## HARDHAT


# ANGUS Annual Bull Sale

**19 Bulls** (Two year old) **10 Yearling Sires** (14 - 19 mths old)

Thursday 14th September 2023 - 1pm - Harden Showground Cattle Shed<br/>Auction Sale Interfaced with C AuctionsPlus<br/>Where cows that LAST breed bulls that LAST!Brad CavanaghM: 0428 638 384E: bcavanagh1984@gmail.com









**Contact Information** 

Hardhat Angus - Brad Cavanagh Mobile 0428 638 384 Email: bcavanagh1984@gmail.com





Aaron Seaman's Strategic Livestock Marketing

Aaron Seaman ...... 0488 915 315



Brad, Jess, Olive, Henry & Fleur Cavanagh

Π\_



Jim Hindmarsh & Co

Nick Harton ...... 0418 571 711



Malcolm and Alana Cavanagh



Harden Showground Cattle Shed

#### FOREWARD

Welcome to the 5th Hardhat Angus bull sale, which will be held on Thursday the 15th of September at the Harden Showground, Harden New South Wales.



Thank you for your interest in our

genetics. We are extremely excited to offer 20 top of the drop two year old bulls and 9 elite yearling sires for your competition.

The sale draft has been grown out at our Harden property "Lynwood". We are very grateful to have been able to develop these bulls on grazing crop and improved pastures. The bulls will present in forward condition. We try to replicate the grass fed production systems of our area with very limited supplement. You can buy in confidence that the longevity of your bull has not been inhibited by overfeeding.

We are proud to offer you the male offspring produced from our elite cow herd. This herd has been carefully put together since our beginning in the year 2000.

#### Cows that last breed bulls that last!

The Hardhat Angus herd is based between Dubbo and Harden, New South Wales. We are committed to driving the functionality and low maintenance easy care nature of our herd. The seasonal variation over the past few years has placed a great environmental challenge on our cattle and our operation. We have seen severe drought followed by high rainfall years. Both extremes challenge the functionality of our cattle. Our breeding philosophy is based around combining the best cow making genetics we can find with high carcase merit sires. Our cows must thrive in a variable environment. These thriving females are the cattle our herd is focused on, moderate framed easy fleshing cows who have a structural conformation allowing them to stay productive to an old age. The selection pressure we place on the longevity of our females in turn results in male progeny who are athletic, robust and well prepared for a long working life.

Our 2022 bull draft offers some exciting genetics for your consideration. The bulls are catalogued in sire groups which gives you the opportunity to analyse how a sire line will add value to you herd in different areas.

We used GAR Quantum as a carcase merit sire with good structural data. He has performed well. He has proven to breed impressive early growth, plenty of

HARDHAT

milk, high fertility, huge eye muscle area, carcase yield and marbling. We see him as one the most balanced Gardiner Angus Ranch sires to date.



GAR Quantum (GAR Momentum x Connealy In Sure)

His two year old daughters are calving down extremely well and we are excited as to what their progeny will bring to the table.



Rennylea Kodak K522

We have some more bulls by our resident herd sire Rennylea Kodak K522 in this years sale. Kodak has proven to be a great asset to the beef industry as a whole. He has given us elite calving ease both directly and to his daughters. He provides well above breed average growth as well as breed leading fertility measures in both scrotal measures and days to calving. He provides highly positive rib fat which has been a great attribute over the past few years, where female fat stores have been under sustained pressure. He is a top 4% marbling bull giving him the ability to positively shift marbling averages across commercial herds where marbling premiums are beginning to become reality. As important as any of his qualities is his ability to improve foot claw set. Kodak in the flesh has an extremely long body and tremendous neck extension

and shoulder set. His athletic movement reflects his great joint flexibility which is of high importance when trying to get an extended working life from your bull investment.

Kodak K522 died in August 2022 as an 8 year old bull. His semen and resulting progeny will be in limited supply into the future. We are extremely proud to have found Kodak, he will have a lasting impact on our herd. He now has over 1500 registered progeny and has been used over thousands of commercial heifers. We believe Kodak K522 is one of best Australian bred bulls of the past decade.



