARA G40 (AI)

TE MANIA JAPARA G115 (AI) TE MANIA JAPARA G40 (AI)

TE MANIA JAPARA G415 (AI) TE MANIA JAPARA G40 (AI)

TE MANIA JAPARA G415 (AI) TE MANIA JAPARA G415 (AI)

								J	anuai	y 201	7 Ang	us Aı	ıstrali	a BRI	EEDPI	_AN									
	C	alvin	g Eas	е	(Growt	h& Ma	aterna	ı	Fert	ility	CWT		400 H	(G Ca	rcase		Inta	ake			S	tructu	re	
NO.	Dir	Dtrs	GL	B Wt	200	400	600	M Wt	Milk	SS	DC	750d	EMA	Rib	Rump	RBY%	IMF%	NFIP	NFIF	DOC	FC	FA	RA	RH	RS
EBV	+5.4	+3.9	-8.5	+1.2	+49	+88	+115	+95	+22	+1.4	-3.9	+66	+7.5	-1.0	-1.1	+1.0	+2.8	+0.22	+0.20	+30	-2.8	-5.6	-13.8	+0.8	+0.4
Acc	56%	38%	85%	76%	71%	73%	72%	72%	58%	78%	34%	63%	62%	64%	64%	55%	57%	41%	41%	57%	52%	52%	43%	38%	41%

Traits Observed: GL CE BWT 200WT 400WT SS FAT EMA IMF DOC Genomics, Structral Scores: FC 6, FA 6, RA 6, RH 5, RS 5

L1256 is balanced and well suited for use over heifers.

							BRE	EED A	VERA	GE EB	VS F	OR 20	15 B(ORN (CALV	ES							
С	ALVIN	G EAS	Ĕ	GF	ROWTI	H & MA	TERNA	AL.	FERT	ILITY	CWT		C	ARCA	SE		INT	AKE			IND	EX\$	
DIR.	DTRS	GL	Bwt	200	400	600	Mwt	MILK	SS	DC	750d	EMA	RIB	RUMP	RBY%	IMF%	NFIP	NFIF	Doc	AB	D	HG	G
0.0	+0.1	-3.7	+4.3	+42	+77	+100	+88	+15	+1.7	-3.8	+56	+4.6	0.0	-0.2	+0.3	+1.6	+0.09	+0.15	+5	\$106	\$103	\$110	\$105
	Anim	als with	FBVs and	Indexes	hiahliahte	ed with sha	ding are i	n the top	10% of the	e Angus I	breed. W	/ith the e	xceptio	n of fat w	hich has	no shad	ling, and	Mature W	eiaht wh	nich is sha	ded if the	value is	< 100.

AMFU/NHFU/CAFU/DDFU

Growth Carcase Marbling Angus Breeding Heavy Grass Heavy Grain

TE MANIA LOWAN E707 (AI)

TC ABERDEEN 759 Sire: RENNYLEA H7 (AI) (ET) LAWSONS NEW DESIGN 1407 Z1393(AI)

Born: 07/09/2015

Born: 08/09/2015

C R A BEXTOR 872 5205 608 TC BLACKBIRD 4034

TE MANIA EARL GREY E25 (AI) Dam: TE MANIA LOWAN G682

\$INDEX \$128 \$118 \$131 \$126

TE MANIA BERKLEY B1 (AI) TE MANIA LOWAN W511 (AI) (ET) BON VIEW DESIGN 1407 LAWSONS FUTURE DIRECTION W75(AI) January 2017 Angus Australia BREEDPLAN Fertility CWT **Calving Ease Growth& Maternal** 400 KG Carcase Structure B Wt 400 600 M Wt Milk Dir Dtrs GL SS DC 750d EMA Rib Rump RBY% IMF% NFIP NFIF FA RA 200 +1.6 +3.1 -6.6 +4.3 +46 +81 +109 +81 +19 -0.1 -5.3 +56 +10.6 +0.4 -0.6 +1.3 +1.5 +0.09 +0.06 +15 -3.7 +6.7 +0.6 -0.9 +0.1 51% 45% 85% 75% 70% 71% 69% 64% 52% 73% 41% 60% 61% 62% 63% 57% 57% 46% 47% 59% 48%

Traits Observed: GL CE BWT 200WT 400WT SS FAT EMA IMF DOC, Structral Scores: FC 6, FA 6, RA 5, RH 5, RS 6 49% 37% 31%

Stylish with good natural thickness and body length on display. The dam of this bull is from our most prominent cow family line, Lowan, with 930 direct active descendants currently within our herd.

Lot 134

Growth Fertility Carcase Marbling Angus Breeding Heavy Grass Heavy Grain

GARDENS HIGHMARK TE MANIA LOWAN Y298 (AI) (ET) TE MANIA DAIQUIRI D19 (AI) TE MANIA MOONGARA C332 (AI) \$INDEX TE MANIA FLORIATED F664 (AI)

Sire: TE MANIA DEFLATION D367 (AI) TE MANIA WARGOONA Y408 (AI)

TE MANIA WANGLE W128 (AI) TE MANIA WARGOONA W160 (AI)

Dam: TE MANIA BARUNAH H1001 (AI) TE MANIA BARUNAH D932 TE MANIA ZION Z99 (AI) (ET) TE MANIA BARUNAH B77 (AI) \$131 \$117 \$142 \$124

								J	anua	ry 201	7 Ang	jus Ai	ıstrali	a BRI	EDPI	LAN									
	Calving Ease Growth& Maternal									Fert	ility	CWT		400 F	(G Ca	rcase		Inta	ake			St	ructu	re	
	Dir	Dtrs	GL	B Wt	200	400	600	M Wt	Milk	SS	DC	750d	EMA	Rib	Rump	RBY%	IMF%	NFIP	NFIF	DOC	FC	FA	RA	RH	RS
EBV	-4.0	-0.3	-2.4	+6.4	+54	+89	+118	+104	+13	+3.3	-6.3	+68	+10.3	-1.4	-1.0	+1.9	+2.0	+0.17	+0.24	+10	+15.7	+0.9	+0.6	-3.4	+0.5
Acc	50%	42%	85%	74%	69%	70%	68%	66%	57%	73%	39%	62%	61%	62%	64%	58%	58%	45%	45%	57%	54%	56%	48%	42%	45%

Traits Observed: GL CE BWT 200WT 400WT SS FAT EMA IMF DOC, Structral Scores: FC 6, FA 6, RA 5, RH 5, RS 5

L1328 is a well balanced bull and a great outcross option for Berkley and Regent bloodlines.

Lot 135 I OWDOWN

Growth Fertility Carcase Marbling Angus Breeding Heavy Grass Heavy Grain

G A R SOLUTION LAWSONS PREDESTINED A598/AI \$INDEX LAWSONS INVINCIBLE C402(AI) TE MANIA CALCINE C50 (AI)

Sire: TE MANIA GENEVA G452 (AI) TE MANIA BEEAC C238 (AI) (ET) C A FUTURE DIRECTION 5321 TE MANIA BEEAC U343 (AI) (ET)

Dam: TE MANIA MITTAGONG G765 TE MANIA MITTAGONG E520 (ACR) (AI) TE MANIA NEW DESIGN Z496 (AI) TE MANIA MITTAGONG X764 (ACR

G \$131 \$119 \$144 \$124

							J	anuai	y 201	/ Ang	us At	ıstraii	a BK	ואטם:	_AN									
C	alvin	g Eas	е	•	Growt	h& Ma	terna	ı	Fert	ility	CWT		400 K	(G Ca	rcase		Inta	ake			St	ructu	re	
Dir	Dtrs	GL	B Wt	200	400	600	M Wt	Milk	SS	DC	750d	EMA	Rib	Rump	RBY%	IMF%	NFIP	NFIF	DOC	FC	FA	RA	RH	RS
-1.2	+0.5	-3.7	+5.6	+50	+89	+115	+88	+16	+2.3	-4.4	+57	+8.7	-0.2	-0.2	+0.8	+2.7	+0.38	+0.36	-7	-4.7	+7.0	+4.8	+0.8	-0.1
50%	44%	62%	74%	69%	70%	68%	65%	53%	72%	39%	61%	60%	61%	63%	57%			44%	57%	51%	52%	41%	33%	37%
	Dir • 1.2	Dir Dtrs	Dir Dtrs GL 1.2 +0.5 -3.7	1.2 +0.5 -3.7 +5.6	Dir Dtrs GL BWt 200 1.2 +0.5 -3.7 +5.6 +50	Dir Dtrs GL BWt 200 400 11.2 +0.5 -3.7 +5.6 +50 +89 50% 44% 62% 74% 69% 70%	Dir Dtrs GL BWt 200 400 600 11.2 +0.5 -3.7 +5.6 +50 +89 +115 50% 44% 62% 74% 69% 70% 68%	Calving Ease Growth& Materna Dir Dtrs GL B Wt 200 400 600 M Wt 1.2 +0.5 -3.7 +5.6 +50 +89 +115 +88 50% 44% 62% 74% 69% 70% 68% 65%	Calving Ease Growth& Maternal Dir Dtrs GL B Wt 200 400 600 M Wt Milk 1.2 +0.5 -3.7 +5.6 +50 +89 +115 +88 +16 50% 44% 62% 74% 69% 70% 68% 65% 53%	Calving Ease Growth& Maternal Fert Dir Dtrs GL B Wt 200 400 600 M Wt Milk SS 1.2 +0.5 -3.7 +5.6 +50 +89 +115 +88 +16 +2.3 50% 44% 62% 74% 69% 70% 68% 65% 53% 72%	Calving Ease Growth& Maternal Fertility Dir Dtrs GL B Wt 200 400 600 M Wt Milk SS DC 1.1.2 +0.5 -3.7 +5.6 +50 +89 +115 +88 +16 +2.3 -4.4 50% 44% 62% 74% 69% 70% 68% 65% 53% 72% 39%	Calving Ease Growth& Maternal Fertility CWT Dir Dtrs GL B Wt 200 400 600 M Wt Milk SS DC 750d 1.1.2 +0.5 -3.7 +5.6 +50 +89 +115 +88 +16 +2.3 -4.4 +57 50% 44% 62% 74% 69% 70% 68% 65% 53% 72% 39% 61%	Calving Ease Growth& Maternal Fertility CWT Dir Dtrs GL B Wt 200 400 600 M Wt Milk SS DC 750d EMA 1.1.2 +0.5 -3.7 +5.6 +50 +89 +115 +88 +16 +2.3 -4.4 +57 +8.7 50% 44% 62% 74% 69% 70% 68% 65% 53% 72% 39% 61% 60%	Calving Ease Growth& Maternal Fertility CWT 400 M Dir Dtrs GL B Wt 200 400 600 M Wt Milk SS DC 750d EMA Rib 1.1.2 +0.5 -3.7 +5.6 +50 +89 +115 +88 +16 +2.3 -4.4 +57 +8.7 -0.2 50% 44% 62% 74% 69% 70% 68% 65% 53% 72% 39% 61% 60% 61%	Calving Ease Growth& Maternal Fertility CWT 400 KG Cal Dir Dtrs GL B Wt 200 400 600 M Wt Milk SS DC 750d EMA Rib Rump 1.1.2 +0.5 -3.7 +5.6 +50 +89 +115 +88 +16 +2.3 -4.4 +57 +8.7 -0.2 -0.2 50% 44% 62% 74% 69% 70% 68% 65% 53% 72% 39% 61% 60% 61% 63%	Dir Dtrs GL B Wt 200 400 600 M Wt Milk SS DC 750d EMA Rib Rump RBY% 1.2 +0.5 -3.7 +5.6 +50 +89 +115 +88 +16 +2.3 -4.4 +57 +8.7 -0.2 -0.2 +0.8 50% 44% 62% 74% 69% 70% 68% 65% 53% 72% 39% 61% 60% 61% 63% 57%	Calving Ease Growth& Maternal Fertility CWT 400 KG Carcase Dir Dtrs GL B Wt 200 400 600 M Wt Milk SS DC 750d EMA Rib Rump RBY% IMF% 1.1.2 +0.5 -3.7 +5.6 +50 +89 +115 +88 +16 +2.3 -4.4 +57 +8.7 -0.2 -0.2 -0.2 +0.8 +2.7 50% 44% 62% 74% 69% 70% 68% 65% 53% 72% 39% 61% 60% 61% 63% 57% 57%	Calving Ease Growth& Maternal Fertility CWT 400 KG Carcase Inta Dir Dtrs GL B Wt 200 400 600 M Wt Milk SS DC 750d EMA Rib Rump RBY% IMF% NFIP 1.1.2 +0.5 -3.7 +5.6 +50 +89 +115 +88 +16 +2.3 -4.4 +57 +8.7 -0.2 -0.2 +0.8 +2.7 +0.38 50% 44% 62% 74% 69% 70% 68% 65% 53% 72% 39% 61% 60% 61% 63% 57% 57% 45%	Calving Ease Growth& Maternal Fertility CWT 400 KG Carcase Intake Dir Dtrs GL B Wt 200 400 600 M Wt Milk SS DC 750d EMA Rib Rump RBY IMF% NFIP NFIF 1.1.2 +0.5 -3.7 +5.6 +50 +89 +115 +88 +16 +2.3 -4.4 +57 +8.7 -0.2 -0.2 +0.8 +2.7 +0.38 +0.36 50% 44% 62% 74% 69% 70% 68% 65% 53% 72% 39% 61% 60% 61% 63% 57% 57% 45% 44%	Calving Ease Growth& Maternal Fertility CWT 400 KG Carcase Intake Dir Dtrs GL B Wt 200 400 600 M Wt Milk SS DC 750d EMA Rib Rump RBY% IMF% NFIP NFIF DOC 1.1.2 +0.5 -3.7 +5.6 +50 +89 +115 +88 +16 +2.3 -4.4 +57 +8.7 -0.2 -0.2 +0.8 +2.7 +0.38 +0.36 -7 50% 44% 62% 74% 69% 70% 68% 65% 53% 72% 39% 61% 60% 61% 63% 57% 57% 45% 44% 57%	Calving Ease Growth& Maternal Fertility CWT 400 KG Carcase Intake Intake<	Calving Ease Growth& Maternal Fertility CWT 400 KG Carcase Intake St Dir Dtrs GL B Wt 200 400 600 M Wt Milk SS DC 750d EMA Rib Rump RBY% IMF% NFIP NFIP DCC FC FA 1.1.2 +0.5 -3.7 +5.6 +50 +89 +115 +88 +16 +2.3 -4.4 +57 +8.7 -0.2 -0.2 +0.8 +2.7 +0.38 +0.36 -7 -4.7 +7.0	Calving Ease Growth& Maternal Fertility CWT 400 KG Carcase Intake Intake Structu Dir Dirs GL B Wt 200 400 600 M Wt Milk SS DC 750d EMA Rib Rump RBY IMF% NFIF DOC FC FA RA 4.1.2 +0.5 -3.7 +5.6 +50 +89 +115 +88 +16 +2.3 -4.4 +57 +8.7 -0.2 -0.2 +0.8 +2.7 +0.38 +0.36 -7 -4.7 +7.0 +4.8 50% 44% 62% 74% 69% 70% 68% 65% 53% 72% 39% 61% 60% 61% 63% 57% 57% 45% 44% 57% 51% 52% 41%	Calving Ease Growth& Maternal Fertility CWT 400 KG Carcase Intake Intake Structure Dir Dirs GL B Wt 200 400 600 M Wt Milk SS DC 750d EMA Rib Rump RBY% IMF% NFIP NFIF DOC FC FA RA RH 4.1.2 +0.5 -3.7 +5.6 +50 +89 +115 +88 +16 +2.3 -4.4 +57 +8.7 -0.2 -0.2 +0.8 +2.7 +0.38 +0.36 -7 -4.7 +7.0 +4.8 +0.8 50% 44% 62% 74% 69% 70% 68% 65% 53% 72% 39% 61% 60% 61% 63% 57% 57% 45% 44% 57% 51% 52% 41% 33%

Traits Observed: CE BWT 200WT 400WT SS FAT EMA IMF DOC, Structral Scores: FC 6, FA 6, RA 5, RH 5, RS 5

Good frame, thickness and body length on display here. There is a small amount of white in the groin area.

Lot 136

Born: 15/09/2015 Society Id: VTML1427 Structure date scored 05/12/2016 Growth Fertility Carcase Marbling Angus Breeding Heavy Grass Heavy Grain

TUWHARETOA REGENT D145 (AI) (ET) Sire: TE MANIA GENERAL G429 (AI)

TE MANIA DANDLOO Z811 (AI)

TE MANIA ULONG U41 (AI) (ET)

TE MANIA 07 436 AB Dam: TE MANIA MOONGARA F22 (AI)

BONGONGO BULLETPROOF Z3

\$129 \$114 \$148 \$119

					TEI	MANIA DANI	DLOO X812								TE	MANIA MOC	NGARA B64	8		 	<u> </u>				
								J	anuai	y 201	7 Ang	us Aı	ıstrali	ia BRI	EEDP	LAN									
1	C	alvin	g Eas	е	(Growt	h& Ma	iterna	ı	Fert	ility	CWT		400 k	(G Ca	rcase		Inta	ake			St	tructu	re	
The second second	Dir	Dtrs	GL	B Wt	200	400	600	M Wt	Milk	SS	DC	750d	EMA	Rib	Rump	RBY%	IMF%	NFIP	NFIF	DOC	FC	FA	RA	RH	RS
EBV	-0.8	-0.5	-5.7	+4.8	+47	+86	+115	+101	+17	+4.0	-5.9	+49	+4.1	-0.5	-0.2	+0.5	+2.9	+0.12	+0.21	-3	+9.8	+15.5	+11.2	-1.2	+0.5
Acc	53%	48%	67%	75%	70%	71%	69%	65%	54%	73%	41%	63%	61%	62%	65%	58%	58%	48%	50%	59%	56%	57%	51%	44%	47%

TE MANIA MOONGARA D53 (ACR) (AI)

Traits Observed: CE BWT 200WT 400WT SS FAT EMA IMF DOC, Structral Scores: FC 6, FA 6, RA 5, RH 5, RS 5

L1427 presents with good frame and body length.

							BRI	ED A	VERA	GE EB	VS FC	OR 20	15 B	ORN (CALVE	S							
C	ALVIN	G EAS	SE.	GF	ROWTI	H & MA	TERNA	٩L	FERT	ILITY	CWT		C	ARCA	SE		INT	AKE			IND	EX\$	
DIR.	DTRS	GL	Bwt	200	400	600	Mwt	MILK	SS	DC	750d	EMA	RIB	RUMP	RBY%	IMF%	NFIP	NFIF	Doc	AB	D	HG	G
0.0	+0.1	-3.7	+4.3	+42	+77	+100	+88	+15	+1.7	-3.8	+56	+4.6	0.0	-0.2	+0.3	+1.6	+0.09	+0.15	+5	\$106	\$103	\$110	\$105
	Anim	als with	EBVs and	Indexes	highlighte	d with sha	iding are i	n the top '	10% of the	e Angus	breed. W	ith the e	xceptio	n of fat w	hich has	no shac	ling, and	Mature W	eight wh	nich is sha	ded if the	value is <	< 100.

Society Id: VTML1523 AMFU/NHFU/CAFU/DDFU d 05/12/2016

Growth Carcase Marbling Angus Breeding Heavy Grain

TE MANIA AMBASSADOR A134 (AI) LAWSONS HENRY VIII Y5 (AI) TUWHARETOA REGENT D145 (AI) (ET) Sire: TE MANIA GENERAL G429 (AI)

TE MANIA DANDLOO Z811 (AI)

Dam: TE MANIA JEDDA E382 (AI) (ET) TE MANIA JEDDA W85 (AI) (ET) TE MANIA ULONG U41 (AI) (ET) TE MANIA DANDLOO X812

B/R MIDI AND

\$113 \$105 \$122 \$109 C A FUTURE DIRECTION 5321 TE MANIA JEDDA S241 (AI) (ET

\$INDEX

January 2017 Angus Australia BREEDPLAN 400 KG Carcase **Calving Ease Growth& Maternal** Fertility | CWT Structure DC Dtrs GL 400 600 M Wt 750d Rib Rump RBY% IMF% NFIP NFIF FΑ RA B Wt 200 Milk EMA -4.1 -0.6 -4.6 +5.7 +50 +88 +114 +106 +14 +2.3 -3.7 +58 +7.0 -0.4 +0.5 +0.3 +2.5 +0.18 +0.28 +12 -0.3 -1.2 +7.2 -1.9 +0.5 70% 69% 66% 56% 71% 46% 64% 61% 62% 64% 58% 60% 51% 53% 61% 49% Traits Observed: CE BWT 200WT 400WT SS FAT EMA IMF DOC, Structral Scores: FC 6, FA 6, RA 6, RH 5, RS 5 64% 75% 70% 49%

This is the youngest bull in the catalogue. He presents well with good body length. The past three generations on the dams side of this bull have all been ET conceived.

Lot 138 Born: 07/08/2015 Society Id: VTML328

Calving Ease Growth Carcase Marbling Angus Breeding Heavy Grass Heavy Grain

S S OBJECTIVE T510 0T26 G A R YIELD GRADE 2015 VERMILLION YELLOWSTONE TE MANIA BEEAC U343 (AI) (ET) TE MANIA ANMOL A888 (AI) (ET)

Sire: TE MANIA JENKINS J89 (AI) Dam: TE MANIA BARUNAH G6 (AI) \$137 \$124 \$154 \$129 TE MANIA JAPARA G115 (AI) TE MANIA BARUNAH E676 (AI) (ET) TE MANIA BRA TE MANIA BAR January 2017 Angus Australia BREEDPLAN

CWT Fertility Calving Ease **Growth& Maternal** 400 KG Carcase Intake Structure GL 600 M Wt NFIP NFIF FA Dtrs B Wt 200 400 Milk SS DC 750d EMA Rib Rump RBY% IMF% DOC RA RS FC +87 +117 +92 +23 +2.4 -3.1 +4.9 +3.5 -10.7 +1.9 +59 +7.3 -1.9 -1.7 +1.2 +3.1 +0.19 +0.24 +2 +13.3 +7.7 -3.3 +1.8 -0.2 +49 56% 38% 86% 76% 71% 73% 73% 72% 59% 78% 35% 63% 61% 64% 63% 54% 56% 41% 41% Traits Observed: GL CE BWT 200WT 400WT SS FAT EMA IMF DOC Genomics, Structral Scores: FC 6, FA 5, RA 5, RH 5, RS 57% 51% 52%

Added thickness and body length shown by this bull. The past four generations on his dams side have contributed 146 progeny to our herd. He is well suited for use over heifers.

Lot 139 Society Id: VTML383 d 05/12/2016

Calving Ease Growth Carcase Marbling Angus Breeding Heavy Grass Heavy Grain

G A R PREDESTINED BFF EVERELDA ENTENSE 4015 TE MANIA DAIQUIRI D19 (AI) TE MANIA MOONGARA C332 (AI) \$INDEX WERNER WESTWARD 357 TE MANIA EL ORIATED E664 (AI)

Sire: TE MANIA JOCK J930 (AI) Dam: TE MANIA LOWAN H268 (AI) TE MANIA BEEAC G93 (AI) TE MANIA LOWAN D264 (AI) TE MANIA BERKLEY B1 (AI) TE MANIA LOWAN Z477 (AI) (ET) \$147 \$133 \$163 \$138 LAWSONS TANK B1155(AI) TE MANIA BEEAC E117 (AI

January 2017 Angus Australia BREEDPLAN **Calving Ease Growth& Maternal** Fertility CWT 400 KG Carcase Intake Structure Rump RBY% IMF% Dtrs GL B Wt 200 400 600 M Wt Milk SS DC 750d EMA Rib NFIP NFIF DOC FC FA RA RH RS +3.2 +3.8 -9.1 +3.8 +48 +91 +116 +87 +21 +1.0 -5.9 +65 +11.0 -0.9 -2.4 +1.9 +2.3 +0.10 +0.36 -3 -35.3 +1.4 +3.1 +0.5 73% 73% 72% 59% 77% 35% 64% 61% 65% 55% 57% 42% 41% 58% 54% 52% 42% 56% 40% 86% 76% 71% 64%

Traits Observed: GL CE BWT 200WT 400WT SS FAT EMA IMF DOC Ger nomics, Structral Scores: FC 7, FA 6, RA 6, RH 6, RS 6

This son of Te Mania Jock is so stylish with a strong body.

Lot 140 Born: 08/08/2015 Society Id: VTML404 Structure date scored 05/12/2016

Growth Fertility Marbling Angus Breeding Heavy Grass Heavy Grain

\$INDEX TE MANIA AFRICA A217 (AI) Sire: TE MANIA GARTH G67 (AI) Dam: TE MANIA BARUNAH D697 (AI) (ET) \$121 \$109 \$131 \$116 TE MANIA MITTAGONG E28 (AI) TE MANIA BARUNAH Z269 (AI) (ET) TE MANIA UNLIMITED U3271 (AI) (ET) TE MANIA BARUNAH R312 (AI) (ET)

January 2017 Angus Australia BREEDPLAN Calving Ease Fertility CWT 400 KG Carcase **Growth& Maternal** 750d EMA Rump RBY% IMF% GL NFIP NFIF EBV +5.0 +0.4 +1.6 -0.5 +2.6 +0.34 +0.40 +38 -10.4 -12.1 -3.7 +0.9 +1.0 -8.7 +4.1 +109 +92 +17 +50 +0.2 +0.5 +44 +81 +2.5 -5.1 6 72% 71% 66% 57% 75% 45% 65% 63% 64% 66% 60% 61% 52% 54% Traits Observed: GL CE BWT 200WT 400WT SS FAT EMA IMF DOC, Structral Scores: FC 6, FA 6, RA 5, RH 5, RS 5 53% 85% 72% 54% | 63% | 58% 58%

Versatility and balance, with solid Te Mania blood on both sides of this bulls pedigree for the past four generations. The dam of this bull, as a rising nine year old cow, remains active within the stud herd. There is a small amount of white in the groin area.

							BRI	EED A	VERA	GE EB	VS FC	OR 20	15 B	ORN (CALV	S							
С	ALVIN	G EAS	Ĕ	GF	ROWTH	H & MA	TERN	AL	FERT	ILITY	CWT		C	ARCA	SE		INT	AKE			IND	EX\$	
DIR.	DTRS	GL	Bwt	200	400	600	Mwt	MILK	SS	DC	750d	EMA	RIB	RUMP	RBY%	IMF%	NFIP	NFIF	Doc	AB	D	HG	G
0.0	+0.1	-3.7	+4.3	+42	+77	+100	+88	+15	+1.7	-3.8	+56	+4.6	0.0	-0.2	+0.3	+1.6	+0.09	+0.15	+5	\$106	\$103	\$110	\$105
	Anim	als with	EBVs and	Indexes	highlighte	d with sha	ding are i	n the top	10% of the	e Angus	breed. W	ith the e	xceptio	n of fat w	hich has	no shad	ling, and	Mature W	eight wh	nich is sha	ded if the	value is <	< 100.

Lot 141 Born: 09/08/2015 Society Id: VTML445 AMFU/NHFU/CAFU/DDFU Structure date scored 05/12/2016

Calving Ease Growth Fertility Marbling Angus Breeding Heavy Grass Heavy Grain

TE MANIA 07 436 AB TE MANIA BARUNAH D256 (ACR) (AI) TE MANIA FLAME F565 (AI)

Sire: TE MANIA JEROME J131 (AI) Dam: TE MANIA JEDDA H317 (AI) TE MANIA LOWAN G694 (AI) TUWHARETOA REGENT D145 (AI) (ET) TE MANIA LOWAN A626 (AI) (ET) TE MANIA JEDDA C711 (AI)

TE MANIA YORKSHIRE Y437 (AI) TE MANIA JEDDA A155 (AI) January 2017 Angus Australia BREEDPLAN Fertility CWT 400 KG Carcase **Calving Ease Growth& Maternal** B Wt 400 600 M Wt Milk Dtrs GL 200 22 DC 750d EMA Rib Rump RBY% IMF% NFIP NFIF FA RA RH DOC

\$140 \$124 \$156 \$129

-11.6 -17.6 -8.3 +0.4 +0.4

-6

+44 +79 +100 +83 +14 +3.5 -8.9 +65 +6.4 +2.5 +0.6 +0.1 +2.9 +0.31 +0.69 59% 43% 87% 76% 59% 52% 54% 44% 41%

Another Jerome son that presents so well and is ideal for use in a heifer joining programme.

EBV

+6.0 +4.5 -9.3 +0.6

Lot 142 Society Id: VTML462 Calving Ease Growth Fertility Carcase Marbling Angus Breeding Heavy Grass Heavy Grain

C A FUTURE DIRECTION 532 ARDROSSAN WILCOOLA V9 ARDROSSAN DIRECTION W109 (AI) (ET) TE MANIA LOWAN Z412 (AI) (ET) TE MANIA CHIEFTAIN C475 (AI)

Sire: PATHFINDER GOLDMARK D189(AI) Dam: TE MANIA JEDDA E941 \$114 \$109 \$120 \$112 PATHFINDER BOWMAN B175 (AI) (ET) TE MANIA JEDDA B676 (AI)

January 2017 Angus Australia BREEDPLAN Fertility CWT 400 KG Carcase Calving Ease **Growth& Maternal** Intake Structure Rump RBY% IMF% GL 400 600 M Wt SS 750d EMA Rib NFIP NFIF FA RA RS Dtrs B Wt 200 Milk DC DOC FC +75 +100 +83 +22 +1.9 -4.3 +61 +6.4 +0.2 -0.5 +0.7 +2.0 +0.24 +0.54 0 +3.4 +4.0 -7.3 +3.4 +41 -0.5 -15.9 -0.4 -0.3 52% 43% 85% 75% 70% 71% 69% 66% 59% 73% 42% 61% 61% 62% 63% 58% 57% 47% 46% Traits Observed: GL CE BWT 200WT 400WT SS FAT EMA IMF DOC, Structral Scores: FC 6, FA 6, RA 6, RH 6, RS 6 46% 57% 42% 45% 27%

L462 presents himself with good frame and body length. He is well suited for use over heifers.

Lot 143 Calving Ease Growth Fertility Carcase Marbling Angus Breeding Heavy Grass Heavy Grain

BONGONGO BULLETPROOF Z3 TE MANIA I OWAN 4626 (AI) (ET) \$INDEX

G A R TWINHEARTS 8418 TE MANIA CALAMUS C46 (AI) D Dam: TE MANIA BARUNAH F100 (AI) Sire: TE MANIA JOE J963 (AI) TE MANIA JEDDA G949 TE MANIA BARUNAH D563 (AI) \$143 \$124 \$164 \$133 TE MANIA YORKSHIRE Y437 (AI) TE MANIA BARUNAH Z254 (AI) (ET)

January 2017 Angus Australia BREEDPLAN **Calving Ease Growth& Maternal** Fertility CWT 400 KG Carcase Intake Structure DC 750d Rump RBY% IMF% NFIP NFIF Dtrs GL B Wt 200 400 600 M Wt Milk SS EMA Rib DOC FC FA RA RS +4.1 +3.0 -8.1 +2.7 +50 +93 +125 +112 +21 +2.3 -5.8 +66 +6.4 -1.8 -1.6 +0.5 +2.9 +0.15 +0.15 +2 +15.1 +8.7 0.0 +0.3 -1.7 73% 72% 72% 59% 77% 35% 54% 56% 41% 41% 57% 48% 49% 39% 56% 39% 86% 76% 71% 63% | 61% 64% 63%

Traits Observed: GL CE BWT 200WT 400WT SS FAT EMA IMF DOC Ger nomics, Structral Scores: FC 6, FA 6, RA 6, RH 6, RS 5

A good blend of our most prominent cow family lines, Lowan, Barunah and Jedda. Stylish with good frame and body length and well suited for use over heifers.

Lot 144 Born: 11/08/2015

Calving Ease Growth Carcase Marbling Angus Breeding Heavy Grass Heavy Grain

\$INDEX

TE MANIA CHELMSFORD C440 (AI) Sire: TE MANIA JENKINS J89 (AI) **Dam: TE MANIA WARGOONA E968 \$126 \$120 \$135 \$122** TE MANIA JAPARA G115 (AI) TE MANIA WARGOONA B915 (ACR) (AI) (ET)

B/R NEW DESIGN 036
TE MANIA WARGOONA X229 (AI)

January 2017 Angus Australia BREEDPLAN Calving Ease **Growth& Maternal** Fertility CWT 400 KG Carcase 750d EMA Rump RBY% IMF% NFIP NFIF GL B Wt DC **EBV** +43 -1.0 +1.0 +2.3 +0.20 +0.20 +14 +13.3 +8.6 -0.3 +1.5 +0.2 +4.0 +3.2 -5.5 +1.6 +84 +107 +78 +22 +61 +6.7 -1.2 +1.7 -3.9 69% 66% 62% 49% 72% 37% 58% 58% 60% 61% 55% 54% 42% 41% Traits Observed: GL CE BWT 200WT 400WT SS FAT EMA IMF DOC, Structral Scores: FC 6, FA 6, RA 5, RH 5, RS 5 46% 36% 85% 69% 41% 57% 46% 47% 36% 33% 35%

Balanced and well suited for use over heifers. L518 has a small amount of white in the groin area.

							BRI	EED A	VERA	GE EB	VS FC	DR 20	15 B	ORN (CALVI	ES							
C	ALVIN	G EAS	Ë	GF	ROWTI	AM & F	TERN	AL	FERT	ILITY	CWT		C	ARCA	SE		INT	AKE			IND	EX\$	
DIR.	DTRS	GL	Bwt	200	400	600	Mwt	MILK	SS	DC	750d	EMA	RIB	RUMP	RBY%	IMF%	NFIP	NFIF	Doc	AB	D	HG	G
0.0	+0.1	-3.7	+4.3	+42	+77	+100	+88	+15	+1.7	-3.8	+56	+4.6	0.0	-0.2	+0.3	+1.6	+0.09	+0.15	+5	\$106	\$103	\$110	\$105
	Anin	nals with I	EBVs and	Indexes	highlighte	d with sha	ding are i	n the top	10% of th	e Angus	breed. W	ith the e	xceptio	n of fat w	hich has	no shad	ling, and	Mature W	eight wh	hich is sha	aded if the	value is <	< 100.

Lot 145 Born: 11/08/2015

Society Id: VTML529

AMFU/NHFU/CAFU/DDFU

Calving Ease Growth Fertility Marbling Angus Breeding Heavy Grass Heavy Grain

TE MANIA BERKLEY B1 (AI)

TE MANIA AFRICA A217 (AI) Sire: TE MANIA GARTH G67 (AI)

Dam: TE MANIA MOONGARA F589 (AI) TE MANIA MITTAGONG E28 (AI) TE MANIA CANTON C138 (AI) (ET) TE MANIA MITTAGONG C900 (ACR) TE MANIA MOONGARA C1097 (AI) (ET)

\$132 \$113 \$148 \$121 B/R MIDLAND TE MANIA MOONGARA Y396 (AI) (ET)

								J	anuai	ry 201	7 Ang	jus Aı	ıstrali	a BRI	EEDPI	.AN									
	C	Calvin	g Eas	е	(Growt	h& Ma	iterna	I	Fert	ility	CWT		400 k	(G Ca	rcase		Int	ake			St	ructu	re	
	Dir	Dtrs	GL	B Wt	200	400	600	M Wt	Milk	SS	DC	750d	EMA	Rib	Rump	RBY%	IMF%	NFIP	NFIF	DOC	FC	FA	RA	RH	RS
EBV	+2.2	+3.3	-5.2	+3.3	+44	+80	+107	+98	+20	+2.9	-8.8	+54	+3.9	+0.9	+0.9	-0.8	+2.9	+0.31	+0.43	+34	-23.1	-14.2	-13.2	+0.5	+0.4
Acc	57%	52%	86%	76%	, .	72%	70%	66%	54%	75%	45%	64%	63%	63%	65%	59%	60%		54%	62%	58%	60%	54%	50%	52%

L529 is well balanced and suited for use over heifers.

Lot 146

Structure date scored 05/12/2016

Born: 11/08/2015 Growth Marbling Angus Breeding Heavy Grass Heavy Grain

TE MANIA AMBASSADOR A134 (AI) LAWSONS HENRY VIII Y5 (AI) TUWHARETOA REGENT D145 (AI) (ET)

Sire: TE MANIA GASKIN G555 (AI) TE MANIA LOWAN D66 (AI)

TE MANIA YORKSHIRE Y437 (AI TE MANIA LOWAN Z53 (AI) (ET) Dam: TE MANIA BARUNAH F6 F62 (AI) TE MANIA BARUNAH C1115 (AI) (ET)

\$INDEX HG \$134 \$108 \$167 \$118

								J	anuaı	y 201	7 Ang	jus Ai	ıstrali	a BRE	EDPI	LAN									
	C	alvin	g Eas	е	(Growt	h& Ma	terna		Fert	ility	CWT		400 H	(G Ca	rcase		Inta	ake			St	ructu	re	
THE STATE OF	Dir	Dtrs	GL	B Wt	200	400	600	M Wt	Milk	SS	DC	750d	EMA	Rib	Rump	RBY%	IMF%	NFIP	NFIF	DOC	FC	FA	RA	RH	RS
EBV	+0.9	-1.6	-8.6	+5.2	+49	+86	+123	+137	+11	+1.6	-6.1	+75	+4.4	-0.3	-1.1	-1.0	+4.1	+0.19	+0.17	+16	+1.7	+7.0	+8.9	+0.7	+0.1
Acc	62%	52%	87%	78%	74%	76%	75%	74%	63%	80%	46%	68%		67%	68%	59%	62%	51%	53%	62%	58%	58%	52%	48%	51%

Traits Observed: GL CE BWT 200WT 400WT SS FAT EMA IMF DOC Genomics, Structral Scores: FC 6, FA 6, RA 6, RH 6, RS 6

Another Gaskin son that presents well with good body length.

Lot 147

Calving Ease Growth Marbling Heavy Grain

TUWHARETOA REGENT D145 (AI) (ET)

Sire: TE MANIA GASKIN G555 (AI) TE MANIA LOWAN D66 (AI)

LT 598 BANDO 9074 Dam: TE MANIA MITTAGONG G526 (AI) TE MANIA MITTAGONG E719 (AI) TE MANIA CHARGER C384 (AI) TE MANIA MITTAGONG Y551 (ACR) (AI

\$INDEX HG \$108 \$98 \$119 \$105

400 KG Carcase	Intake	Structure
Rib Rump RBY% IMF%	NFIP NFIF DOC	FC FA RA RH RS
-0.3 -0.5 -1.1 +3.1	+0.10 +0.14 +8	+2.6 +11.8 +9.7 +1.1 +0.2
62% 65% 58% 59%	49% 51% 59%	56% 57% 50% 45% 47%
Rib -0.3 62%	Rump RBY% IMF% 3 -0.5 -1.1 +3.1 6 65% 58% 59%	Rump RBY% IMF% NFIP NFIF DOC 3 -0.5 -1.1 +3.1 +0.10 +0.14 +8

Traits Observed: GL CE BWT 200WT 400WT SS FAT EMA IMF DOC, Structral Scores: FC 6, FA 5, RA 5, RH 5, RS 5

Another one of the fifteen Gaskins catalogued for this sale. L554 presents with good natural thickness and style.