Hardhat Nebraska N43

Hardhat Nebraska N43 is owned by Boonaroo Angus and was the top price bull in 2019. He is the ultimate curve bending sire. He has proven to be an elite Calving Ease bull and sit in the TOP 3% Calving Ease, TOP 5% Calving Ease Daughters and Top 2% for Gestation Length. Meanwhile his growth spread is +2.0 for BW through to +144 at 600 days. In addition he is at TOP 1% Scrotal bull at +5.2. We have found his daughters are always calving at the start of the calving period. Structurally N43 is very solid.

The maternal line behind N43 is Kansas Annie F143, dam of lot 11 and lot 13. F143 was a powerhouse Sitz Upward daughter who bred extremely well to many of our sires. F143 will have many ET progeny coming through over the next couple of years.

The Kansas Annie cow family is the heart of the Hardhat herd with a huge contribution to this years sale offering.

Kind Regards,

Brad Cavanagh - 0428638384

#### HARDHAT ANGUS GUARANTEE

Hardhat Angus places great pride in our bulls performing for their new owner.

If within 12 months from sale day your bull becomes infertile or breaks down NOT due to injury or disease. We will replace the bull with an appropriate replacement or give you a credit for the next Hardhat Angus bull sale. The credit amount will be less the salvage value of the bull.

We expect our bulls to last much longer than this guarantee period. Please contact Brad if you have any issues after this time. We will do our best to solve any problems. The traditional hand shake guarantee still has its place here.



#### INDEPENDENT STRUCTURAL ASSESSMENT

The structural conformation of our herd is a high priority. Jim Green of Beef Excel has been evaluating our herd for structure over the past few years. Liam Cardile has recently taken over these duties.

All of our bulls are structurally assessed at 400 day while our females are structurally assessed prior to calving at 22 months. The structural data is then submitted to Angus Breedplan to produce the Structural Trait Estimated Breeding Values. We have found this data to be very informing and accurate in analysing the genetic value of an animal's structure.

#### ANGUS SIRE BENCHMARKING PROGRAM (ASBP)

Hardhat Angus is a strong supporter of the Angus Sire Benchmarking Program. It has been a great tool to not only benchmark Angus genetics but also to incorporate cutting edge research projects on a trial population who are fully phenotyped and genotyped. We look forward to receiving the data on our bulls each time they are released.

Our bulls currently in the Angus Sire Benchmarking Program include;

- ✓ Hardhat GM Grass Range Y21 J518 (Cohort 6)
- ✓ Hardhat GM Agronomist Y21 J516 (Cohort 6)
- ✓ Rennylea Kodak K522 (Cohort 7)
- ✓ Hardhat GM Grass King Y21 K15 (Cohort 7)
- ✓ Hardhat RES Michelin J536 M56 (Cohort 8)
- ✓ Hardhat H708 Maimuru J51 M41 (Cohort 9 and 10)
- ✓ Hardhat K522 Nebraska F143 N43 (Cohort 10)
- ✓ Hardhat KOD PUNCH M5 P156 (Cohort 11)
- ✓ Hardhat K522 KODAK M33 Q110 (Cohort 12)
- ✓ Alpine Ronaldo R232 (Cohort 13)







ANGUS

### Alpine Ronaldo R232

H P C A Intensity

SIRE: Rennylea N452 Rennylea Eisa Erica G366

Coonamble Junior J266

DAM: Alpine Lowan M152

Alpine Lowan J125



#### NOW AVAILABLE IN MALE AND FEMALE SEXED ULTRA PLUS

#### Australian EBV's as of July 2022

|      | CED  | CE DTRS | GL   | BW   | 200 | 400 | 600  | мсw | MILK | DTC  | SCR  | cw  | EMA  | RIB F | RF   | RBY  | IMF  | NFI-F |
|------|------|---------|------|------|-----|-----|------|-----|------|------|------|-----|------|-------|------|------|------|-------|
| EBV  | +9.1 | +6.6    | -5.2 | +1.0 | +48 | +92 | +124 | +98 | +26  | -5.7 | +3.2 | +73 | +9.1 | -2.6  | -2.9 | +2.3 | +3.4 | +0.36 |
| RANK | 5%   | 15%     | 41%  | 4%   | 58  | 41% | 33%  | 55% | 4%   | 31%  | 12%  | 27% | 12%  | 97%   | 95%  | 4%   | 10%  | 72%   |