Lot 148 Born: 12/08/2015 Society Id: VTML584 Structure date scored 05/12/2016

Calving Ease Marbling

ARDROSSAN CONNECTION X15 TE MANIA DECLARER D285 (AI)

Sire: PATHFINDER GOLDMARK D189(AI) PATHFINDER BOWMAN B175 (AI) (ET) VERMILLION YELLOWSTONE PATHFINDER XCUSE X242 (AI) (ET) Dam: TE MANIA MOONGARA F413 (AI) TE MANIA MOONGARA 7917 TE MANIA ULTRA U367 (AI) (ET) TE MANIA MOONGARA W415

\$INDEX \$103 \$103 \$106 \$103

								J	anua	ry 201	7 Ang	jus Αι	ıstrali	a BRE	EDPI	LAN									
	C	Calvin	g Eas	е	(Growt	h& Ma	aterna	ı	Fert	ility	CWT		400 K	G Ca	rcase		Inta	ake			St	ructu	re	
THE STATE OF	Dir	Dtrs	GL	B Wt	200	400	600	M Wt	Milk	SS	DC	750d	EMA	Rib	Rump	RBY%	IMF%	NFIP	NFIF	DOC	FC	FA	RA	RH	RS
EBV	+0.9	+4.0	-4.3	+3.9	+41	+76	+99	+75	+24	+0.9	-2.6	+61	+5.5	-0.1	-0.7	+0.2	+2.2	+0.16	+0.32	-12	+3.6	-11.9	-4.6	-0.3	0.0
Acc	52%	43%	85%	74%	70%	70%	69%	66%	59%	74%	42%	61%	61%	62%	63%	58%	57%	47%	47%	57%	48%	50%	35%	32%	35%

Traits Observed: GL CE BWT 200WT 400WT SS FAT EMA IMF DOC, Structral Scores: FC 6, FA 6, RA 6, RH 5, RS 5

Stylish with added thickness and body length. We have sold sons to a high of \$10,000 from the dam of this bull.

							BRI	EED A	VERA	GE EB	VS F	OR 20	15 B	ORN (CALV	ES							
C	ALVIN	G EAS	Ë	GF	ROWTI	AM & F	TERNA	AL	FERT	ILITY	CWT		C	ARCA	SE		INT	AKE			IND	EX\$	
DIR.	DTRS	GL	Bwt	200	400	600	Mwt	MILK	SS	DC	750d	EMA	RIB	RUMP	RBY%	IMF%	NFIP	NFIF	Doc	AB	D	HG	G
0.0	+0.1	-3.7	+4.3	+42	+77	+100	+88	+15	+1.7	-3.8	+56	+4.6	0.0	-0.2	+0.3		+0.09	+0.15	+5	\$106	\$103	\$110	\$105
	Anim	als with	EBVs and	d Indexes	highlighte	d with sha	ding are i	n the top	10% of th	e Angus	breed. W	ith the e	xceptio	n of fat w	hich has	no shac	ling, and	Mature W	eight wh	nich is sha	ded if the	value is	< 100.

TE MANIA LOWAN F46 (AI)

ciety Id: VTML630 Born: 13/08/2015

Calving Ease Carcase Marbling

ARDROSSAN CONNECTION X15 Sire: PATHFINDER GOLDMARK D189(AI)

PATHFINDER BOWMAN B175 (AI) (ET)

C A FUTURE DIRECTION 5321 ARDROSSAN WII COOLA V9 VERMILLION YELLOWSTONE PATHFINDER XCUSE X242 (AI) (ET)

G A R ULTIMATE Dam: TE MANIA LOWAN H86 (AI)

TE MANIA 07 436 AB TE MANIA LOWAN D761 (AI)

\$INDEX \$110 \$108 \$116 \$107

								J	anuai	y 201	7 Ang	jus Aı	ıstrali	a BRI	EEDPI	_AN									
	C	alvin	g Eas	е	(Growt	h& Ma	aterna	I	Fert	ility	CWT		400 k	(G Ca	rcase		Inta	ake			St	ructu	re	
	Dir	Dtrs	GL	B Wt	200	400	600	M Wt	Milk	SS	DC	750d	EMA	Rib	Rump	RBY%	IMF%	NFIP	NFIF	DOC	FC	FA	RA	RH	RS
EBV	+3.5	+2.3	-5.9	+2.9	+42	+76	+99	+89	+20	+0.8	-2.9	+57	+6.9	-0.5	-1.0	+0.7	+2.3	+0.18	+0.32	-4	-0.1	-14.5	-5.0	+0.1	-0.7
Acc	52%	44%	85%	74%	69%	70%	69%	66%	57%	73%	41%	60%	61%	61%	62%	57%	56%		47%	56%	46%	48%	33%	29%	32%

Balanced with good body length and well suited for use over heifers.

Lot 150 Structure date scored 05/12/2016

Calving Ease Growth Fertility Carcase Marbling Angus Breeding Heavy Grass Heavy Grain

SITZ TRAVELER 8180 SAV FMUI OUS 8145 Sire: CONNEALY RIGHT ANSWER 746

HAPPY DELL OF CONANGA 262

TE MANIA DECLARER D285 (AI) Dam: TE MANIA LOWAN H951 TE MANIA LOWAN D122 (AI)

\$INDEX \$131 \$123 \$136 \$129

January 2017 Angus Australia BREEDPLAN CWT 400 KG Carcase Fertility Intake **Calving Ease Growth& Maternal** Structure 8 Rump RBY% IMF% NFIP NFIF 600 M Wt SS 750d RA GL B Wt 200 400 Milk DC EMA Rib DOC FC FA RS Dir Dtrs +1.2 +2.7 -5.2 +3.9 +73 +6.0 +0.5 -1.0 +0.9 +1.8 +0.10 +0.26 +54 +95 +123 +91 +17 -4 -23.0 +0.2 +1.2 -0.6 -1.2 +2.1 -4.4 38% 84% 73% 68% 66% 62% 52% 71% 38% 58% 59% 59% 59% 54% 52% 42% 42% 51% 43% 42% 32% 28% Traits Observed: GL CE BWT 200WT 400WT SS FAT EMA IMF DOC, Structral Scores: FC 7, FA 6, RA 6, RH 5, RS 5

This is a well balanced, versatile bull with good body length.

Lot 151

Growth Fertility Carcase Marbling Angus Breeding Heavy Grass Heavy Grain

BON VIEW DESIGN 1407 BONGONGO NGYYO \$INDEX G A R TWINHEARTS 8418 BONGONGO BULLETPROOF 73

Sire: TE MANIA JENKINS J89 (AI) Dam: TE MANIA JAPARA D239 (AI) \$128 \$113 \$144 \$121 TE MANIA JAPARA G115 (AI) TE MANIA JAPARA A832 (AI) (ET) TE MANIA XPO X84 (AI) (ET) TE MANIA JAPARA V142 (APR) (AI) (ET)

								J	anua	ry 201	/ Ang	jus Al	ıstralı	а вкі	EEDPI	LAN									
	C	alvin	g Eas	е	(Growt	h& Ma	iterna	ı	Fert	ility	CWT		400 F	(G Ca	rcase		Inta	ake			St	ructu	re	
THE SHAPE	Dir	Dtrs	GL	B Wt	200	400	600	M Wt	Milk	SS	DC	750d	EMA	Rib	Rump	RBY%	IMF%	NFIP	NFIF	DOC	FC	FA	RA	RH	RS
EBV	+2.5	+0.6	-4.9	+4.1	+45	+79	+112	+99	+20	+2.3	-4.4	+56	+6.9	-1.9	-1.1	+1.0	+2.7	+0.12	+0.12	+10	+13.9	+19.9	+7.7	+1.9	-0.6
Acc	49%	39%	85%	75%		70%	67%	63%	50%		39%	59%		60%		56%	54%		44%	58%	52%	52%	42%	39%	41%

Traits Observed: GL CE BWT 200WT 400WT SS FAT EMA IMF DOC, Structral Scores: FC 6, FA 5, RA 5, RH 5, RS 6

L644 presents with good natural thickness and body length. There is a small amount of white in groin area.

Lot 152 Born: 13/08/2015 Structure date scored 05/12/2016

Calving Ease Growth Fertility Carcase Marbling Angus Breeding Heavy Grass Heavy Grain

BONGONGO BULLETPROOF Z3 TF MANIA LOWAN A626 (AI) (ET) \$INDEX C A FUTURE DIRECTION 5321 ARDROSSAN WILCOOLA V9 ARDROSSAN CONNECTION X15 TE MANIA CALAMUS C46 (AI)

Sire: PATHFINDER GOLDMARK D189(AI) Dam: TE MANIA BEEAC F1081 (AI) \$119 \$110 \$122 \$117 PATHFINDER BOWMAN B175 (AI) (ET) VERMILLION YELLOWSTONE PATHFINDER XCUSE X242 (AI) (ET) TE MANIA BEFAC D73 (AI)

									J	anua	ry 201	7 Ang	jus Aı	ıstrali	a BRI	EEDPI	LAN									
	100	C	Calvin	g Eas	е	O	Growt	h& Ma	aterna	ı	Fert	tility	CWT		400 F	(G Ca	rcase		Inta	ake			St	tructu	re	
S SHI	1 TO 1	Dir	Dtrs	GL	B Wt	200	400	600	M Wt	Milk	SS	DC	750d	EMA	Rib	Rump	RBY%	IMF%	NFIP	NFIF	DOC	FC	FA	RA	RH	RS
EE	3V	+3.3	+4.1	-5.7	+2.9	+40	+73	+104	+86	+26	+2.2	-4.4	+58	+8.4	+0.1	-0.6	+1.5	+1.5	+0.11	+0.44	-9	+6.2	+1.1	+2.3	+0.7	-2.3
Ac	CC	53%	44%	86%	75%	70%	71%	70%	67%	59%	74%	44%	62%	62%	63%	64%	59%	58%	48%	48%	58%	48%	49%	36%	33%	36%

Traits Observed: GL CE BWT 200WT 400WT SS FAT EMA IMF DOC, Structral Scores: FC 6, FA 6, RA 6, RH 6, RS 6

A well balanced bull with good frame and body length who is ideal for use over heifers.

							BR	ED A	VERA	GE EB	VS F	OR 20	15 B	ORN (CALV	ES							
С					ROWT	H & MA	TERN	٩L	FERT	ILITY	CWT		C	ARCA	SE		INT	AKE			IND	EX\$	
DIR.	DTRS	GL	Bwt	200	400	600	Mwt	MILK	SS	DC	750d	EMA	RIB	RUMP	RBY%	IMF%	NFIP	NFIF	Doc	AB	D	HG	G
0.0	+0.1	-3.7	+4.3	+42	+77	+100	+88	+15	+1.7	-3.8	+56	+4.6	0.0	-0.2	+0.3	+1.6	+0.09	+0.15	+5	\$106	\$103	\$110	\$105
	Ani	mals with	EBVs and	d Indexes	highlighte	ed with sha	iding are i	n the top	10% of the	e Angus I	breed. W	lith the e	xceptio	n of fat w	hich has	no shac	ling, and	Mature W	eight wh	nich is sha	ded if the	value is	< 100.

Born: 13/08/2015 Society Id: VTML650

TE MANIA CANTON C138 (AI) (ET) TE MANIA MITTAGONG C900 (ACF

Calving Ease Growth Fertility Carcase Marbling Angus Breeding Heavy Grass Heavy Grain

TE MANIA AFRICA A217 (AI) Sire: TE MANIA GARTH G67 (AI)

TE MANIA MITTAGONG E28 (AI)

TE MANIA BEEAC G93 (AI)

S A F FOCUS OF ER TE MANIA LOWAN V19 (AI) (ET) TE MANIA ZAMBIA Z69 (AI) (ET) Dam: TE MANIA JEDDA C59 (AI) (ET) (TW) TE MANIA JEDDA Y436 (AI) (ET) B/R NEW DESIGN 036 TE MANIA JEDDA U355 (AI) (ET)

\$137 \$120 \$156 \$126

January 2017 Angus Australia BREEDPLAN **Calving Ease Growth& Maternal** Fertility | CWT 400 KG Carcase Structure 0 B Wt Dir Dtrs GL 200 400 600 M Wt Milk 22 DC 750d EMA Rib Rump RBY% IMF% NFIP NFIF DOC FA RA +2.4 +3.0 -5.6 +3.3 +42 +80 +106 +90 +20 +4.5 -8.2 +48 +4.8 +0.2 +0.5 +0.3 +2.8 +0.41 +0.58 +39 +3.9 -17.4 -16.9 -0.7 +0.3 73% 71% 66% 57% 75% 45% 65% 63% 64% 66% 60% 61% 53% 62% 60% 61% 55% 50% Traits Observed: GL CE BWT 200WT 400WT SS FAT EMA IMF DOC, Structral Scores: FC 6, FA 6, RA 6, RA 6, RB 6 52% 86% 76%

Solid Te Mania blood on both sides of this bulls pedigree for the past three generations. Well suited for use over heifers.

Lot 154

Structure date scored 05/12/2016

Born: 13/08/2015 Society Id: VTML653

Calving Ease Growth Fertility Marbling Angus Breeding Heavy Grass Heavy Grain

TE MANIA 07 436 AB TE MANIA BARUNAH D256 (ACR) (AI) TE MANIA YORKSHIRE Y437 (AI) TE MANIA LOWAN Z53 (AI) (ET) TE MANIA FLAME F565 (AI) Sire: TE MANIA JEROME J131 (AI) Dam: TE MANIA BOORTKOI H385 (AI)

TE MANIA LOWAN G694 (AI) TE MANIA BOORTKOI D803 ARDCAIRNIE MIDLAND Z57 (AI) TE MANIA BOORTKOI Z859 (AI) (ET) \$136 \$118 \$158 \$123

								J	anuai	ry 201	7 Ang	jus Aı	ıstrali	ia BRI	EEDP	LAN									
	C	Calvin	g Eas	е	O	Growt	h& Ma	aterna	ı	Fert	tility	CWT		400 H	(G Ca	rcase		Inta	ake			S	tructu	re	
	Dir	Dtrs	GL	B Wt	200	400	600	M Wt	Milk	SS	DC	750d	EMA	Rib	Rump	RBY%	IMF%	NFIP	NFIF	DOC	FC	FA	RA	RH	RS
EBV	+4.1	+2.8	-7.5	+2.4	+43	+80	+102	+89	+14	+2.0	-7.8	+63	+5.9	+2.2	+1.0	-1.1	+3.7	+0.41	+0.72	-3	-5.4	-21.7	-13.5	-1.1	+0.5
Acc	59%	43%	86%	76%		74%		72%	59%	78%	39%	64%	63%	66%	65%	56%		45%	44%	58%	52%	52%	44%	41%	43%

Traits Observed: GL CE BWT 200WT 400WT SS FAT EMA IMF DOC Genomics, Structral Scores: FC 6, FA 6, RA 5, RH 6, RS 6

Balanced and soft with good body length on display. Well suited for use over heifers.

Lot 155

Growth Fertility Carcase Marbling Angus Breeding Heavy Grass Heavy Grain

TE MANIA AFRICA A217 (AI) WERNER WESTWARD 357 TE MANIA DIPLOMAT D10 (AI) Sire: TE MANIA JOCK J930 (AI) Dam: TE MANIA MOONGARA G226 (AI)

TE MANIA MOONGARA E346 (AI) TE MANIA BERKLEY B1 (AI) TE MANIA MOONGARA B64

\$INDEX G \$146 \$124 \$167 \$134

								J	anua	ry 201	7 Ang	jus Αι	ıstrali	a BR	EEDP	LAN									
	C	alvin	g Eas	е	(Growt	h& Ma	terna	ı	Fert	ility	сwт		400 k	(G Ca	rcase		Inta	ake			St	ructu	re	
	Dir	Dtrs	GL	B Wt	200	400	600	M Wt	Milk	SS	DC	750d	EMA	Rib	Rump	RBY%	IMF%	NFIP	NFIF	DOC	FC	FA	RA	RH	RS
EBV	-1.8	+0.9	-3.9	+6.0	+49	+92	+123	+95	+19	+1.8	-6.4	+63	+10.5	-0.7	-1.4	+1.2	+2.8	+0.19	+0.40	-7	-13.3	-0.8	+2.9	-0.6	+0.5
Acc	57%	42%	86%	76%	71%	73%	73%	72%	60%	77%	37%	64%	62%	66%	64%	56%	57%	43%	42%	58%	52%	52%	41%	38%	39%
					Traite (hearvar	+ GL CE	BWT 20	UN/T 4U	22 TWC	FAT FM	A IMF D	OC Gan	omice (Structral	Scores: F	C 6 FA	6 PA6	PH 6 P	9.5					

Another Jock son that presents with good natural thickness and body length.

Lot 156

Born: 14/08/2015 Society Id: VTML713 Structure date scored 05/12/2016 Calving Ease Marbling Angus Breeding Heavy Grass Heavy Grain

\$INDEX ARDROSSAN EQUATOR A241 (AI) (ET) TE MANIA BERKLEY B1 (AI) Sire: TE MANIA JEROME J131 (AI) Dam: TE MANIA BARUNAH G143 (AI) \$126 \$111 \$137 \$118 TE MANIA LOWAN G694 (AI) TUWHARETOA REGENT D145 (AI) (ET) TE MANIA LOWAN A626 (AI) (ET) TE MANIA BARUNAH E1029 TE MANIA CANTON C138 (AI) (ET) TE MANIA BARUNAH C817 (REDF)

								/ (=-/										()							
								J	lanua	ry 201	7 Ang	jus Aı	ıstrali	a BRI	EEDP	_AN									
		Calvin	g Eas	e		Growt	h& M	aterna	ıl	Fert	ility	CWT		400 F	(G Ca	rcase		Inta	ake			Si	tructu	re	
ART OF	Dir	Dtrs	GL	B Wt	200	400	600	M Wt	Milk	SS	DC	750d	EMA	Rib	Rump	RBY%	IMF%	NFIP	NFIF	DOC	FC	FA	RA	RH	RS
EBV	+3.4	+2.3	-6.0	+1.9	+42	+73	+99	+72	+19	+1.2	-7.5	+62	+6.7	+1.0	-0.2	-0.4	+2.8	+0.20	+0.37	-1	+10.0	+3.4	+2.1	+1.1	+0.3
Acc	60%	45%	86%	76%	72%	74%	73%	72%	60%	79%	42%	64%	63%	66%	65%	57%	58%	47%	46%	59%	51%	52%	42%	39%	42%

Traits Observed: GL CE BWT 200WT 400WT SS FAT EMA IMF DOC Genomics, Structral Scores: FC 6, FA 6, RA 5, RH 5, RS 5

Ideal for use in a heifer joining programme, this fellow is well balanced and versatile.

							BRI	ED A	VERA	GE EB	VS FC	OR 20	15 B	ORN (CALV	ES							
С	ALVIN	G EAS	SE SE	GI	ROWTH	H & MA	TERN	٩L	FERT	ILITY	CWT		C	ARCA	SE		INT	AKE			IND	EX\$	
DIR.	DTRS	GL	Bwt	200	400	600	Mwt	MILK	SS	DC	750d	EMA	RIB	RUMP	RBY%	IMF%	NFIP	NFIF	Doc	AB	D	HG	G
0.0	+0.1	-3.7	+4.3	+42	+77	+100	+88	+15	+1.7	-3.8	+56	+4.6	0.0	-0.2	+0.3	+1.6	+0.09	+0.15	+5	\$106	\$103	\$110	\$105
	Anim	als with	EBVs and	Indexes	highlighte	ed with sha	ding are i	n the top	10% of the	e Angus l	breed. W	ith the e	xceptio	n of fat w	hich has	no shac	ling, and	Mature W	eight wh	nich is sha	ded if the	value is	< 100.

Born: 15/08/2015 AMFU/NHFU/CAFU/DDFU d 05/12/2016

Growth Marbling Angus Breeding Heavy Grass Heavy Grain

WERNER WESTWARD 357 Sire: TE MANIA JOCK J930 (AI)

TE MANIA BEEAC G93 (AI)

TE MANIA BERKI EY B1 (AI) Dam: TE MANIA BARUNAH G720 (AI) TE MANIA BARUNAH D886

\$INDEX \$150 \$125 \$179 \$135

Calving Ease Growth& Maternal Fertility CWT 400 KG Carcase Intake Struct	re	ructure	S			ako	14																		
						ane	Inta		case	G Car	400 K		CWT	ility	Fert	ı	aterna	h& Ma	Growt	(е	g Eas	Calvin	C	1000
Dir Dtrs GL BWt 200 400 600 MWt Milk SS DC 750d EMA Rib Rump RBY% IMF% NFIP NFIF DOC FC FA RA	RH RS	RA	FA	FC	DOC	NFIF	NFIP	IMF%	RBY%	Rump	Rib	EMA	750d	DC	SS	Milk	M Wt	600	400	200	B Wt	GL	Dtrs	Dir	THE STATE OF
EBV +0.1 +2.4 -5.0 +5.5 +50 +95 +127 +119 +22 +1.6 -7.0 +71 +8.2 0.0 -1.0 +0.2 +3.5 +0.17 +0.42 -6 -32.2 -6.3 +5.0	-0.5 +0.	+5.0	-6.3	-32.2	-6	+0.42	+0.17	+3.5	+0.2	-1.0	0.0	+8.2	+71	-7.0	+1.6	+22	+119	+127	+95	+50	+5.5	-5.0	+2.4	+0.1	EBV
Acc 57% 43% 86% 76% 71% 73% 73% 72% 60% 78% 39% 64% 62% 65% 64% 56% 57% 44% 44% 58% 55% 52% 44% Traits Observed: CL CF RWT 200WT 400WT SS FAT FMA IMF DOC Genomics Structual Scores: FC 6 FA 6 RA 6 RH 5 RS 5	41% 42%	44%	52%	55%	1															, .	76%	86%	43%	57%	Acc

There is plenty of capacity and shape with good body length in this Te Mania Jock son.

Lot 158

Society Id: VTML770 Structure date scored 05/12/2016

Calving Ease Growth Carcase Marbling Angus Breeding Heavy Grass Heavy Grain

S S OBJECTIVE T510 0T26 G A R YIELD GRADE 2015 S A F FAME GDAR FOREVER LADY 246 Sire: TE MANIA JENKINS J89 (AI) Dam: TE MANIA LOWAN B305 (AI) (ET) \$141 \$130 \$163 \$131 TE MANIA JAPARA G115 (AI) TE MANIA LOWAN V129 (AI) (ET) B/R NEW DESIGN 036 TE MANIA LOWAN M118 (AI) (ET

January 2017 Angus Australia BREEDPLAN CWT Fertility 400 KG Carcase Calving Ease **Growth& Maternal** Intake Structure GL 600 M Wt NFIP NFIF Dtrs B Wt 400 Milk SS DC 750d EMA Rib Rump RBY% IMF% DOC FΑ RA RS 200 FC +3.6 +3.3 -2.9 +3.4 +48 +97 +122 +105 +17 +66 +5.4 -2.4 -2.7 +1.2 +2.7 +0.03 -0.07 +7 +2.8 +0.4 -5.2 +1.1 -0.7 +1.5 -4.6 50% 41% 85% 75% 69% 70% 67% 63% 50% 73% 40% 59% 60% 61% 62% 56% 55% 45% 45% 58% Traits Observed: GL CE BWT 200WT 400WT SS FAT EMA IMF DOC, Structral Scores: FC 6, FA 6, RA 5, RH 5, RS 5 54% 55%

Balanced and well suited for use over heifers. The dam of this bull, as a rising 11 year old cow, remains active within the stud herd and in addition the past three generations on the dams side have all been ET conceived. Combined they have contributed 105 progeny to our herd.

Lot 159 TE MANIA LEWD L836 Society Id: VTML836 d 05/12/2016

Growth Fertility Marbling Angus Breeding Heavy Grass Heavy Grain

TE MANIA DAIQUIRI D19 (AI) TF MANIA DANDLOO C404 (AI) (ET) ARDROSSAN CONNECTION X15 TE MANIA FORGO F893 (AI) (FT)

\$INDEX G Sire: PATHFINDER GOLDMARK D189(AI) Dam: TE MANIA LOWAN H39 (AI) \$117 \$105 \$127 \$112 PATHFINDER BOWMAN B175 (AI) (ET) TE MANIA LOWAN F869 (AI) VERMILLION YELLOWSTONE PATHFINDER XCUSE X242 (AI) (ET) TE MANIA CALAMUS C46 (AI) TE MANIA LOWAN B606 (AI)

January 2017 Angus Australia BREEDPLAN **Calving Ease** Fertility CWT 400 KG Carcase Intake **Growth& Maternal** Structure Dtrs GL B Wt 400 600 M Wt Milk DC 750d Rib Rump RBY% IMF% NFIP NFIF DOC FC FA RA RS 200 SS EMA **EBV** +0.9 +3.6 -5.6 +4.2 +77 +107 +99 +24 +2.4 -4.4 +56 +6.2 +0.1 +0.2 +0.2 +2.4 +0.22 +0.46 -7 +7.5 -1.9 +1.3 +0.5 52% 43% 85% 74% 69% 57% 73% 41% 61% 58% 70% 69% 66% 61% 62% 63% 57% | 47% 47% 57% 47% 49% 35%

Traits Observed: GL CE BWT 200WT 400WT SS FAT EMA IMF DOC, Structral Scores: FC 6, FA 6, RA 5, RH 5, RS 6

L836 is well balanced and presents with good body length. There is a small amount of white in groin area.

Lot 160 Born: 16/08/2015 Society Id: VTML838 Structure date scored 05/12/2016

Calving Ease Growth Marbling Angus Breeding Heavy Grass Heavy Grain

\$INDEX G A R TWINHEARTS 8418 L T 598 BANDO 9074

Sire: TE MANIA JOE J963 (AI) Dam: TE MANIA DANDLOO G406 (AI) \$123 \$114 \$137 \$117 TE MANIA JEDDA G949 TE MANIA DANDLOO A300 (AI) B/R NEW DESIGN 323-9150 TE MANIA DANDLOO Y390

January 2017 Angus Australia BREEDPLAN Calving Ease **Growth& Maternal** Fertility CWT 400 KG Carcase Rump RBY% IMF% B Wt 750d EMA NFIP NFIF EBV +3.6 +3.1 -4.0 +1.7 +87 +113 +100 +24 +1.7 +61 +2.5 -1.2 -0.7 -0.1 +2.5 +0.07 -0.05 +5 +43 -5.3 +1.3 -5.6 -8.7 +0.2 +0.1 o 68% 65% 61% 47% 70% 37% 57% 59% 60% 54% 53% 42% 42% Traits Observed: GL CE BWT 200WT 400WT SS FAT EMA IMF DOC, Structral Scores: FC 6, FA 6, RA 6, RH 6, RS 6 37% 85% 73% 56% 48% 48% 37% 32%

This all-rounder presents with good natural thickness and body length. He is well suited for use over heifers.

							BRI	ED A	VERA	GE EB	VS F	OR 20	15 B	ORN (CALV	ES							
С	ALVIN	G EAS	Ë	GF	ROWTH	H & MA	TERN	٩L	FERT	ILITY	CWT		C	ARCA	SE		INT	AKE			IND	EX\$	
DIR.	DTRS	GL	Bwt	200	400	600	Mwt	MILK	SS	DC	750d	EMA	RIB	RUMP	RBY%	IMF%	NFIP	NFIF	Doc	AB	D	HG	G
0.0	+0.1	-3.7	+4.3	+42	+77	+100	+88	+15	+1.7	-3.8	+56	+4.6	0.0	-0.2	+0.3	+1.6	+0.09	+0.15	+5	\$106	\$103	\$110	\$105
	Anim	als with	EBVs and	d Indexes	highlighte	ed with sha	iding are i	n the top '	10% of the	e Angus I	breed. W	/ith the e	xceptio	n of fat w	hich has	no shac	ling, and	Mature W	eight wh	nich is sha	ded if the	value is	< 100.

Lot 161 Born: 17/08/2015

Growth Carcase Marbling Angus Breeding Heavy Grass Heavy Grain

WERNER WESTWARD 357 Sire: TE MANIA JOCK J930 (AI)

TE MANIA BEEAC G93 (AI)

Born: 17/08/2015

G A R PREDESTINED BFF EVERELDA ENTENSE 4015 LAWSONS TANK B1155(AI) TE MANIA BEFAC F117 (AI)

TUWHARETOA REGENT D145 (AI) (ET) Dam: TE MANIA BARUNAH H723 (AI) (ET)

TE MANIA BARUNAH C360 (AI)

TE MANIA AMBASSADOR A134 (AI) LAWSONS HENRY VIII Y5 (AI)

BONGONGO BULLETPROOF Z3 TE MANIA BARUNAH X584 (AI) (ET)

\$125 \$108 \$143 \$116

red 05/12/2016

								J	anua	ry 201	7 Ang	jus Aı	ıstrali	a BRI	EEDPI	LAN									
	C	alvin	g Eas	е	(Growt	h& Ma	aterna	ı	Fert	ility	CWT		400 F	(G Ca	rcase		Inta	ake			St	ructur	·e	
THE STATE OF	 															DOC	FC	FA	RA	RH	RS				
EBV	-2.8	-1.4	-4.4	+6.0	+48	+86	+120	+98	+19	+0.4	-5.0	+67	+7.2	-1.0	-2.4	+0.8	+2.7	+0.16	+0.21	-2	-20.4	+15.2	+12.3	-0.9	+0.5
Acc	49%	42%	85%	74%	69%	70%	66%	63%	49%	72%	40%	59%	60%	61%	62%	57%	56%	45%	45%	59%	55%	52%	43%	40%	42%
					T	raits Obs	served: G	L CE BV	VT 200W	/T 400W	T SS FA	T EMA I	MF DOO	. Structr	al Score	s: FC 6.	FA 5. RA	5. RH 5	5. RS 5						

Another son of Te Mania Jock that presents with good butt shape and body length. The dam of this bull comes from one of our most prominent cow family lines, Barunah, and combined the past four generations on the dams side have contributed 162 progeny to our herd.

Lot 162 ΓΕ MANIA LIDDICU

Calving Ease Growth Fertility Marbling Angus Breeding Heavy Grass Heavy Grain

S S OBJECTIVE T510 0T26 G A R YIELD GRADE 2015 G A R TWINHEARTS 8418 Sire: TE MANIA JOE J963 (AI)

TE MANIA EARNINGS E38 (AI)

Dam: TE MANIA JEDDA G423 (AI)

S A F 598 BANDO 5175 MILL COULEE BARBARA K323

\$129 \$117 \$144 \$122

TE	MANIA JE	DDA G949	9				NINGS E38 (A DA D314 (AI)			TE	MANIA JE	DDA C11	43 (AI) (E	Γ)		MANIA UNLII MANIA JEDD			L	\$129	9 \$1	17	<u>\$144</u>	1 \$	122
								J	anuai	ry 201	7 Ang	jus Aı	ustrali	a BRI	EEDP	LAN									
	C	alvin	g Eas	е	(Growt	h& Ma	aterna	ı	Fert	ility	CWT		400 k	(G Ca	rcase		Inta	ake			S	tructu	re	
	Dir	Dtrs	GL	B Wt	200	400	600	M Wt	Milk	SS	DC	750d	EMA	Rib	Rump	RBY%	IMF%	NFIP	NFIF	DOC	FC	FA	RA	RH	RS
EBV	+1.4	+1.8	-2.6	+3.6	+50	+96	+126	+111	+22	+3.1	-5.3	+66	+1.4	-1.6	-0.8	+0.1	+2.4	+0.12	+0.02	+15	+16.3	+12.1	+0.7	-1.0	-0.4
Acc	46%	38%	85%	73%	68%	68%	65%	61%	47%	70%	37%	57%	57%	59%	60%	54%	53%	42%	41%	56%	48%	49%	39%	34%	37%

Traits Observed: GL CE BWT 200WT 400WT SS FAT EMA IMF DOC, Structral Scores: FC 6, FA 6, RA 6, RH 5, RS 5

This is a well balanced bull that is suitable for use over heifers.

Lot 163 Society Id: VTML932

TE MANIA FESTIVITY F327 (AI)

Calving Ease Growth Fertility Marbling Angus Breeding Heavy Grass Heavy Grain TE MANIA YORKSHIRE Y437 (AI) TF MANIA LOWAN Z53 (AI) (ET)

Sire: TE MANIA JEROME J131 (AI) TE MANIA LOWAN G694 (AI) HARETOA REGENT D145 (AI) (ET) TUWHARETOA REGENT D145 (A TE MANIA LOWAN A626 (AI) (ET)

TE MANIA BERKI EY B1 (AI)

Dam: TE MANIA JEDDA H726 (AI) TE MANIA JEDDA F61 (AI)

TE MANIA CALAMUS C46 (AI) TE MANIA MITTAGONG B112 (AI)

TE MANIA DAIQUIRI D19 (AI) TE MANIA JEDDA B759 (AI)

\$INDEX G \$146 \$123 \$170 \$132

January 2017 Angus Australia BREEDPLAN **Calving Ease Growth& Maternal** Fertility CWT 400 KG Carcase Intake Structure Dtrs GL B Wt 200 400 600 M Wt Milk SS DC 750d EMA Rib Rump RBY% IMF% NFIP NFIF DOC FC FA RA RH RS **EBV** +4.3 +2.7 -4.1 +2.1 +47 +83 +112 +99 +24 +3.0 -8.1 +65 +8.7 +0.9 -0.5 +0.2 +3.5 +0.23 +0.56 -6 +7.2 +1.1 -0.7 0.0 +0.2 74% 74% 72% 59% 79% 40% 58% 46% 46% 59% 52% 59% 44% 86% 76% 72% 64% | 63% 66% 65% 56% 52% 44% 41% 43% Traits Observed: GL CE BWT 200WT 400WT SS FAT EMA IMF DOC Genomics, Structral Scores: FC 6, FA 6, RA 6, RH 6, RS 6

L932 presents with good frame and body length and is well suited for use over heifers. Solid and prominent Te Mania breeding on both sides of this bulls pedigree.

Lot 164 Born: 18/08/2015 Society Id: VTML945

Growth Marbling Angus Breeding Heavy Grass Heavy Grain

TE MANIA BADMINTON B41 (AI) TE MANIA BERKLEY B1 (AI)

Sire: TE MANIA DEFLATION D367 (AI) TE MANIA WARGOONA Y408 (AI) TE MANIA WANGLE W128 (AI TE MANIA WARGOONA W160 Dam: TE MANIA MITTAGONG F983 (AI) (ET)

TE MANIA XPO X84 (AI) (ET) TE MANIA MITTAGONG V164 (AI) (ET)

\$INDEX \$159 \$119 \$133 \$111

								J	anua	ry 201	7 Ang	jus Αι	ıstrali	a BRI	EEDPI	LAN									
	C	Calvin	g Eas	е	(Growt	h& Ma	aterna	ı	Fert	ility	CWT		400 F	(G Ca	rcase		Inta	ake			St	ructu	re	
NO.	Dir	Dtrs	GL	B Wt	200	400	600	M Wt	Milk	SS	DC	750d	EMA	Rib	Rump	RBY%	IMF%	NFIP	NFIF	DOC	FC	FA	RA	RH	RS
EBV	+0.1	+0.8	-3.6	+5.9	+53	+88	+120	+134	+7	+1.5	-6.9	+76	+5.8	-1.8	-1.5	-0.6	+3.5	+0.16	+0.15	+33	+0.7	+3.2	+0.2	-2.9	+0.4
Acc	62%	50%	86%	78%	74%	76%	76%	75%	67%	80%	45%	69%	66%	69%	68%	61%	63%	50%	50%	64%	61%	62%	54%	48%	51%

TE MANIA MITTAGONG A398 (AI)

Traits Observed: GL CE BWT 200WT 400WT SS FAT EMA IMF DOC Genomics, Structral Scores: FC 6, FA 6, RA 5, RH 5, RS 5

Balanced with good body length on display. The dam of this bull ran through our donor program in 2013 as did her own dam the year before.

							BRI	EED A	VERA	GE EB	VS FC	OR 20	15 B	ORN (CALVI	S							
C	ALVIN	G EAS	E	GF	ROWTI	⊢& MA	TERN	AL	FERT	ILITY	CWT		C	ARCA	SE		INT	AKE			IND	EX\$	
DIR.	DTRS	GL	Bwt	200	400	600	Mwt	MILK	SS	DC	750d	EMA	RIB	RUMP	RBY%	IMF%	NFIP	NFIF	Doc	AB	D	HG	G
0.0	+0.1	-3.7	+4.3	+42	+77	+100	+88	+15	+1.7	-3.8	+56	+4.6	0.0	-0.2	+0.3			+0.15	+5	\$106	\$103	\$110	\$105
	Anim	nals with I	EBVs and	Indexes	highlighte	d with sha	ding are i	n the top	10% of the	e Angus	breed. W	ith the e	xceptio	n of fat w	hich has	no shac	ding, and	Mature W	eight wh	nich is sha	ded if the	value is	< 100.

Lot 165 Born: 19/08/2015

AMFU/NHFU/CAFU/DDFU Growth Marbling Angus Breeding Heavy Grass Heavy Grain

\$INDEX

TE MANIA AMBASSADOR A134 (AI) LAWSONS HENRY VIII Y5 (AI) TE MANIA AFRICA A217 (AI) TUWHARETOA REGENT D145 (AI) (ET)

Sire: TE MANIA GARTH G67 (AI) Dam: TE MANIA MITTAGONG H418 (AI) \$130 \$115 \$153 \$119 TE MANIA MITTAGONG E28 (AI) TE MANIA MITTAGONG C548 (AI) ARDCAIRNIE MIDLAND Z57 (AI) TE MANIA MITTAGONG Z712

January 2017 Angus Australia BREEDPLAN Fertility CWT 400 KG Carcase **Calving Ease Growth& Maternal** 8 Dtrs GL 400 600 M Wt Milk DC 750d EMA Rib Rump RBY% IMF% NFIP NFIF FA RA RH 200 -2.5 -0.7 -4.3 +5.3 +49 +96 +120 +94 +23 +1.7 -5.5 +67 | +4.1 | +0.2 | +0.4 | -0.9 | +3.8 | +0.42 | +0.44 | +21 | +2.2 | -15.9 | -17.5 | -0.2 | -0.3 52% 86% 75% 70% 71% 69% 65% 53% 74% 44% 63% 62% 63% 65% 59% 60% 51% 53% 61% 57% 58% 52% 50%

Traits Observed: GL CE BWT 200WT 400WT SS FAT EMA IMF DOC, Structral Scores: FC 6, FA 6, RA 6, RH 6, RS 6

A stylish son of Garth who presents with good natural thickness and body length. The last son of Garth offered in this catalogue.

Lot 166

Society Id: VTML1160 Structure date scored 05/12/2016

Calving Ease Growth Fertility Marbling Angus Breeding Heavy Grass Heavy Grain

TE MANIA BERKLEY B1 (AI) TE MANIA MITTAGONG Z272 (AI) (ET) \$INDEX G A R TWINHEARTS 8418 TE MANIA ELECTROLUX E362 (AI) (ET)

Sire: TE MANIA JACK J70 (AI) Dam: TE MANIA MITTAGONG G806 (AI) **\$131 \$114 \$154 \$118** TE MANIA LOWAN G141 (AI) (ET) TE MANIA MITTAGONG D205 (AI)

January 2017 Angus Australia BREEDPLAN CWT 400 KG Carcase **Growth& Maternal** Fertility Calving Ease Intake Structure GL 600 M Wt SS 750d EMA NFIP NFIF Dtrs B Wt 400 Milk DC Rib Rump RBY% IMF% DOC FC FA RA RS +86 +113 +124 +16 | +2.6 | -8.7 | +56 | +0.1 | -0.3 | 0.0 | -0.8 | +3.0 | +0.09 +0.13 -2.5 +6.9 -9.7 +0.5 +4.4 +2.9 -7.3 +3.1 -6 -0.3 71% 73% 73% 72% 59% 78% 36% 64% 61% 64% 63% 55% 56% 43% 43% 4 3 5 Fraits Observed: GL CE BWT 200WT 400WT SS FAT EMA IMF DOC Genomics, Structral Scores: FC 6, FA 6, RA 5, RH 5, RS 5 56% 39% 86% 76% 57% 50%

L1160 is well balanced with good frame and body length. He is well suited for use over heifers.