As we looked for possible sire options in 2022 the draft of bulls by Rennylea N542 at Alpine Angus really stood out to me as the best sire group of bulls on the market. This sire group had eye appeal and great data. Ronaldo R232 is an extremely athletic free striding sire. He walks on near faultless feet with 5's for claw shape and foot angle backed by highly positive genetic structural data.

He is a very long bodied bull who carries this length through his hip which we appreciate. His front end is very well put together. His refined shoulder and neck combined with genetic data for calving ease made him a bull that really fits into our program well.

We see Ronaldo R232 as having ideal growth and mature cow weight data for a self replacing program. His scrotal data suggests fertility will also be a strength of his. Ronaldo R232 is a specialist heifer bull on data and in phenotype. We see great potential for him in commercial and stud heifer Al programs. *Bradley Cavanagh, Hard Hat Angus* 

|            | \$VALUES | RANK |
|------------|----------|------|
| FOOT ANGLE | +0.76    | 8%   |
| CLAW SET   | +0.72    | 23%  |
| \$A        | \$252    | 7%   |
| \$A+L      | \$413    | 7%   |



SCAN QR code to view video footage.



EARLY BIRD RELEASE SEMEN SPECIAL \$50.00 (MIN 25 UNITS VALID TILL AUGUST 31st 2022) RRP \$55.00 (CONVENTIONAL SEMEN)

Contact your STG Australia Area Sales Manager or the STG Call Centre on FREE CALL 1800 793 465



Annual Bull Sale Thursday 14th September 2023 - 1pm

#### **Animal Health**

7 in 1 Vaccinations- Our bulls receive many 7 in 1 vaccinations between birth and Sale. These include at 3 months, at weaning, at 400 days and the one in March 2023 before we develop bulls on grazing crops.

Vibriosis - The bulls have received 2 Vibrio vaccinations prior to the sale. They will be due for their annual booster in May each year.

Pestivirus - All bulls in the sale are either hair tested negative for persistently infected pestivirus. Bulls have also had two Pestigard vaccinations prior to the sale. An annual booster is due in May each year.

J BAS 6 - The Hardhat Angus herd is J BAS 6.

Please ensure your bulls stay up to date with their annual vaccination program. A 7 in 1 vaccination, as well as a Pestigard and Vibriovax. We normally give an annual booster prior to each spring joining season.

#### **Pre Sale Vet Check**

All bulls are crush side semen motility tested by Holbrook Vet Centre. Included in this pre sale inspection is a Physical reproductive examination (testicular palpation and measurement, penile inspection, temperament and structural soundness assessment).

#### Semen Interest

The purchaser of the bull owns 100% possession of the bull.

Hardhat Angus retains a 50% semen interest in all bulls within the Sale. This allows Hardhat Angus the right to have semen collected at our cost at a time and place suitable for the bull owner. If any semen is sold Hardhat Angus has the right to 50% of Semen proceeds.

#### UNDERSTANDING ANGUS BREEDPLAN EBVs

#### What is Angus BREEDPLAN?

Angus BREEDPLAN is the genetic evaluation program adopted by Angus Australia for Angus and Angus influenced beef cattle. Angus BREEDPLAN uses Best Linear Unbiased Prediction (BLUP) technology to produce Estimated Breeding Values (EBVs) of recorded cattle for a range of important production traits (e.g. weight, carcase, fertility).