Lot 167

Growth Carcase Marbling Angus Breeding Heavy Grass Heavy Grain

TE MANIA BERKLEY B1 (AI) G A R PREDESTINED BFF EVERELDA ENTENSE 4015 \$INDEX WERNER WESTWARD 357 TE MANIA EMPEROR E343 (AI) HG G Sire: TE MANIA JOCK J930 (AI) Dam: TE MANIA DANDLOO H509 (AI) (ET)

TE MANIA BEEAC G93 (AI) TE MANIA DANDLOO B76 (AI) TE MANIA UNLIMITED U3271 (AI) (ET) TE MANIA DANDLOO X330 (AI) \$155 \$129 \$179 \$142 LAWSONS TANK B1155(AI) TE MANIA BEEAC E117 (AI

January 2017 Angus Australia BREEDPLAN **Calving Ease Growth& Maternal** Fertility CWT 400 KG Carcase Intake Structure Dtrs GL 400 600 M Wt Milk SS DC 750d EMA Rib Rump RBY% IMF% NFIP NFIF DOC FC FA RA +1.1 -6.3 +68 +9.1 +0.6 0.0 +0.5 +3.2 +0.29 +0.45 -1.3 +2.1 -6.0 +6.3 +51 +96 +128 +99 +13 -8 -16.5 +13.1 +10.5 +0.4 73% 73% 72% 60% 78% 64% 62% 66% 56% 57% 44% 44% 60% 55% 52% 44% 41% 58% 44% 86% 76% 71% 38% 64% Traits Observed: GL CE BWT 200WT 400WT SS FAT EMA IMF DOC Ger nics, Structral Scores: FC 5, FA 5, RA 5, RH 5, RS 5

The last of the sons of Te Mania Jock in this catalogue. He presents with good natural thickness and body length.

Lot 168 Born: 07/09/2015 Structure date scored 05/12/2016

Growth Carcase Marbling Angus Breeding Heavy Grass Heavy Grain

\$INDEX

TUWHARETOA REGENT D145 (AI) (ET) TC ABERDEEN 759 Sire: RENNYLEA H7 (AI) (ET) Dam: TE MANIA BEEAC G961 (AI) \$130 \$112 \$145 \$123 LAWSONS NEW DESIGN 1407 Z1393(AI) TE MANIA BEEAC D507 (AI) TE MANIA AFRICA A217 (AI) TE MANIA BEEAC B102 (ACR) (AI)

January 2017 Angus Australia BREEDPLAN Calving Ease Fertility CWT 400 KG Carcase **Growth& Maternal** 750d EMA Rump RBY% IMF% NFIP NFIF GL B Wt **EBV** +67 +7.7 0.0 -0.1 -5.4 +5.7 +50 +92 +126 +107 +19 -1.0 +0.4 +2.5 +0.25 +0.20 -6 +12.8 +15.1 +7.6 -1.5 +0.5 -2.1 +1.5 -5.1 85% 75% 48% 59% 48% 49% 38% 35%

6 70% 69% 64% 51% 73% 42% 59% 61% 61% 62% 57% 57% 47% 48% Traits Observed: GL CE BWT 200WT 400WT SS FAT EMA IMF DOC, Structral Scores: FC 6, FA 6, RA 6, RH 5, RS 6

Balance with good natural thickness and body length shown by L1304.

							BRI	ED A	VERA	GE EB	VS FC	OR 20	15 B	ORN (CALV	S							
С	ALVIN	G EAS	SE.	GF	ROWTI	H & MA	TERNA	٩L	FERT	ILITY	CWT		C	ARCA	SE		INT	AKE			IND	EX\$	
DIR.	DTRS	GL	Bwt	200	400	600	Mwt	MILK	SS	DC	750d	EMA	RIB	RUMP	RBY%	IMF%	NFIP	NFIF	Doc	AB	D	HG	G
0.0	+0.1	-3.7	+4.3	+42	+77	+100	+88	+15	+1.7	-3.8	+56	+4.6	0.0	-0.2	+0.3	+1.6	+0.09	+0.15	+5	\$106	\$103	\$110	\$105
	Anim	nals with	EBVs and	d Indexes	highlighte	d with sha	iding are i	n the top	10% of th	e Angus	breed. W	ith the e	xceptio	n of fat w	hich has	no shac	ling, and	Mature W	eight wh	nich is sha	ded if the	value is <	< 100.

Lot 169 Born: 08/09/2015 Society Id: VTML1324 AMFU/NHFU/CAFU/DDC Calving Ease Growth Carcase Marbling Angus Breeding Heavy Grass Heavy Grain LAWSONS DINKY-DI Z191 Sire: RENNYLEA H7 (AI) (ET) Dam: TE MANIA JEDDA E480 (AI) (ET) \$125 \$119 \$129 \$124 LAWSONS NEW DESIGN 1407 Z1393(AI) TE MANIA JEDDA W85 (AI) (ET) C A FUTURE DIRECTION 5321 TE MANIA JEDDA S241 (AI) (ET January 2017 Angus Australia BREEDPLAN **Calving Ease Growth& Maternal** Fertility | CWT 400 KG Carcase Dir Dtrs GL B Wt 200 400 600 M Wt Milk SS DC 750d EMA Rib Rump RBY% IMF% NFIP NFIF FA RA RH +2.4 +2.8 -4.8 +3.7 | +50 +87 +115 +82 +19 | +0.6 -3.2 | +63 | +8.5 | -1.0 -1.6 +1.2 +1.8 | +0.07 -0.16 | +9.5 +8.7 +1.6 -0.6 +0.3 0 6 72% 70% 65% 55% 75% 45% 62% 63% 64% 64% 60% 59% 50% 50% 63% 48% Traits Observed: GL CE BWT 200WT 400WT SS FAT EMA IMF DOC, Structral Scores: FC 6, FA 6, RA 5, RH 5, RS 5 55% 49% 85% 76% 72%

Balanced with good body length on display. The past three generations on the dams side of this bull are ET and have all run through our donor program. Combined they have contributed 113 progeny to our herd. There is a small amount of white in the groin area.

Exceptional cow lines are the foundation of genetic improvement.

At Te Mania Angus the Lowan cow line has 935 direct descendants currently active in the Te Mania Angus herd. There are 787 Barunah descendants and 456 Mittagong descendants.

Every cow at Te Mania Angus must pass an independent structural assessment as a 2yo, 3yo and 4yo to remain in the breeding herd.

							BRI	ED A	VERA	GE EB	VS F	OR 20	15 B	ORN (CALVI	ES							
С	ALVIN	G EAS	ΞE	GF	ROWTH	H & MA	TERN	٩L	FERT	ILITY	CWT		C	ARCA	SE		INT	AKE			IND	EX\$	
DIR.	DTRS	GL	Bwt	200	400	600	Mwt	MILK	SS	DC	750d	EMA	RIB	RUMP	RBY%	IMF%	NFIP	NFIF	Doc	AB	D	HG	G
0.0	+0.1	-3.7	+4.3	+42	+77	+100	+88	+15	+1.7	-3.8	+56	+4.6	0.0	-0.2	+0.3	+1.6	+0.09	+0.15	+5	\$106	\$103	\$110	\$105
	Anim	nals with	EBVs and	Indexes	highlighte	ed with sha	iding are i	n the top '	10% of the	e Angus I	breed. W	/ith the e	xceptio	n of fat w	hich has	no shad	ling, and	Mature W	eight wh	ich is sha	ded if the	value is <	< 100.

TE MANIA GARTH G67 (AI

Calving Ease Growth Fertility Marbling Angus Breeding Heavy Grass Heavy Grain

TE MANIA ULONG U41 (AI) (ET)

TE MANIA KNIGHT K206 (AI) (ET) TE MANIA LOWAN Q42 (AI) (ET)

TE MANIA CANTON C138 (AI) (ET)

ARDCAIRNIE MIDLAND Z57 (AI) TE MANIA BEEAC W112 (AI)

\$INDEX

Sire: TE MANIA AFRICA A217 (AI)

TE MANIA JEDDA Y32 (AI) (ET)

Born: 03/08/2011

Dam: TE MANIA MITTAGONG E28 (AI) TE MANIA MITTAGONG C900 (ACR)

TE MANIA YORKSHIRE Y437 (AI) TE MANIA MITTAGONG Z374 (ACR) (A

\$147 \$129 \$165 \$136

								J	anuai	ry 201	/ Ang	jus At	ıstran	a DK	EDP	LAN									
	C	Calving	g Eas	е	·	Growt	h& Ma	iterna	ı	Fert	ility	CWT		400 K	(G Ca	rcase		Inta	ike			St	ructu	re	
	Dir	Dtrs	GL	B Wt	200	400	600	M Wt	Milk	SS	DC	750d	EMA	Rib	Rump	RBY%	IMF%	NFIP	NFIF	DOC	FC	FA	RA	RH	RS
EBV	+1.3	+3.5	-8.8	+2.7	+47	+90	+112	+72	+32	+3.7	-7.6	+52	+7.1	+1.5	+2.3	-0.3	+3.5	+0.56	+0.68	+47	-2.1	-36.2	-29.2	+0.5	+0.3
Acc	91%	84%	99%	98%	98%	98%	97%	89%	80%	97%	64%				91%	81%	90%		81%	98%	95%	96%	91%	86%	88%

Observed: GL CE BWT 200WT(x2) 400WT 600WT SS FAT EMA IMF DOC Genomics, Structral Scores: FC 6, FA 6, RA 6, RH 6, RS 6 Statistics: Number of Herds: 24 Progeny Analysed: 1429 Scan Progeny: 721 Carc Progeny: 32 Number of Dtrs: 9

Te Mania Garth VTMG67 is a versatile, multi-purpose sire with exceptional EBVs. He is a moderate to large framed son of Te Mania Africa, with the same outstanding temperament. He has good body length, is free moving with slick skin and fine hair, tight sheath and outstanding structure. Garth is ideal for heifer joinings with high accuracy, low birth weight and short gestation length EBVs. He has exceptional fertility and marbling. As a sign of his versatility he is in top 1% of the breed for the AB, Domestic and Heavy Grass \$Index and the top 5% for the Heavy Grain \$Index. He is a trait leader for calving ease (dtrs), gestation length, milk, scrotal size, days to calving and IMF%. Garth bends the growth curve with moderate birth weight to high 600-day growth. Te Mania Garth's maternal grand-sire is Te Mania Yorkshire VTMY437, sire of Te Mania Berkley VTMB1. His pedigree includes longevity and some of the great female lines of the Te Mania Angus herd, including Te Mania Beeac W112 and Te Mania Jedda Y32, who bred in the stud herd to 10 years of age.

「E MANIA BERKLEY B1

Born: 29/07/2006

Society Id: VTMB1

Calving Ease Growth Fertility Marbling Angus Breeding Heavy Grass Heavy Grain TE MANIA KNIGHT K206 (AI) (ET) KENNYS CREFK O140

S A F FAME GDAR FOREVER LADY 246

KENNYS CREEK SANDY S15 (AI) Dam: TE MANIA LOWAN Z53 (AI) (ET)

\$INDEX

Sire: TE MANIA YORKSHIRE Y437 (AI) TE MANIA LOWAN U275 (AI) (ET)

B/R NEW DESIGN 036 TE MANIA LOWAN Q303 (AI) (ET)

TE MANIA LOWAN V129 (AI) (ET)

B/R NEW DESIGN 036 TE MANIA LOWAN M118 (AI) (ET)

\$169 \$132 \$207 \$144

								J	anuai	ry 201	7 Ang	jus Ai	ıstrali	a BRI	EEDP	LAN									
	c	alvin	g Eas	е	·	Growt	h& Ma	aterna	I	Fer	tility	CWT		400 H	(G Ca	rcase		Inta	ake			St	ructu	re	
Section 2																RS									
EBV	+5.3	+5.6	-9.9	+3.3	+51	+93	+122	+139	+10	+2.4	-13.8	+71	+5.8	+2.1	0.0	-1.4	+4.0	+0.35	+0.73	-9	-35.3	-18.2	-15.7	+1.0	+0.2
Acc	98%	95%	99%	99%	99%	99%	99%	99%	99%	99%	94%	98%	97%	98%	98%	97%	98%	94%	94%	99%	98%	98%	96%	91%	94%
					Traits	Observe	d: GL CE	BWT 20	00WT 40	00WT(x2	2) SS FA	T EMA II	MF Geno	mics, St	ructral S	cores: F	C 6, FA 6	6, RA 5, I	RH 5, RS	S 5					

Statistics: Number of Herds: 161 Progeny Analysed: 5336 Scan Progeny: 3407 Carc Progeny: 146 Number of Dtrs: 1412

Te Mania Berkley B1 has magnificent phenotype which breeds through into his progeny. He is very balanced with natural thickness and good length of body. He combines high growth and carcase weight with good calving ease. Berkley is the 2nd highest ranking sire on Australian Breedplan for the Heavy Grain Index, and the 2nd highest for the Angus Breeding Index. Te Mania Berkley has progeny throughout 160+ herds, and they standout for muscle pattern and capacity, blending calving ease with high growth and carcase weight. He is the sire of Te Mania Emperor E343 who sold at auction in 2011 for \$91,000. In November 2010, possession and 50% of semen marketing rights were purchased by Hazeldean Angus for \$65,000. Semen has been sold to Europe, the UK and Ireland and extending his global influence, he is now registered with the American Angus Association.

							BRI	EED A	VERA	GE EB	VS FC	OR 20	15 B	ORN (CALV	S							
С	ALVIN	G EAS	SE	GF	ROWTI	H & MA	TERN	AL	FERT	ILITY	CWT		C	ARCA	SE		INT	AKE			IND	EX\$	
DIR.	DTRS	GL	Bwt	200	400	600	Mwt	MILK	SS	DC	750d	EMA	RIB	RUMP	RBY%	IMF%	NFIP	NFIF	Doc	AB	D	HG	G
0.0	+0.1	-3.7	+4.3	+42	+77	+100	+88	+15	+1.7	-3.8	+56	+4.6	0.0	-0.2	+0.3	+1.6	+0.09	+0.15	+5	\$106	\$103	\$110	\$105
	Anim	als with	EBVs and	d Indexes	highlighte	ed with sha	iding are i	n the top	10% of the	e Angus	breed. W	ith the e	xceptio	n of fat v	vhich has	no shad	ling, and	Mature W	eight wh	nich is sha	ded if the	value is	< 100.

TE MANIA GLENCOE G872 (AI

Growth Marbling Angus Breeding Heavy Grain

TE MANIA AMBASSADOR A134 (AI)

ARDCAIRNIE MIDLAND Z57 (AI) Dam: TE MANIA BARUNAH D576

B/R MIDLAND ARDCAIRNIE GEORGINA V18 (AI)

\$INDEX \$117 \$98 \$139 \$106

Sire: TUWHARETOA REGENT D145 (AI) (ET)

LAWSONS HENRY VIII Y5 (AI)

Calving Ease

-5.4 -5.0 +6.8

97% 96%

Dtrs GL

65%

-7.6

TE MANIA BARUNAH Z146 (AI) (ET)

			J	anuai	ry 201	7 Ang	jus Αι	ıstrali	a BRI	EEDP	LAN									
(Growth& Maternal Fertility CWT 400 KG Carcase Intake																St	ructur	·e	
0	400	600	M Wt	Milk	SS	DC	750d	EMA	Rib	Rump	RBY%	IMF%	NFIP	NFIF	DOC	FC	FA	RA	RH	RS
6	+83	+115	+98	+12	+1.7	-4.9	+74	+7.0	+0.1	0.0	-0.1	+3.6	+0.62	+0.99	-7	-12.2	-16.5	-15.6	-1.5	0.0

94% 93% 89% 80% 91% 62% 90% 82% 84% 88% 78% 86% 70% 74% 92% 83% 83% 73% 63% 68% ved: GL CE BWT 200WT(x2) 400WT 600WT SS FAT EMA IMF DOC Genomics, Structral Scores: FC 7, FA 6, RA 6, RH 6, RS 6

Statistics: Number of Herds: 8 Progeny Analysed: 194 Scan Progeny: 89 Carc Progeny: 25 Number of Dtrs: 15

Added body length in this moderately framed son of Regent. He has some prominent sires and dams within his pedigree that have performed exceptionally well within the Angus breed. Glencoe has been progeny tested at Te Mania Angus and through Team Te Mania and he is a trait leader for carcase weight and IMF%.

+46

93%

<u>TE MANIA GASKIN G555 (Al</u>

Born: 22/08/2011

Society Id: VTMG555

Structure date scored 24/06/2013

Growth Marbling Heavy Grain

LAWSONS HENRY VIII Y5 (AI)

Sire: TUWHARETOA REGENT D145 (AI) (ET)

TE MANIA YORKSHIRE Y437 (AI) Dam: TE MANIA LOWAN D66 (AI)

TE MANIA LOWAN B860 (AI) YTHANBRAE HENRY VIII U8 (AI) (ET) YTHANBRAE DIRECTION T270 (AI)

\$128 \$105 \$86 \$97

								J	anuai	y 201	7 Ang	jus Αι	ıstrali	ia BRI	EEDP	LAN									
	O	alvin	g Eas	е	•	Growt	h& Ma	aterna	I	Fert	tility	CWT		400 F	(G Ca	rcase		Inta	ake			St	ructu	re	
Section 2	Dir	Dtrs	GL	B Wt	200	400	600	M Wt	Milk	SS	DC	750d	EMA	Rib	Rump	RBY%	IMF%	NFIP	NFIF	DOC	FC	FA	RA	RH	RS
EBV	-0.4	-7.8	-3.5	+3.1	+46	+81	+119	+100	+20	-1.2	-1.8	+82	+3.1	0.0	-0.8	-2.6	+4.6	+0.21	0.00	+11	+11.7	+15.1	+12.6	+1.1	+0.5
Acc	88%	80%	99%	98%	98%	98%	97%	89%	79%	97%	62%	93%	87%	86%	92%	81%	89%	74%	79%	98%	94%	94%	87%	80%	84%
				Traits	s Observ	/ed: GL (CE BWT	200WT()	(2) 400V	VT 600V	VT SS FA	AT EMA	IMF DO	C Genon	nics, Stru	ictral Sco	ores: FC	6, FA 5,	RA 5, R	H 5, RS	5				

Statistics: Number of Herds: 32 Progeny Analysed: 1219 Scan Progeny: 628 Carc Progeny: 40 Number of Dtrs: 9

Te Mania Gaskin G555, son of Tuwharetoa Regent D145, is a stylish and balanced bull who possesses good body length with heaps of natural thickness. Gaskin has fantastic phenotype and a very balanced set of EBVs across the board. He is a trait leader for carcase weight and IMF%. Te Mania Gaskin's pedigree is packed with performance, and includes some of the great donor cows of the Te Mania herd - Te Mania Barunah R312, Te Mania Beeac R342 and Te Mania Beeac U343.

							BRI	EED A	VERA	GE EB	VS FC	OR 20	15 B	ORN (CALV	ES							
С	ALVIN	G EAS	SE	GF	ROWTI	H & MA	TERN	AL	FERT	ILITY	CWT		C	ARCA	SE		INT	AKE			IND	EX\$	
DIR.	DTRS	GL	Bwt	200	400	600	Mwt	MILK	SS	DC	750d	EMA	RIB	RUMP	RBY%	IMF%	NFIP	NFIF	Doc	AB	D	HG	G
0.0	+0.1	-3.7	+4.3	+42	+77	+100	+88	+15	+1.7	-3.8	+56	+4.6	0.0	-0.2	+0.3	+1.6	+0.09	+0.15	+5	\$106	\$103	\$110	\$105
	Anim	nals with	EBVs and	d Indexes	highlighte	ed with sha	iding are i	n the top	10% of the	e Angus	breed. W	ith the e	xceptio	n of fat w	hich has	no shad	ling, and	Mature W	eight wh	nich is sha	ded if the	value is	< 100.

Calving Ease Growth Carcase Marbling Angus Breeding Heavy Grass Heavy Grain

TE MANIA JAPARA E649 (AI)

S S OBJECTIVE T510 0T26

SS TRAVELER 6807 T510 S S MISS RITA R011 7R8 Sire: G A R TWINHEARTS 8418

LAWSONS INVINCIBLE C402(AI) Dam: TE MANIA JAPARA G115 (AI)

G A R SOLUTION LAWSONS PREDESTINED A598(AI)

TE MANIA NEW DESIGN Z496 (AI) TE MANIA JAPARA C314 (AI)

\$159 \$142 \$184 \$150

G A R YIELD GRADE 2015 G A R YIELD GRADE G A R 1470 NEW DESIGN 653

								J	anua	ry 201	7 Ang	jus Ai	ıstrali	a BRI	EEDPI	LAN									
	C	Calvin	g Eas	е		Growt	h& Ma	terna	ı	Fert	ility	CWT		400 H	(G Ca	rcase		Inta	ake			St	tructu	re	
	Dir	Dtrs	GL	B Wt	200	400	600	M Wt	Milk	SS	DC	750d	EMA	Rib	Rump	RBY%	IMF%	NFIP	NFIF	DOC	FC	FA	RA	RH	RS
EBV	+4.1	+0.9	-6.3	+3.0	+58	+110	+144	+124	+26	+2.1	-1.8	+78	+11.9	-2.9	-2.9	+2.4	+3.0	+0.24	+0.20	+30	+14.3	+5.8	-5.1	+2.7	+0.4
Acc	71%	57%	98%	97%	92%	92%	84%	78%	64%	92%	45%		79%	80%	79%	73%	76%	56%	57%	92%	82%	82%	67%	64%	68%

Traits Observed: GL CE BWT 200WT 400WT(x2) SS FAT EMA IMF DOC Genomics, Structral Scores: FC 6, FA 6, RA 6, RH 5, RS 5

Statistics: Number of Herds: 3 Progeny Analysed: 204 Scan Progeny: 74

Plenty of frame, body length and butt shape on display in this son of GAR Twinhearts. He presents with good softness and fine hair. He has been used heavily in our stud herd and also progeny tested through Team Te Mania and is well suited for use over heifers.

J89 is a true growth curve bender. He has trait leading calving ease and low birth weight with fantastic high growth rate figures. He is a trait leader for 200, 400 and 600 day weight and is in the top 1% of the breed for The Angus Breeding \$Index, The Heavy Grain \$Index and The Heavy Grass \$Index.

TE MANIA JEROME J131 (AI)

Born: 31/07/2013 Society Id: VTMJ131

Calving Ease Growth Fertility Marbling Angus Breeding Heavy Grass Heavy Grain

TE MANIA YORKSHIRE Y437 (AI)

S A F FOCUS OF ER TE MANIA LOWAN U275 (AI) (ET)

TUWHARETOA REGENT D145 (AI) (ET)

TE MANIA AMBASSADOR A134 (AI) LAWSONS HENRY VIII Y5 (AI)

\$INDEX

\$148 \$121 \$175 \$130

81% 81% 69% 67%

Sire: TE MANIA BERKLEY B1 (AI)

Calving Ease

+5.3 +3.2 -6.8 +2.2

Dtrs GL B Wt 200 400 600

80% 66% 98% 96%

TE MANIA LOWAN Z53 (AI) (ET)

Dam: TE MANIA LOWAN G694 (AI)

TE MANIA LOWAN A626 (AI) (ET)

January 2017 Angus Australia BREEDPLAN **Growth& Maternal** Fertility CWT 400 KG Carcase Structure Intake M Wt Milk SS DC 750d EMA Rib Rump RBY% IMF% NFIP NFIF DOC FC RA RH RS FA +78 +104 +98 +17 +2.4 -10.7 +67 +8.7 +2.5 +0.1 -0.8 +3.9 +0.42 +0.87 -13 +2.4 -2.0 -3.0 +0.8 +0.5

93% 94% 86% 79% 68% 92% 59% 78% 81% 83% 81% 76% 80% 65% 65% 94 raits Observed: GL CE BWT 200WT 400WT(x2) SS FAT EMA IMF DOC Genomics, Structral Scores: FC 6, FA 6, RA 6, RH 6, RS 94%

Statistics: Number of Herds: 6 Progeny Analysed: 211 Scan Progeny: 118

Strong Te Mania breeding on both sides of this sires pedigree. He presents as a balanced son of Te Mania Berkley with good body length and softness. He has been heavily used within both the Te Mania herd and progeny tested through Team Te Mania herds and is well suited for use over heifers.

+46

							BRI	EED A	VERA	GE EB	VS F	OR 20	15 B	ORN (CALV	ES							
C	ALVIN	G EAS	SE	GF	ROWTI	H & MA	TERN	AL	FERT	ILITY	CWT		C	ARCA	SE		INT	AKE			IND	EX\$	
DIR.	DTRS	GL	Bwt	200	400	600	Mwt	MILK	SS	DC	750d	EMA	RIB	RUMP	RBY%	IMF%	NFIP	NFIF	Doc	AB	D	HG	G
0.0	+0.1	-3.7	+4.3	+42	+77	+100	+88	+15	+1.7	-3.8	+56	+4.6	0.0	-0.2	+0.3	+1.6	+0.09	+0.15	+5	\$106	\$103	\$110	\$105
	Anim	als with	EBVs and	Indexes	highlighte	ed with sha	iding are i	n the top	10% of the	e Angus	breed. V	Vith the e	xceptio	n of fat w	hich has	no shad	ding, and	Mature W	eight wl	nich is sha	ded if the	value is	< 100.

Growth Carcase Marbling Angus Breeding Heavy Grass Heavy Grain

G A R PREDESTINED

B/R NEW DESIGN 036 G A R EXT 4206

LAWSONS TANK B1155(AI) Dam: TE MANIA BEEAC G93 (AI)

LAWSONS TANK X1235(AI) LAWSONS NEW DESIGN 1407 Z1393(AI)

G HG \$144 \$121 \$165 \$134

Sire: WERNER WESTWARD 357 BFF EVERELDA ENTENSE 4015

C A FUTURE DIRECTION 5321 THREE TREES EVERELDA C27F

TE MANIA BEEAC E117 (AI)

TE MANIA CALAMUS C46 (AI) TE MANIA BEEAC C1042 (AI) (ET)

								J	anua	ry 201	7 Ang	jus Aı	ıstrali	ia BRI	EEDPI	LAN									
	C	alvin	g Eas	е		Growt	h& Ma	aterna	I	Fert	tility	CWT		400 k	(G Ca	rcase		Inta	ake			S	tructu	re	
THE OWNER OF THE OWNER OWNER OF THE OWNER	Dir	Dtrs	GL	B Wt	200	400	600	M Wt	Milk	SS	DC	750d	EMA	Rib	Rump	RBY%	IMF%	NFIP	NFIF	DOC	FC	FA	RA	RH	RS
EBV	-6.0	+0.5	-5.7	+7.8	+55	+105	+143	+107	+22	+0.8	-5.2	+77	+7.7	-0.7	-1.7	+1.2	+2.6	+0.15	+0.28	-9	-47.1	+2.7	+10.3	-1.2	+0.4
Acc	69%	59%	97%	94%	92%		85%	78%	67%		47%		79%	80%	79%	73%	78%	58%		91%	82%	79%	64%	61%	64%

Traits Observed: GL CE BWT 200WT 400WT(x2) SS FAT EMA IMF DOC Genomics, Structral Scores: FC 7, FA 6, RA 6, RH 6, RS 6

Statistics: Number of Herds: 2 Progeny Analysed: 98 Scan Progeny: 81

The Jock sons in the catalogue present very well. He provides some real style and presence in his progeny with frame and thickness. Jock is a trait leader for 200, 400 and 600 day weight with outstanding carcase and \$Index values. Sire pictured

TE MANIA GENERAL G429 (AI)

G

\$97

Born: 18/08/2011

TE MANIA AMBASSADOR A134 (AI)

Society Id: VTMG429

Growth Fertility Carcase Marbling Heavy Grain TE MANIA ULONG U41 (AI) (ET)

\$INDEX AB D HG

\$123

\$95

\$106

Sire: TUWHARETOA REGENT D145 (AI) (ET)

LAWSONS HENRY VIII Y5 (AI)

Dam: TE MANIA DANDLOO Z811 (AI)

AMF/NHF/CAF/DDF

TE MANIA DANDLOO X812

January 2017 Angus Australia BREEDPLAN **Calving Ease Growth& Maternal** Fertility CWT 400 KG Carcase Structure Intake NFIP NFIF Dtrs GL B Wt 200 400 600 M Wt Milk SS DC 750d EMA Rib Rump RBY% IMF% DOC FC RA RH RS FA -9.4 -4.3 -3.9 +6.2 +50 +85 +110 +111 +15 +3.0 -4.4 +41 +7.4 -0.1 +0.5 +0.3 +3.5 +0.16 +0.17 +14 +5.2 +10.3 +12.4 -4.2 -0.5 97% 97% 97% 90% 81% 95% 62% 94% 86% 86% 92% 81% 89% 74% 81% 96% Observed: GL CE BWT 200WT(x2) 400WT 600WT SS FAT EMA IMF DOC Genomics, Structral Scores: FC 6, FA 6, RA 6, RH 6, RS 6 88% 81% 98% 93% 86%

Statistics: Number of Herds: 11 Progeny Analysed: 483 Scan Progeny: 331 Carc Progeny: 53 Number of Dtrs: 11

A moderately framed son of Regent. We now have 485 progeny within the Te Mania Angus herd by Regent. G429 displays good balance and body length. He has been further progeny tested through Team Te Mania. His dam VTMZ811 at rising twelve years of age remains active within the stud herd from the Dandloo cow family line. General is a trait leader for 200 and 600 day growth, scrotal size and IMF%

							BRI	EED A	VERA	GE EB	VS F	OR 20	15 B	ORN (CALV	ES							ſ
C	ALVIN	G EAS	SE	GI	ROWTI	H & MA	TERN	AL	FERT	ILITY	CWT		C	ARCA	SE		INT	AKE			IND	EX\$	
DIR.	DTRS	GL	Bwt	200	400	600	Mwt	MILK	SS	DC	750d	EMA	RIB	RUMP	RBY%	IMF%	NFIP	NFIF	Doc	AB	D	HG	G
0.0	+0.1	-3.7	+4.3	+42	+77	+100	+88	+15	+1.7	-3.8	+56	+4.6	0.0	-0.2	+0.3	+1.6	+0.09	+0.15	+5	\$106	\$103	\$110	\$105
	Anim	nals with	EBVs and	Indexes	highlighte	ed with sha	iding are i	n the top	10% of th	e Angus	breed. W	/ith the e	xceptio	n of fat w	hich has	no shac	ding, and	Mature W	eight wl	nich is sha	ided if the	value is	< 100.

Born: 13/09/2008 Society Id: USA16350631

Calving Ease Growth Carcase Marbling Angus Breeding Heavy Grass Heavy Grain

SS TRAVELER 6807 T510

DHD TRAVELER 6807 SS MISS HI SPADE A114

G A R YIELD GRADE

G A R PRECISION 1680 G A R EXT 4526

\$167 \$147 \$193 \$156

Sire: S S OBJECTIVE T510 0T26

OF THE PERSON NAMED IN

S S MISS RITA R011 7R8

Dam: G A R YIELD GRADE 2015

G A R 1470 NEW DESIGN 653

								J	anuai	ry 201	7 Ang	jus Αι	ıstralı	a BRE	EDPI	_AN									
	C	alvin	g Eas	е	(Growt	h& Ma	terna	I	Fert	ility	CWT		400 K	(G Ca	rcase		Inta	ake			St	tructu	re	
THE OWNER OF THE OWNER OWNER OF THE OWNER OW	Dir	Dtrs	GL	B Wt	200	400	600	M Wt	Milk	SS	DC	750d	EMA	Rib	Rump	RBY%	IMF%	NFIP	NFIF	DOC	FC	FA	RA	RH	RS
EBV	+3.7	+3.0	-7.2	+3.6	+64	+124	+162	+145	+26	+1.7	-3.8	+86	+6.6	-4.2	-3.9	+2.1	+2.4	+0.07	-0.21	-5	+13.8	+4.4	-20.0	+1.4	-0.2
Acc	81%	69%	97%	96%	93%	93%	92%	90%	84%	92%	57%	83%	84%	85%	82%	80%	81%	64%	64%	90%	86%	87%	74%	61%	70%

Traits Observed:

Statistics: Number of Herds: 4 Progeny Analysed: 128 Scan Progeny: 78 Number of Dtrs: 26

In our March 2015 bull sale, our first offering of GAR Twinhearts 8418 sons sold to \$21,000. This very exciting, handsome outcross sire was bred by Gardiners Angus Ranch, Kansas. He has \$Index values topping Australian Group Breedplan, with a good combination of calving ease, high growth, fertility and carcase qualities. We are one of the only herds in Australia where you can purchase one of his sons.

Born: 01/08/2011

Calving Ease Marbling Angus Breeding Heavy Grass Heavy Grain

G A R SOLUTION

SS TRAVELER 6807 T510

400

LAWSONS DINKY-DI Z191

BON VIEW DESIGN 1407

\$INDEX \$124 \$115 \$143 \$114

Sire: LAWSONS INVINCIBLE C402(AI) LAWSONS PREDESTINED A598(AI)

Calving Ease

+6.0 +3.2 -8.1 +0.6 +40

G A R PREDESTINED LAWSONS FUTURE DIRECTION X1114(AI)

Growth& Maternal

600 M Wt Dam: TE MANIA LOWAN E428 (AI) (ET) TE MANIA LOWAN Y1000 (AI) (ET)

B/R NEW DIMENSION 7127 TE MANIA LOWAN V104 (AI) (ET)

January 2017 Angus Australia BREEDPLAN 400 KG Carcase Fertility CWT Intake Structure Rib Rump RBY% IMF% NFIP NFIF Milk FA DOC SS DC 750d EMA FC RA RS +70 +87 +52 +15 +1.5 -4.2 +43 +3.9 +0.2 +0.9 -0.6 +4.4 +0.46 +0.58 -2 +6.1 +6.5 -13.1 -0.7 +0.2

7% 95% 96% 95% 90% 79% 94% 58% 88% 84% 85% 87% 79% 85% 67% 69% 95% Traits Observed: GL CE BWT 200WT(x2) 400WT 600WT SS FAT EMA IMF DOC Genomics, Structral Scores: FC 6, FA 6, RA 6, RH 6, RS 6 Statistics: Number of Herds: 11 Progeny Analysed: 317 Scan Progeny: 169 Carc Progeny: 14 Number of Dtrs: 10

Good frame with natural thickness and added softness with a placid temperament. Galaxy has been progeny tested within both the stud herd and through Team Te Mania herds. Galaxy is a trait leader for calving ease (dir), gestation length and marbling.

200

B Wt

							BRI	ED A	VERA	GE EB	VS FO	OR 20	15 B	ORN (CALV	ES							
С	ALVI	NG EA	SE	G	ROWT	H & MA	TERN	4L	FERT	ILITY	CWT		C	ARCA	SE		INT	AKE			IND	EX\$	
DIR.	DTRS	GL.	Bwt	200	400	600	Mwt	MILK	SS	DC	750d	EMA	RIB	RUMP	RBY%	IMF%	NFIP	NFIF	Doc	AB	D	HG	G
0.0	+0.1	-3.7	+4.3	+42	+77	+100	+88	+15	+1.7	-3.8	+56	+4.6	0.0	-0.2	+0.3	+1.6	+0.09	+0.15	+5	\$106	\$103	\$110	\$105
	Ani	imals with	n EBVs an	d Indexes	highlighte	ed with sha	iding are i	n the top	10% of th	e Angus	breed. W	ith the e	xceptio	n of fat w	vhich has	no shac	ling, and	Mature W	eight wh	nich is sha	ded if the	value is	< 100.

Society Id: USA16295688 Born: 15/08/2008

Growth Marbling Angus Breeding Heavy Grass Heavy Grain

B A R EXT TRAVELER 205

CRA LADY JAYE 608 498 S EASY

Sire: C R A BEXTOR 872 5205 608

N BAR EMULATION EXT BAR QUEEN TRAVELER 3015

GAR SLEEP EASY 1009 USA H H F 917 LADY 975 498

S S OBJECTIVE T510 0T26 Dam: GAR OBJECTIVE 1885

GAR 1407 NEW DESIGN 2232

SS TRAVELER 6807 T510 S S MISS RITA R011 7R8

\$153 \$134 \$175 \$142

								J	anua	ry 201	7 Ang	jus Aı	ıstrali	a BRI	EEDPI	LAN									
	C	alvin	g Eas	е	(Growt	h& Ma	terna	ı	Fert	ility	CWT		400 k	(G Ca	rcase		Inta	ake			St	ructu	re	
THE COLUMN	Dir	Dtrs	GL	B Wt	200	400	600	M Wt	Milk	SS	DC	750d	EMA	Rib	Rump	RBY%	IMF%	NFIP	NFIF	DOC	FC	FA	RA	RH	RS
EBV	-0.4	-0.2	-0.6	+3.3	+63	+111	+137	+96	+26	+0.4	-5.5	+71	+6.3	-0.4	+1.0	-1.0	+4.1	+0.40	+0.25	+3	-10.5	+28.6	+6.1	-2.5	-1.3
Acc	91%	84%	99%	99%	98%	98%	98%	96%	92%	97%	56%	93%	88%	88%	90%	82%	90%	61%	66%	97%	88%	88%	79%	61%	68%

Traits Observed: Genomics,

Statistics: Number of Herds: 58 Progeny Analysed: 1411 Scan Progeny: 540 Carc Progeny: 28 Number of Dtrs: 111

Prophet is the number 1 selling bull for Genetics Australia. He has been very highly sought after here and in the USA for the last couple of years. He has outstanding figures across the board with six trait leading EBV's and exceptional \$Index values. His sons and daughters are in high demand both here and in the USA.