Angus BREEDPLAN includes pedigree, performance and genomic information from the Angus Australia and New Zealand Angus Association databases to evaluate the genetics of animals across Australia and New Zealand.

Angus BREEDPLAN analyses are conducted by the Agricultural Business Research Institute (ABRI), using software developed by the Animal Genetics and Breeding Unit (AGBU), a joint institute of NSW Agriculture and the University of New England. Ongoing BREEDPLAN research and development is supported by Meat and Livestock Australia.

#### What is an EBV?

An animal's breeding value can be defined as its genetic merit for each trait. While it is not possible to determine an animal's true breeding value, it is possible to estimate it. These estimates of an animal's true breeding value are called EBVs (Estimated Breeding Values).

#### Using EBVs to Compare the Genetics of Two Animals

Angus BREEDPLAN EBVs can be used to estimate the expected difference in the genetics of two animals, with the expected difference equating to half the difference in the EBVs of the animals, all other things being equal (e.g. they are joined to the same animal/s).

For example, a bull with a 200 Day Growth EBV of +60 would be expected to produce progeny that are, on average, 10 kg heavier at 200 days of age than a bull with a 200 Day Growth EBV of +40 kg (i.e. 20 kg difference between the sire's EBVs, then halved as the sire only contributes half the genetics).

Or similarly, a bull with an IMF EBV of +3.0 would be expected to produce progeny with on average, 1% more intramuscular fat in a 400 kg carcase than a bull with a IMF EBV of +1.0 (i.e. 2% difference between the sire's EBVs, then halved as the sire only contributes half the genetics).

#### Using EBVs to Benchmark an Animal's Genetics with the Breed

EBVs can also be used to benchmark an animal's genetics relative to the genetics of other Angus or Angus infused animals in Australia and New Zealand.

To benchmark an animal's genetics relative to other Angus animals, an animal's EBV can be compared to:

- the breed average EBV
- the percentile table

The current breed average EBV and percentile table is provided in these explanatory notes.

#### **Considering Accuracy**

An accuracy value is published in association with each EBV, which is usually displayed as a percentage value immediately below the EBV.

The accuracy value provides an indication of the reliability of the EBV in estimating the animal's genetics (or true breeding value), and is an indication of the amount of information that has been used in the calculation of the EBV.

EBVs with accuracy values below 50% should be considered as preliminary or of low accuracy, 50-74% as of medium accuracy, 75-90% of medium to high accuracy, and 90% or greater as high accuracy.

#### Description of Angus BREEDPLAN EBVs

EBVs are calculated for a range of traits within Angus BREEDPLAN, covering calving ease, growth, fertility, maternal performance, carcase merit, feed efficiency and structural soundness. A description of each EBV included in this sale catalogue is provided on the following pages.



#### HARDHAT H708 MAIMURU J51 M41



Hardhat H708 Maimuru J51 M41 (Pictured below as 2 year old in 2018)

Maimuru M41 was purchased by David and Louise Crawford at our first bull sale in 2018 and was our representative in the Angus Sire Benchmarking Program (ASBP) Cohort 9.

The ASBP is the most comprehensive Beef sire benchmarking program in the world. Sires included are performance recorded for calving ease, growth, temperament, heifer reproduction, structure, feed efficiency, abattoir carcase and beef quality attributes. Hardhat Maimuru M41 went on to dominate cohort 9 for Marbling performance as seen in the performance table above right. We are extremely proud of his carcase performance.

This result is a great example of what our breeding program can achieve when we combine great cow making lines with high carcase merit lines.

Hardhat Maimuru M41 now has an IMF EBV of +6.7 placing in the top few highly proven sires of the Angus breed. He is currently ranked 11th in the Angus Breed for IMF



#### HARDHAT H708 MAIMURU J51 M41

|                                   | Ang                            | jus Si              | re Bei                                  | nchmar                   | king              | Prog                     | ram -                      | Sum             | nary o                                 | f Pro                  | gen                             | y Perfor                    | mance              | ;                 |                       |     |
|-----------------------------------|--------------------------------|---------------------|-----------------------------------------|--------------------------|-------------------|--------------------------|----------------------------|-----------------|----------------------------------------|------------------------|---------------------------------|-----------------------------|--------------------|-------------------|-----------------------|-----|
|                                   | Bir                            | th                  |                                         |                          | Gro               | wth                      |                            |                 | Ca                                     | rcase                  | e (S                            | canning                     | )                  | Feed<br>Efficiend | Heif<br>y Fertil      |     |
|                                   | Gestatio<br>n Length<br>(days) | Birt<br>Weig<br>(kg | ght V                                   | 00 Day<br>Weight<br>(kg) | 400<br>Wei<br>(kg | ght                      | 600<br>Day<br>Weig<br>(kg) | /<br>ht N       | Scan<br>Eye<br>Auscle<br>Area<br>(cm²) | Sca<br>Ri<br>Fa<br>(mi | b<br>at                         | Scan<br>Rump<br>Fat<br>(mm) | Scan<br>IMF<br>(%) | NFI-F<br>(kg/day  | Days<br>Calvi<br>(day | ing |
| Number of<br>Progeny              | 29                             | 30                  |                                         | 26                       | 20                |                          | 17                         |                 | 24                                     | 22                     | 2                               | 24                          | 24                 | 13                | 10                    | )   |
| Average<br>Progeny<br>Performance | Progeny                        |                     | 1                                       | 194.1                    | 371               | 1.3                      | 649.                       | 7               | 66.1                                   | 9.                     | 7                               | 9.7                         | 7.9                | -3.2              | 311.                  | .2  |
| Sire Rank                         | 18                             | 4                   |                                         | 5                        | 8                 |                          | 12                         |                 | 14                                     | 3                      | ;                               | 1                           | 1                  | 10                | 18                    | }   |
|                                   |                                |                     |                                         |                          |                   |                          |                            |                 |                                        |                        |                                 |                             |                    |                   |                       |     |
|                                   |                                |                     |                                         |                          |                   |                          | Car                        | case            | se (Abattoir)                          |                        |                                 |                             |                    |                   |                       |     |
|                                   | Weight (kg) E<br>Mu<br>Ar      |                     | Carcas<br>Eye<br>Muscl<br>Area<br>(cm²) | Rib<br>le (m             | Fat               | Carc<br>Rur<br>Fa<br>(mi | np I<br>at                 | Carca:<br>MF (% | 6) Ma<br>Sc                            |                        | MSA<br>Ossificatio<br>n (score) |                             | MSA<br>(ind        |                   | hear Ford<br>(kg)     | ce  |
| Number of<br>Progeny              | 13                             |                     | 13                                      | 1                        | 3                 | 1:                       | 3                          | 13              | 1                                      | 3                      |                                 | 13                          | 1:                 | 3                 | -                     |     |
| Average<br>Progeny<br>Performance | 471.0                          |                     | 88.8                                    | 17                       | .7                | 20                       | .5                         | 13.0            | 58                                     | 4.8                    | 1                               | 142.6                       | 67                 | .0                | -                     |     |
| Sire Rank                         | 17                             |                     | 18                                      | 7                        | 7                 | 19                       | 9                          | 1               | 3                                      | 3                      |                                 | 8                           | 1                  |                   | -                     |     |

among sires with an IMF accuracy of over 80%. Not many sires get above 80% accuracy for carcase traits.

The granddam of Hardhat Maimuru M41 is Hardhat Mittagong E10 who is pictured to the right. We see Mittagong E10 as a text book Angus cow. The cow quality behind M41 is what differentiates him from elite carcase sires.

We have 3 sons of M41 in this years sale.