Born: 19/08/2011

Calving Ease Marbling Angus Breeding Heavy Grass Heavy Grain

G A R SOLUTION

SS TRAVELER 6807 T510

C A FUTURE DIRECTION 5321 Dam: TE MANIA BEEAC C238 (AI) (ET)

G A R PRECISION 1680 C A MISS POWER FIX 308

\$INDEX \$123 \$114 \$132 \$118

Sire: LAWSONS INVINCIBLE C402(AI) LAWSONS PREDESTINED A598(AI)

TE MANIA BEEAC U343 (AI) (ET)

B/R NEW DES TE MANIA BE

ΕÆ	AC R342 (AI)	(ET)		Y	<u> </u>	• •	y . •.	<u> </u>	•
_									
е		Inta	ake			St	ructu	re	
6	IMF%	NFIP	NFIF	DOC	FC	FA	RA	RH	RS
_		$\overline{}$		$\overline{}$					

								J	anua	ry 201	7 Ang	jus Aı	ıstrali	a BRI	EEDPI	LAN									
	С	alving	g Eas	е	(Growt	h& Ma	aterna	ı	Fert	ility	CWT		400 H	(G Ca	rcase		Int	ake			St	ructu	re	
7	Dir	Dtrs	GL	B Wt	200	400	600	M Wt	Milk	SS	DC	750d	EMA	Rib	Rump	RBY%	IMF%	NFIP	NFIF	DOC	FC	FA	RA	RH	RS
+	+2.8	+2.3	-6.1	+2.8	+40	+73	+91	+57	+16	+1.2	-4.9	+53	+8.2	+2.2	+2.8	-1.0	+3.4	+0.59	+0.70	+10	-30.3	-8.0	-2.9	+0.8	0.0
8	83%	73%	97%	96%	95%	96%	94%	88%	81%	92%	60%	89%	84%	85%	88%	79%	86%	66%	67%	92%	84%	83%	71%	57%	65%
		Dir	Dir Dtrs +2.8 +2.3	Dir Dtrs GL +2.8 +2.3 -6.1	+2.8 +2.3 -6.1 +2.8	Dir Dtrs GL B Wt 200 +2.8 +2.3 -6.1 +2.8 +40	Dir Dtrs GL B Wt 200 400 +2.8 +2.3 -6.1 +2.8 +40 +73	Dir Dtrs GL B Wt 200 400 600 +2.8 +2.3 -6.1 +2.8 +40 +73 +91	Calving Ease Growth& Maternal	Calving Ease Growth& Maternal	Calving Ease Growth& Maternal Feritary	Calving Ease Growth& Maternal Fertility	Calving Ease Growth& Maternal Fertility CWT	Calving Ease Growth& Maternal Fertility CWT	Calving Ease Growth& Maternal Fertility CWT 400 Pm	Calving Ease Growth& Maternal Fertility CWT 400 KG Ca	Dir Dtrs GL B Wt 200 400 600 M Wt Milk SS DC 7500 EMA Rib Rump RBY% +2.8 +2.3 -6.1 +2.8 +40 +73 +91 +57 +16 +1.2 -4.9 +53 +8.2 +2.2 +2.8 -1.0	Calving Ease Growth& Maternal Fertility CWT 400 KG Carcase	Calving Ease Growth& Maternal Fertility CWT 400 KG Carcase Int.	Calving Ease Growth& Maternal Fertility CWT 400 KG Carcase Intake	Calving Ease Growth& Maternal Fertility CWT 400 KG Carcase Intake	Calving Ease Growth& Maternal Fertility CWT 400 KG Carcase Intake	Calving Ease Growth& Maternal Fertility CWT 400 KG Carcase Intake State	Calving Ease Growth& Maternal Fertility CWT 400 KG Carcase Intake Structure	Calving Ease Growth& Maternal Fertility CWT 400 KG Carcase Intake Structure

Statistics: Number of Herds: 11 Progeny Analysed: 270 Scan Progeny: 153 Carc Progeny: 14 Number of Dtrs: 20

Moderately framed with good body length. G452 has been used both within the Te Mania Angus herd and progeny tested through Team Te Mania. Some great and prominent donor cows of our herd sit back in this sires pedigree from the Beeac family line. Sire pictured

							BRE	ED A	VERA	GE EB	VS FC	OR 20	15 B	ORN (CALV	S							
С	CALVING EASE GROWTH & MATERNAL FERTILITY CWT CARCASE INTAKE INDEXS															EX\$							
DIR.	DTRS	GL	Bwt	200	400	600	Mwt	MILK	SS	DC	750d	EMA	RIB	RUMP	RBY%	IMF%	NFIP	NFIF	Doc	AB	D	HG	G
0.0	+0.1	-3.7	+4.3	+42	+77	+100	+88	+15	+1.7	-3.8	+56	+4.6	0.0	-0.2	+0.3	+1.6	+0.09	+0.15	+5	\$106	\$103	\$110	\$105
	Anim	als with	EBVs and	Indexes	highlighte	ed with sha	iding are i	n the top	10% of th	e Angus	breed. W	ith the e	xceptio	n of fat v	hich has	no shad	ling, and	Mature W	eight wh	nich is sha	ded if the	value is	< 100.

SYDGEN TRUST 6228

Calving Ease Growth Carcase Angus Breeding Heavy Grass Heavy Grain

C A FUTURE DIRECTION 5321 Sire: SCR PROMISE 4042 G A R PRECISION 1680 C A MISS POWER FIX 308

BON VIEW DESIGN 1407

SCR QUEEN 2167

SA BANDO 5175-1290 SAV QUEEN 9406

Dam: SYDGEN FOREVER LADY 4413 (ET)

SAF FOREVER LADY 0182 (ET) SAF NEUTRON GDAR FOREVER LADY 246 \$125 \$115 \$128 \$124

								J	anua	ry 201	7 Ang	jus Aı	ıstrali	ia BRI	EEDPI	LAN									
The second	C	Calvin	g Eas	е	(Growt	h& Ma	iterna	I	Fert	ility	CWT		400 k	(G Ca	rcase		Inta	ake			S	tructu	re	
	Dir	Dtrs	GL	B Wt	200	400	600	M Wt	Milk	SS	DC	750d	EMA	Rib	Rump	RBY%	IMF%	NFIP	NFIF	DOC	FC	FA	RA	RH	RS
EBV	+2.6	+5.6	-7.2	+3.0	+53	+84	+119	+108	+9	+0.3	-4.2	+72	+7.9	-1.2	-2.3	+1.2	+1.3	-0.07	-0.36	-12	-29.5	-8.9	-11.7	+4.0	+0.4
Acc	95%	86%	99%	99%	98%	98%	98%	97%	97%	98%	67%	94%	93%	94%	93%	90%	91%	81%	84%	97%	91%	91%	85%	72%	76%

Traits Observed:,

Statistics: Number of Herds: 86 Progeny Analysed: 1907 Scan Progeny: 1316 Carc Progeny: 9 Number of Dtrs: 350

Sydgen Trust is a true growth curve bender with his calving ease and high growth figures. He is a trait leader for calving ease (dtrs), gestation length and 200 day growth.

TE MANIA JOE J963

Born: 24/08/2013

Society Id: VTMJ963

AMF/NHF/CAF/DDF

Growth Fertility Carcase Marbling Angus Breeding Heavy Grass Heavy Grain

S S OBJECTIVE T510 0T26

G A R YIELD GRADE 2015

SS TRAVELER 6807 T510 S S MISS RITA R011 7R8

Sire: G A R TWINHEARTS 8418 G A R YIELD GRADE G A R 1470 NEW DESIGN 653

TE MANIA EARNINGS E38 (AI) Dam: TE MANIA JEDDA G949 TE MANIA JEDDA D314 (AI)

TE MANIA CANTON C138 (AI) (ET) TE MANIA BARWON C308 (AI) TE MANIA ADA A149 (AI) TE MANIA JEDDA A267 (ACR) (AI) (ET)

\$162 \$138 \$195 \$148

								J	Janua	ry 201	7 Ang	gus Aı	ıstrali	a BR	EEDP	LAN									
	C	Calvin	g Eas	e	•	Growt	h& Ma	aterna	ıl	Fer	tility	сwт		400 k	KG Ca	rcase		Int	ake			St	tructu	re	
	Dir	Dtrs	GL	B Wt	200	400	600	M Wt	Milk	SS	DC	750d	EMA	Rib	Rump	RBY%	IMF%	NFIP	NFIF	DOC	FC	FA	RA	RH	RS
EBV	+2.9	+1.5	-7.5	+4.3	+62	+120	+157	+152	+26	+2.4	-4.1	+85	+3.8	-3.0	-1.7	+0.4	+3.6	+0.11	-0.20	+12	+18.3	+7.5	-8.4	-0.8	+0.1
۸	C 40/	E20/	0.00/	020/	000/	000/	020/	770/	620/	0.40/	440/	720/	740/	760/	7.40/	COO/	720/	E40/	E40/	000/	600/	COO/	EEO/	EOO/	E 40/

93% | 90% | 89% | 82% | 77% | 62% | 84% | 41% | 73% | 74% | 76% | 74% | 69% | 73% | 51% | 51% | 88% | 69% Traits Observed: GL CE BWT 200WT 400WT(x2) SS FAT EMA IMF DOC Genomics, Structral Scores: FC 6, FA 6, RA 6, RH 5, RS 5 Statistics: Number of Herds: 3 Progeny Analysed: 92 Scan Progeny: 40

This son of GAR Twinhearts presents as a balanced son who displays good body length and butt shape with good skin and hair. He is the first calf out of a two year old heifer.

Sire pictured

							BRI	ED A	VERA	GE EB	VS FC	OR 20	15 B	ORN (CALVE	ES							
С	ALVIN	G EAS	SE.	GI	ROWTI	H & MA	TERN	٩L	FERT	ILITY	CWT		C	ARCA	SE		INT	AKE			IND	EX\$	
DIR.	DTRS	GL	Bwt	200	400	600	Mwt	MILK	SS	DC	750d	EMA	RIB	RUMP	RBY%	IMF%	NFIP	NFIF	Doc	AB	D	HG	G
0.0	+0.1	-3.7	+4.3	+42	+77	+100	+88	+15	+1.7	-3.8	+56	+4.6	0.0	-0.2	+0.3	+1.6	+0.09	+0.15	+5	\$106	\$103	\$110	\$105
	Anin	nals with	EBVs and	Indexes	highlighte	ed with sha	iding are i	n the top	10% of th	e Angus	breed. W	/ith the e	xceptio	n of fat w	hich has	no shad	ling, and	Mature W	eight wh	nich is sha	ded if the	value is	< 100.

TE MANIA DEFLATION D367

Growth Fertility Carcase Marbling Angus Breeding Heavy Grass Heavy Grain

SUMMITCREST SCOTCH CAP OB45 GREEN GARDEN PRIDE 6128 S1 GARDENS HIGHMARK

Sire: TE MANIA BADMINTON B41 (AI) TE MANIA LOWAN Y298 (AI) (ET) S A F FOCUS OF ER TE MANIA LOWAN U275 (AI) (ET

TE MANIA WANGLE W128 (AI) Dam: TE MANIA WARGOONA Y408 (AI)

TE MANIA WARGOONA W160 (AI)

\$131 \$119 \$150 \$122

	January 2017 Angus Australia BREEDPLAN															EEDPI	LAN									
	2	c	alvin	g Eas	е	(Growt	h& Ma	aterna	I	Fert	ility	CWT		400 k	(G Ca	rcase		Inta	ake			St	tructu	re	
	ð	Dir	Dtrs	GL	B Wt	200	400	600	M Wt	Milk	SS	DC	750d	EMA	Rib	Rump	RBY%	IMF%	NFIP	NFIF	DOC	FC	FA	RA	RH	RS
EBV	/	-3.7	-0.5	-1.5	+5.6	+57	+91	+118	+102	+8	+2.3	-5.7	+81	+9.6	-3.0	-2.8	+1.5	+2.8	+0.08	+0.06	+28	+22.4	+0.7	+4.7	-7.4	+0.4
Acc		81%	71%	98%	97%	96%	96%	95%	93%	92%	95%	62%	91%	87%	88%	90%	84%	88%	68%	69%	94%	90%	91%	83%	74%	79%

Traits Observed: GL CE BWT 200WT 400WT SS FAT EMA IMF Genomics, Structral Scores: FC 6, FA 6, RA 6, RH 6, RS 6 Statistics: Number of Herds: 5 Progeny Analysed: 256 Scan Progeny: 150 Carc Progeny: 20 Number of Dtrs: 44

A balanced, robust bull who has added plenty of growth to his progeny. Uncomplicated shape yet has adequate muscle with no compromise on the all important carcase traits. Trait Leader for 200 day weight, carcase weight and eye muscle area.

Born: 07/08/2012

Society Id: VTMH199

Growth Marbling Angus Breeding Heavy Grain

G A R PREDESTINED

Sire: THOMAS GRADE UP 6849

THOMAS MISS LUCY 4206 C A FUTURE DIRECTION 5321 THOMAS MISS LUCY 0671

Dam: TE MANIA LOWAN E2 (AI) TE MANIA LOWAN C305 (AI) ARDCAIRNIE MIDLAND Z57 (AI) TE MANIA LOWAN W135 (AI) (ET) \$116 \$107 \$130 \$109

								J	anuai	ry 201	7 Ang	jus Αι	ıstrali	ia BRI	EEDPI	LAN									
	(alvin	g Eas	е	Ü	Growt	h& Ma	aterna	I	Fert	ility	CWT		400 H	(G Ca	rcase		Inta	ake			St	ructu	re	
THE PERSON NAMED IN	Dir	Dtrs	GL	B Wt	200	400	600	M Wt	Milk	SS	DC	750d	EMA	Rib	Rump	RBY%	IMF%	NFIP	NFIF	DOC	FC	FA	RA	RH	RS
EBV	-0.2	+2.7	-12.0	+5.5	+45	+79	+102	+84	+15	+0.7	-4.4	+61	+2.8	+0.6	+1.0	-0.7	+3.3	+0.30	+0.48	+33	-30.3	-17.9	-23.4	-2.4	+0.5
Acc	79%	56%	98%	96%	91%	93%	87%	79%	65%	83%	49%	75%	77%	81%	78%	73%	77%	56%	55%	84%	65%	64%	48%	40%	44%

Traits Observed: GL CE BWT 200WT(x2) 400WT SS FAT EMA IMF DOC, Structral Scores: FC 7, FA 6, RA 6, RH 6, RS 5

Statistics: Number of Herds: 5 Progeny Analysed: 246 Scan Progeny: 57

H199 comes from our most prolific female line, the Lowan family. He is a trait leader for gestation length with lots of marbling and balanced

							BRE	EED A	VERA	GE EB	VS FC	OR 20	15 B	ORN (CALV	ES							
С	ALVIN	G EAS	SE.	GF	ROWTH	H & MA	TERNA	AL	FERT	ILITY	CWT		C	ARCA	SE		INT	AKE			IND	EX\$	
DIR.	DTRS	GL	Bwt	200	400	600	Mwt	MILK	SS	DC	750d	EMA	RIB	RUMP	RBY%	IMF%	NFIP	NFIF	Doc	AB	D	HG	G
0.0	+0.1	-3.7	+4.3	+42	+77	+100	+88	+15	+1.7	-3.8	+56	+4.6	0.0	-0.2	+0.3	+1.6	+0.09	+0.15	+5	\$106	\$103	\$110	\$105
	Anim	als with	EBVs and	Indexes	highlighte	ed with sha	iding are i	n the top	10% of the	e Angus	oreed. W	ith the e	xceptio	n of fat w	hich has	no shad	ling, and	Mature W	eight wh	nich is sha	ded if the	value is	< 100.

Born: 02/01/2007 Society Id: USA15738589

Calving Ease Growth Marbling Angus Breeding Heavy Grass Heavy Grain

B/R NEW DESIGN 036

G A R EXT 4206

Sire: G A R PREDESTINED

VDAR NEW TREND 315 B/R BLACKCAP EMPRESS 76

N BAR EMULATION EXT G A R 6807 TRAVELER 1432

C A FUTURE DIRECTION 5321

G A R PRECISION 1680 C A MISS POWER FIX 308

Dam: BFF EVERELDA ENTENSE 4015

THREE TREES EVERELDA C27F SITZ TRAVELER 9929 BT EVERELDA ENTENSE 27F \$127 \$116 \$136 \$122

								J	anua	ry 201	7 Ang	jus Aı	ustrali	a BRI	EEDPI	LAN									
	(Calvin	g Eas	e	(Growt	h& Ma	aterna	ı	Fert	ility	CWT		400 H	(G Ca	rcase		Inta	ake			St	tructu	re	
THE OWNER OF THE OWNER OWNER OF THE OWNER OWNE	Dir	Dtrs	GL	B Wt	200	400	600	M Wt	Milk	SS	DC	750d	EMA	Rib	Rump	RBY%	IMF%	NFIP	NFIF	DOC	FC	FA	RA	RH	RS
EBV	+1.8	+4.3	-2.7	+3.1	+41	+78	+103	+62	+21	-0.1	-4.1	+55	+6.5	+0.9	+0.4	+0.2	+2.7	+0.16	+0.44	-18	+1.5	+21.6	+14.4	-1.8	+0.5
Acc	91%	86%	99%	99%	98%	98%	98%	95%	93%	98%	63%	89%	90%	90%	88%	84%	88%	73%	77%	96%	92%	92%	82%	70%	77%

Traits Observed: Genomics

Statistics: Number of Herds: 80 Progeny Analysed: 1559 Scan Progeny: 881 Carc Progeny: 1 Number of Dtrs: 124

Westward has high \$ Index values and good marbling and is a trait leader for Calving ease Dtrs and milk. His sons present with moderate frame and good natural thickness. In our autumn 2016 sale we sold a son for \$18,000 and eight sons in total for an average of \$7,625.

Born: 29/07/2013

Society Id: VTMJ70

Calving Ease Growth Fertility Marbling Angus Breeding Heavy Grass Heavy Grain

SS OBJECTIVE T510 0T26 SST
Sire: G A R TWINHEARTS 8418

SS TRAVELER 6807 T510 S S MISS RITA R011 7R8

TE MANIA BERKLEY B1 (AI)

TE MANIA YORKSHIRE Y437 (AI) TE MANIA I OWAN 753 (AI) (FT)

\$INDEX \$126 \$115 \$144 \$116

G A R YIELD GRADE 2015

Dam: TE MANIA LOWAN G141 (AI) (ET)

TE MANIA LOWAN Z74 (AI) (ET) BT ULTRAVOX 297E TE MANIA LOWAN V201 (AI) (ET)

								J	anua	ry 201	7 Ang	jus Ai	ustrali	ia BRI	EEDP	LAN									
	C	Calvin	g Eas	e	(Growt	th& M	aterna	ı	Fert	ility	CWT		400 k	(G Ca	rcase		Inta	ake			St	tructu	ire	
THE REAL PROPERTY.	Dir	Dtrs	GL	B Wt	200	400	600	M Wt	Milk	SS	DC	750d	EMA	Rib	Rump	RBY%	IMF%	NFIP	NFIF	DOC	FC	FA	RA	RH	RS
EBV	+6.9	+5.2	-8.3	+0.2	+45	+87	+111	+123	+23	+1.8	-7.7	+58	+1.6	-0.6	-0.7	-0.3	+2.7	+0.06	+0.15	-20	+12.1	+3.6	-5.8	+0.8	-0.2
Acc	70%	57%	96%	94%	89%	89%	82%	77%	63%	89%	46%	73%	77%	77%	76%	71%	73%	55%	56%	88%	77%	77%	62%	58%	63%

Traits Observed: GL CE BWT 200WT 400WT(x2) SS FAT EMA IMF DOC Genomics, Structral Scores: FC 6, FA 6, RA 6, RH 7, RS 6 Statistics: Number of Herds: 1 Progeny Analysed: 84 Scan Progeny: 43

Balanced with good body length, good skin and smooth hair. Strong Te Mania maternal breeding in this sires pedigree with the past four generations on the dam's side contributing 197 progeny to our herd and in addition the past four generations of dams have all been ET conceived. First calf out of a two year heifer and well suited for use

Sire pictured

							BRI	ED A	VERA	GE EB	VS FC	OR 20	15 B	ORN (CALVE	ES							
С	ALVIN	G EAS	SE.	GI	ROWTI	H & MA	TERN	٩L	FERT	ILITY	CWT		C	ARCA	SE		INT	AKE			IND	EX\$	
DIR.	DTRS	GL	Bwt	200	400	600	Mwt	MILK	SS	DC	750d	EMA	RIB	RUMP	RBY%	IMF%	NFIP	NFIF	Doc	AB	D	HG	G
0.0	+0.1	-3.7	+4.3	+42	+77	+100	+88	+15	+1.7	-3.8	+56	+4.6	0.0	-0.2	+0.3	+1.6	+0.09	+0.15	+5	\$106	\$103	\$110	\$105
	Anin	nals with	EBVs and	Indexes	highlighte	ed with sha	iding are i	n the top	10% of th	e Angus	breed. W	/ith the e	xceptio	n of fat w	hich has	no shad	ling, and	Mature W	eight wh	nich is sha	ded if the	value is	< 100.