Hardhat Mittagong E10



#### 1. UPON ARRIVAL:

- a) Ensure your new bulls socialises with a group of animals, (anything except other bulls) in the yards, when they arrive.
- b) Run the new bulls with a small group of empty females, (he has come from a different herd and may not have had exposure to some of the normal pathogens present in your herd – see further information below).
  - i. This MUST be done with the empty females, for a period of 2 to 4 weeks. Ideally the bull can then be rested for 6-8 weeks prior to joining.
  - ii. Ideally give the cows prostaglandin every 2 weeks so they continue to cycle.
- c) Ideally bulls should be insured for their first year as standard.

#### 2. PRE-JOINING:

- a) We recommend a breeding soundness examination (BSE), including structural assessment, testicular palpation, service ability testing and semen testing (essential in single sire matings). This is mandatory for second joining and older bulls each year. It will improve the fertility performance of the herd, by removing infertile bulls from the joining group. If bulls are not service tested it is essential that you observe the bulls serve in the first week on joining.
  - i. These bulls will be given a risk rating and mating potential which will influence joining bull teams.
- b) Keep vaccinations up to date; Vibrovax, Leptospirosis 7-in-1, Pestigard and an annual drench, 4-6 weeks prior to joining.
- **3.** JOINING new bulls have the highest risk of breakdown in the herd, this risk can be reduced by:
  - a) PROTECT a new bull by not over-joining, 30 females per virgin bull maximum.
  - b) Recommended to multi-sire join.
    - i. Ideally mixing bulls of different age groups, experience levels and risk ratings.
  - c) It is recommended, IF single sire joining with a new bull, to rotate him with a proven bull for at least one cycle. Also, it is good practice to rotate proven bulls for the last cycle with all new bulls.

"Most new bull fertility issues develop or are acquired during the joining period, rather than being pre-existing problems, this means that bull observation during the joining period is essential!

### ONCE THE JOINING PROGRAM IS SET UP, MONITORING IS ESSENTIAL TO IDENTIFY ISSUES AS THEY DEVELOP.

Your new bulls need to be run in mobs that are easily monitored, keep them close to promote observation, check them 2 to 3 times a week for the first three weeks and then weekly thereafter. This involves looking for,

- The bull serving, (this has not been successful until the bull thrusts). If bulls are continually
  mounting without serving it is often a sign the bull has developed a penile infection and
  needs to be rested and replaced immediately. Sound bulls should serve every 1 to 2
  mounts.
- 2. Lameness.
- 3. Evidence of penile or preputial swelling or inflammation.
- 4. Signs of ill health, lethargy, etc.
- 5. Estimate the number of females cycling, (for every 20 females, one cycles each day at the commencement of joining). After three weeks of joining, there should only be one cow cycling every three days in 20 females.



#### 4. POST-JOINING:

- a. Annual breeding soundness evaluation is a non-negotiable procedure.
- b. Good management of bulls is a year-round procedure.
  - Keep bulls in working body condition they should be in body condition score 3/5 at the start of mating, which will involve removing weight following the joining period.
  - Manage bulls in groups of joining teams to establish stable social hierarchies and minimise bull fighting.
- ✓ Bulls need to be removed from the cows at the same time, to help create their bull mobs. This will limit the number of potential injuries by reducing the number of bull interactions.
- Bull paddock management is very important to minimise injury between joinings. The bulls need enough room to reduce fighting, restricted feed and water will increase interaction.
   Paddocks will require co-grazing with sheep, or crash-grazing by other mobs to manage feed quality and quantity on offer for the bulls.
- ✓ The target between joining is to restrict weight gain in older bulls to prevent breakdowns. Ideally young bulls have access to a higher level of nutrition as they continue to grow.
- ✓ Early pregnancy testing is essential for good female management and detection of surprises. The earlier the pregnancy testing is undertaken, the more likely the cause of the problem will be identified. This will not only give you early notice of the problem but also help in formulating a plan to help reduce the chance of the problem occurring again in the future.

#### PENILE INFECTIONS IN BULLS - "Balanoposthitis":

Penile infections are a common disease in young bulls during their first joining season in any new herd. Mitigating the risk of this disease as outlined above is essential to reduce the number of breakdowns and optimise bull cost per calf.