Born: 08/08/2011

Fertility Carcase Marbling Angus Breeding Heavy Grass Heavy Grain

TE MANIA ULONG U41 (AI) (ET) Sire: TE MANIA AFRICA A217 (AI)

TE MANIA JEDDA Y32 (AI) (ET)

TE MANIA KNIGHT K206 (AI) (ET) TE MANIA LOWAN Q42 (AI) (ET)

B/R NEW DESIGN 036 G A R MAX USA 678 YTHANBRAE HENRY VIII U8 (AI) (ET) Dam: LAWSONS HENRY VIII Y5 (AI)

C A FUTURE DIRECTION 5321 YTHANBRAE Q256 YTHANBRAE DIRECTION T270 (AI)

\$138 \$120 \$166 \$120

									J	anua	ry 201	7 Ang	jus Aı	ıstrali	a BRI	EEDPI	LAN									
7	1	c	alvin	g Eas	е	(Growt	h& Ma	aterna	I	Fert	ility	cwt		400 k	(G Ca	rcase		Inta	ake			S	tructu	re	
	COL	Dir	Dtrs	GL	B Wt	200	400	600	M Wt	Milk	SS	DC	750d	EMA	Rib	Rump	RBY%	IMF%	NFIP	NFIF	DOC	FC	FA	RA	RH	RS
E	3V	-2.5	-0.2	-5.0	+4.9	+38	+73	+88	+63	+26	+4.4	-9.3	+40	+10.4	+0.7	+0.8	+0.9	+4.1	+0.51	+0.74	+6	+7.4	+0.7	-10.1	-0.2	+0.4
A	СС	80%	71%	98%	98%	96%	96%	95%	87%	77%		65%		85%	85%	84%		82%	69%	70%	96%	56%	56%	38%	30%	40%

Traits Observed: BWT 200WT 400WT 600WT SS FAT EMA IMF DOC Genomics, Statistics: Number of Herds: 10 Progeny Analysed: 400 Scan Progeny: 208 Number of Dtrs: 2

Rennylea G317 is a Te Mania Africa son with fantastic fertility figures, loads of muscle and marbling. He is a trait leader for scrotal size, days to calving, eye muscle area and marbling.

Born: 12/01/2007 Society Id: USA15832750

Calving Ease Growth Fertility Carcase Angus Breeding Heavy Grass Heavy Grain

SITZ TRAVELER 8180 Sire: SAV FINAL ANSWER 0035

SAV EMULOUS 8145

GDAR TRAVELER 71 SITZ EVERELDA ENTENSE 1137 BON VIEW BANDO 598

HAPPY DAZE OF CONANGA 6260

HYLINE RIGHT TIME 338 Dam: HAPPY DELL OF CONANGA 262 JLB EXACTO 416

\$INDEX AB \$127 \$123 \$127 \$128

					SA	/ SKT EMUL	005 2124								HAI	PPT DATE U	F CUNANG	4		·	- 1	_	<u> </u>		
								J	anuai	ry 201	7 Ang	jus Aı	ustrali	ia BRI	EEDPI	LAN									
1	1 -	Calvin	g Eas	е	•	Growt	h& Ma	iterna	ı	Fert	ility	cwt		400 H	(G Ca	rcase		Inta	ıke			St	ructu	re	
No.	Dir	Dtrs	GL	B Wt	200	400	600	M Wt	Milk	SS	DC	750d	EMA	Rib	Rump	RBY%	IMF%	NFIP	NFIF	DOC	FC	FA	RA	RH	RS
EBV	+4.3	+3.4	-8.1	+2.3	+57	+102	+130	+98	+20	+2.2	-4.5	+77	+4.0	+1.4	-1.1	+0.3	+1.3	+0.02	+0.26	0	-26.5	-10.9	-2.1	+0.2	-3.1
Acc	74%	58%	95%	93%	90%	90%	89%	83%	81%	87%	51%	81%	78%	80%	75%	73%	73%	57%	58%	75%	52%	50%	33%	27%	27%
											Traits C	bserved	: Genon	nics,											

Statistics: Number of Herds: 10 Progeny Analysed: 75 Scan Progeny: 32 Number of Dtrs: 5

Right Answer has a massive six trait leading EBV's. Calving ease, gestation length, 200, 400, 600 day weight and carcase weight.

							BRI	EED A	VERA	GE EB	VS FO	OR 20	15 B	ORN (CALV	ES							
С	ALVIN	G EAS	SE	GI	ROWTI	H & MA	TERN	AL	FERT	ILITY	CWT		C	ARCA	SE		INT	AKE			IND	EX\$	
DIR.	DTRS	GL	Bwt	200	400	600	Mwt	MILK	SS	DC	750d	EMA	RIB	RUMP	RBY%	IMF%	NFIP	NFIF	Doc	AB	D	HG	G
0.0	+0.1	-3.7	+4.3	+42	+77	+100	+88	+15	+1.7	-3.8	+56	+4.6	0.0	-0.2	+0.3	+1.6	+0.09	+0.15	+5	\$106	\$103	\$110	\$105
	Anim	nals with	EBVs and	d Indexes	highlighte	ed with sha	iding are i	n the top	10% of th	e Angus	breed. W	/ith the e	xceptio	n of fat v	vhich has	no shad	ding, and	Mature W	eight wh	nich is sha	ded if the	value is	< 100.

AMF /NHFU/CAFU/DDF Society Id: SMPD189

Growth Carcase Marbling

G A R PRECISION 1680 C A MISS POWER FIX 308 C A FUTURE DIRECTION 5321

Sire: ARDROSSAN CONNECTION X15

SUMMITCREST SCOTCH CAP OB45 ARDROSSAN WILCOOLA T75 ARDROSSAN WILCOOLA V9

VERMILLION DATELINE 7078 VERMILLION B JESTRESS 3912 VERMILLION YELLOWSTONE

Dam: PATHFINDER BOWMAN B175 (AI) (ET) PATHFINDER XCUSE X242 (AI) (ET)

C A FUTURE DIRECTION 5321 PATHFINDER V52 (AI) (ET)

\$INDEX \$108 \$102 \$111 \$108

								J	anua	ry 201	7 Ang	jus Αι	ıstrali	ia BRI	EEDP	LAN									
	C	alvin	g Eas	е	C	Growt	h& Ma	terna	ı	Fert	ility	CWT		400 F	(G Ca	rcase		Inta	ake			St	ructu	re	
	Dir	Dtrs	GL	B Wt	200	400	600	M Wt	Milk	SS	DC	750d	EMA	Rib	Rump	RBY%	IMF%	NFIP	NFIF	DOC	FC	FA	RA	RH	RS
EBV	+2.1	+3.4	-5.7	+4.1	+42	+77	+108	+92	+29	+2.0	-1.5	+63	+7.1	+0.1	+0.1	+0.4	+2.1	+0.23	+0.59	-16	+4.6	-15.6	+1.4	-0.4	-0.6
Acc	85%	71%	98%	98%	97%	97%	97%	93%	92%	96%	66%	87%	88%	88%	87%	83%	85%	71%	72%	91%	69%	70%	46%	46%	50%
								Traits	Observe	d: BWT	200WT 4	400WT 6	00WT S	S FAT E	MA IMF	Genomi	cs,								

Statistics: Number of Herds: 16 Progeny Analysed: 548 Scan Progeny: 304 Number of Dtrs: 73

Pathfinder Goldmark is a moderately framed sire with exceptional muscle and thickness. Goldmark has been the most used sire at Pathfinder. He is a trait leader for calving ease and milk.

AMFU/NHFU/CAFU/DDF Born: 02/03/2012 Society Id: NORH7 Calving Ease Growth Carcase Angus Breeding Heavy Grass Heavy Grain

B A R EXT TRAVELER 205 CRA LADY JAYE 608 498 S EASY B/R NEW DESIGN 036 BON VIEW PRIDE 664

C R A BEXTOR 872 5205 608 Sire: TC ABERDEEN 759

TC BLACKBIRD 4034 BON VIEW NEW DESIGN 208 TC BLACKBIRD 1013

BON VIEW DESIGN 1407

Dam: LAWSONS NEW DESIGN 1407 Z1393(AI) LAWSONS FUTURE DIRECTION W75(AI)

C A FUTURE DIRECTION 5321 YTHANBRAE SCOTCHCAP 9440 T370 (AI)

AB \$126 \$121 \$123 \$128

	January 2017 Angus Australia BREEDPLAN																								
	Calving Ease					Growth& Maternal					Fertility		400 KG Carcase				Intake			Structure					
	Dir	Dtrs	GL	B Wt	200	400	600	M Wt	Milk	SS	DC	750d	EMA	Rib	Rump	RBY%	IMF%	NFIP	NFIF	DOC	FC	FA	RA	RH	RS
EBV	+2.8	+4.4	-8.8	+2.8	+47	+86	+112	+82	+21	-0.2	-3.9	+56	+12.7	+0.5	-0.9	+1.4	+1.1	+0.05	-0.12	+14	+9.8	+14.0	+5.1	-2.0	+0.4
Acc	81%	70%	98%	97%	96%	96%	95%	86%	76%	96%	58%	81%	84%	84%	83%	78%	82%	66%	67%	95%	71%	72%	52%	47%	52%

Traits Observed: BWT 200WT 400WT SS FAT EMA IMF DOC Genomics. Statistics: Number of Herds: 16 Progeny Analysed: 357 Scan Progeny: 224

H7 is a trait leader for calving ease, gestation length and eye muscle area. He is ideal for use in a heifer joining programme.

	BREED AVERAGE EBVS FOR 2015 BORN CALVES																						
C	CALVING EASE GROWTH & MATERNAL FERTILITY CWT CARCASE INTAKE INDEX\$																						
DIR.	DTRS	GL	Bwt	200	400	600	Mwt	MILK	SS	DC	750d	EMA	RIB	RUMP	RBY%	IMF%	NFIP	NFIF	Doc	AB	D	HG	G
0.0	+0.1	-3.7	+4.3	+42	+77	+100	+88	+15	+1.7	-3.8	+56	+4.6	0.0	-0.2	+0.3	+1.6	+0.09	+0.15	+5	\$106	\$103	\$110	\$105
	Animals with EBVs and Indexes highlighted with shading are in the top 10% of the Angus breed. With the exception of fat which has no shading, and Mature Weight which is shaded if the value is < 100.																						

AMF /NHF/CAF/DDF Society Id: USA16916944 Born: 31/01/2011

RIVERBEND BLACKBIRD 4301

Calving Ease Carcase Marbling Angus Breeding Heavy Grass Heavy Grain

BOYD NEW DAY 8005 Sire: B/R NEW DAY 454

B/R RUBY 1224

AAR NEW TREND SVF FOREVER LADY 57D

CONNEALY ONWARD

CONNEALY LEAD ON ALTUNE OF CONANGA 6104 **Dam: SANDPOINT BLACKBIRD 8809**

\$122 \$125 \$126 \$119

B/R NEW DESIGN 323 HF RUBY 036-951 GAR GRID MAKER RIVERBEND BLACKBIRD 2204 January 2017 Angus Australia BREEDPLAN 400 KG Carcase Fertility CWT **Calving Ease Growth& Maternal** Intake Structure NFIP NFIF DOC RA RH Dtrs GL 400 600 Rib Rump RBY% IMF% FA +4.4 -1.1 -3.9 +2.5 +45 +84 +99 +77 +1.0 -4.7 +57 +10.4 -1.9 -2.4 +3.0 +1.5 +0.11 +0.04 +27 +13.1 -18.4 -7.6 -9.5 85% 81% 96% 46% 82% 85% 85% 81% 77% 82% 59% 60% 97% 82% 83% 67% 55% 82% 70% 98% 98% 97% 97% 95%

Statistics: Number of Herds: 47 Progeny Analysed: 916 Scan Progeny: 280

VAR Reserve is a long bull with mass and muscle. He is a trait leader for calving ease, milk and eye muscle area.

VERMONT DRAMBUIE

Society Id: CCVD057 Born: 20/03/2008

Growth Fertility Carcase Marbling Angus Breeding Heavy Grass Heavy Grain

LEACHMAN RIGHT TIME

90%

N BAR EMULATION EXT LEACHMAN ERICA 0025

SUMMITCREST SCOTCH CAP 0B45

SCOTCH CAP SUMMITCREST HEIRESS OT09

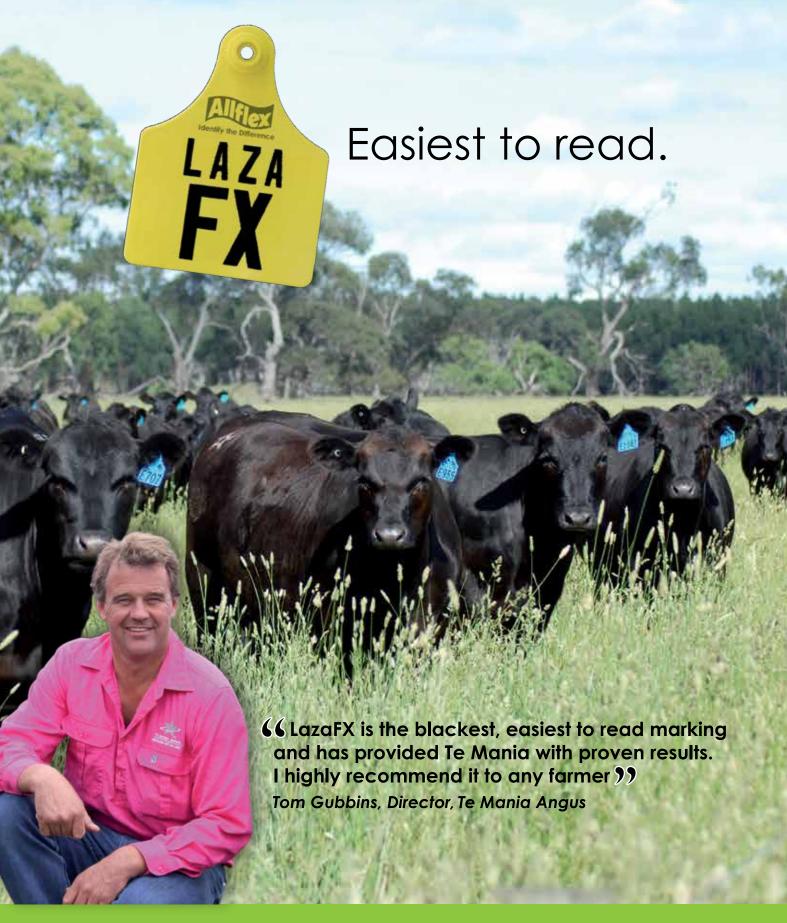
AB \$128 \$119 \$130 \$125

Sire: BT RIGHT TIME 24J SITZ EVERELDA ENTENSE 1905

Dam: VERMONT WILCOOLA X55(AI)(ET) ARDROSSAN WILCOOLA U26(AI)(ET)

B/R NEW DESIGN 036 ARDROSSAN WILCOOLA M30

January 2017 Angus Australia BREEDPLAN **Calving Ease Growth& Maternal** Fertility CWT 400 KG Carcase Dtrs GL 400 600 M Wt DC 750d EMA Rib Rump RBY% IMF% NFIP NFIF RA FA +85 +108 +90 +13 +3.3 -5.9 +68 +10.0 +1.3 +2.1 +0.9 +1.8 -0.03 -0.29 +0.5 -1.4 -4.8 +4.9 +50 -7 +5.1 -23.9 +0.1 +3.0 -0.1
 95%
 97%
 69%
 91%
 91%
 92%
 91%
 88%
 89%
 79%
 82%
 95%
 92%


 Traits Observed: BWT 400WT SS FAT EMA IMF Genomics,
 98% 98% 97% 98% 98% 96% 93% 85%

Statistics: Number of Herds: 65 Progeny Analysed: 739 Scan Progeny: 457 Number of Dtrs: 149

Vermont Drambuie D57 was introduced to the program as a total outcross sire. His sons are easy doing and have good eye appeal. His EBVs indicate great growth, with slightly more moderate maturity pattern than some of the high growth outcross sires we have used. We have sold sons to a high of \$17,000. He is trait leader for scrotal size and EMA.

	BREED AVERAGE EBVS FOR 2015 BORN CALVES																						
С	CALVING EASE GROWTH & MATERNAL FERTILITY CWT CARCASE INTAKE INDEX\$																						
DIR.	DTRS	GL	Bwt	200	400	600	Mwt	MILK	SS	DC	750d	EMA	RIB	RUMP	RBY%	IMF%	NFIP	NFIF	Doc	AB	D	HG	G
0.0	+0.1	-3.7	+4.3	+42	+77	+100	+88	+15	+1.7	-3.8	+56	+4.6	0.0	-0.2	+0.3	+1.6	+0.09	+0.15	+5	\$106	\$103	\$110	\$105
	Animals with EBVs and Indexes highlighted with shading are in the top 10% of the Angus breed. With the exception of fat which has no shading, and Mature Weight which is shaded if the value is < 100.																						

Contact our friendly Customer Service Team

1300 138 247

YOUR HEIFERS ARE AT RISK

40-60% of heifers have never been infected and are susceptible to future infection. Pestivirus can lead to increased risk of abortions, still births, calf disease and calf losses¹⁻³

FOR MORE INFORMATION, SPEAK TO YOUR LOCAL ZOETIS REPRESENTATIVE OR CALL 1800 963 847

e Veterinarian 2010;57:14-28. 4. MLA Report B.AHE.0010, 2015

Zoetis Australia Ptv Itd. ABN 94156 476 425 Level 6. 5 Rider Boulevard. Rhodes NSW 2138 ©2016 Zoetis Inc. All rights reserved 02/16 71,0407. 70ELIVI415/S/RB

NOTES

Hamilton Weaner Sale, 10 Jan 2017.
Congratulations to Bundooran, awarded the Best Presented Pen, selling for a sale high of 421c/kg which for 111 Te Mania blood steers equated to \$1,372 for 326kg weaners

NOTES

BUYER'S INSTRUCTION SLIP

TE MANIA ANGUS SOUTHERN AUTUMN BULL SALE

I March 2017	
(To be handed to the settling office immediately after the sale)	
PURCHASER DETAILS	
Purchaser Name:	
Trading Name:	
Address:	
Phone Numbers: (Business) (After Hours) (Mobile)	
Email Address:	
Property Manager or Stockman Phone No.	
Property Identification Code (PIC, must be provided on day of sale)	
DELIVERY DETAILS	
Lots Purchased:	
Insure for (period): Insure for \$:	
For transport purposes, is it necessary for the animals you have purchased to maintain their Johne's status.	□YES □ NO
ACCOUNT DETAILS	
Signature:	
If you elect to settle through an Agent who has nominated you, the Agent must sign below. (This applies to all Agents)	
Agent: Signature:	
Date: I March 2017	
STUD REGISTRATIONS	
Do you wish to have the Angus Society of Australia's registration of your bull transferred into your name?	□ YES □ NO
ACN 071 414 410 ABN 44 844 572 399	

MORTLAKE 2017

2017 REFERENCE SIRES

TE MANIA JEROME VTMJI3I

TE MANIA JENKINS VTMJ89

ENQUIRIES:

Hamish & Amanda McFarlane | T 03 5264 | 606 | M 0427 64 | 606 | E hamish@temania.com.au **Tom & Lucy Gubbins** | T 03 5599 7240 | M 0429 952197 | E tom@temania.com.au

Ross Milne 0408 057558 | Clarke Roycroft 0409 677281