These infections are caused by a range of bacterial, viral, and other organisms ("pathogens"). The genital form of infectious bovine rhinotracheitis (IBR; herpes virus) is commonly implicated. The issue is that any given property has its own population of reproductive tract pathogens and if the new bulls make their first contact with these pathogens at the time of high workload (such as joining) they are at a high risk of developing a penile injury.

These injuries typically involve a reddened inflamed penis, developing to ulceration and pustules. Some bulls will stop serving due to pain (will continue to mount, but not serve), but other high libido bulls will continue to serve and create significant inflammation commonly leading to preputial tears, abscesses and prolapses. These are often perceived to be a "broken penis", which they are not and **IF treated promptly may regain normal function!** 

Treatment involves prompt removal of the affected bull from the joining mob, sexual rest (typically for the remainder of the joining) and treatment with antibiotics and anti-inflammatories. Preputial prolapses require surgical replacement.

If undetected these injuries commonly cause a significant decrease in pregnancy rate and commonly result in permanent infertility in the bull. **Observation and intervention are essential!** 

Prevention of this condition is best achieved as outlined above, by deliberate pre-exposure of new bulls to a small number of females (low workload) well before the joining so that they are exposed and can develop immunity to the herds' pathogens prior to the high workload of the joining period.

Positive fertility outcomes are a significant driver of profitability in beef breeding enterprises, but this requires informed and active management!

Dr. Shane P. Thomson. BVetBio. BVSc. MAnSc. | HVC Production & Breeding.



www.holbrookvetcentre.com.au



|                           |                 | BIRTH                                                                                                                                                               |                                                                        |
|---------------------------|-----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|
| Calving Ease<br>Direct    | (%)             | Genetic differences in the ability of a sire's calves to be<br>born unassisted from 2 year old heifers.                                                             | Higher EBVs indicate fewer calving difficulties in 2 year old heifers. |
| Calving Ease<br>Daughters | (%)             | Genetic differences in the ability of a sire's daughters to calve unassisted at 2 years of age.                                                                     | Higher EBVs indicate fewer calving difficulties in 2 year old heifers. |
| Gestation<br>Length       | days            | Genetic differences between animals in the length of time from the date of conception to the birth of the calf.                                                     | Lower EBVs indicate shorter gestation length.                          |
| Birth Weight              | kg              | Genetic differences between animals in calf weight at birth.                                                                                                        | Lower EBVs indicate lighter birth weight.                              |
|                           |                 | GROWTH                                                                                                                                                              |                                                                        |
| 200 Day<br>Growth         | kg              | Genetic differences between animals in live weight at 200 days of age due to genetics for growth.                                                                   | Higher EBVs indicate heavier live weight.                              |
| 400 Day<br>Weight         | kg              | Genetic differences between animals in live weight at 400 days of age.                                                                                              | Higher EBVs indicate heavier live weight.                              |
| 600 Day<br>Weight         | kg              | Genetic differences between animals in live weight at 600 days of age.                                                                                              | Higher EBVs indicate heavier live weight.                              |
| Mature Cow<br>Weight      | kg              | Genetic differences between animals in live weight of cows at 5 years of age.                                                                                       | Higher EBVs indicate heavier mature weight.                            |
| Milk                      | kg              | Genetic differences between animals in live weight at 200 days of age due to the maternal contribution of its dam.                                                  | Higher EBVs indicate heavier live weight.                              |
|                           |                 | FERTILITY                                                                                                                                                           |                                                                        |
| Days to<br>Calving        | kg              | Genetic differences between animals in the time from<br>the start of the joining period (i.e. when the female is<br>introduced to a bull) until subsequent calving. | Lower EBVs indicate shorter time to calving.                           |
| Scrotal Size              | cm              | Genetic differences between animals in scrotal<br>circumference at 400 days of age.                                                                                 | Higher EBVs indicate larger scrotal circumference.                     |
|                           |                 | CARCASE                                                                                                                                                             |                                                                        |
| Carcase<br>Weight         | kg              | Genetic differences between animals in hot standard carcase weight at 750 days of age.                                                                              | Higher EBVs indicate heavier carcase weight.                           |
| Eye Muscle<br>Area        | cm <sup>2</sup> | Genetic differences between animals in eye muscle area at the 12/13th rib site in a 400 kg carcase.                                                                 | Higher EBVs indicate larger eye muscle area.                           |
| Rib Fat                   | mm              | Genetic differences between animals in fat depth at the 12/13th rib site in a 400 kg carcase.                                                                       | Higher EBVs indicate more fat.                                         |
| Rump Fat                  | mm              | Genetic differences between animals in fat depth at the P8 rump site in a 400 kg carcase.                                                                           | Higher EBVs indicate more fat.                                         |
| Retail Beef<br>Yield      | %               | Genetic differences between animals in boned out saleable meat from a 400 kg carcase.                                                                               | Higher EBVs indicate higher yield.                                     |
|                           | %               | Genetic differences between animals in intramuscular fat                                                                                                            | Higher EBVs indicate more intramuscular                                |



|                                      |        | FEED EFFICIENCY                                                                                                                                                                                                                                                                                                                                                                                      |                                                               |
|--------------------------------------|--------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|
| Net Feed<br>Intake (Post<br>Weaning) | kg/day | Genetic differences between animals in feed intake at a standard weight and rate of weight gain when animals are in a growing phase.                                                                                                                                                                                                                                                                 | Lower EBVs indicate more feed efficiency.                     |
| Net Feed<br>Intake<br>(Feedlot)      | kg/day | Genetic differences between animals in feed intake at a<br>standard weight and rate of weight gain when animals are<br>in a feedlot finishing phase.                                                                                                                                                                                                                                                 | Lower EBVs indicate more feed efficiency.                     |
|                                      |        | TEMPERAMENT                                                                                                                                                                                                                                                                                                                                                                                          |                                                               |
| Docility                             | %      | Genetic differences between animals in temperament.                                                                                                                                                                                                                                                                                                                                                  | Higher EBVs indicate better temperament.                      |
|                                      |        | STRUCTURE                                                                                                                                                                                                                                                                                                                                                                                            |                                                               |
| Front Feet<br>Angle                  | %      | Genetic differences between animals in desirable front feet angle (strength of pastern, depth of heel).                                                                                                                                                                                                                                                                                              | Higher EBVs indicate more desirable structure.                |
| Front Feet Claw<br>Set               | %      | Genetic differences between animals in desirable front feet claw set structure (shape and evenness of claw).                                                                                                                                                                                                                                                                                         | Higher EBVs indicate more desirable structure.                |
| Rear Feet<br>Angle                   | %      | Genetic differences between animals in desirable rear feet angle (strength of pastern, depth of heel).                                                                                                                                                                                                                                                                                               | Higher EBVs indicate more desirable structure.                |
| Rear Leg Hind<br>View                | %      | Genetic differences between animals in desirable rear leg structure when viewed from behind.                                                                                                                                                                                                                                                                                                         | Higher EBVs indicate more desirable structure.                |
| Rear Leg Side<br>View                | %      | Genetic differences between animals in desirable rear leg structure when viewed from the side.                                                                                                                                                                                                                                                                                                       | Higher EBVs indicate more desirable structure.                |
|                                      |        | SELECTION INDEXES                                                                                                                                                                                                                                                                                                                                                                                    |                                                               |
| Angus<br>Breeding Index              |        | Genetic differences between animals in net profitability per<br>cow joined in a typical commercial self replacing herd using<br>Angus bulls. This selection index is not specific to a particular<br>production system or market end-point, but identifies<br>animals that will improve overall profitability in the majority<br>of commercial grass and grain finishing beef production<br>systems. | Higher selection index values indicate greater profitability. |
| Domestic<br>Index                    |        | Genetic differences between animals in net profitability per<br>cow joined in a commercial self replacing herd targeting the<br>domestic supermarket trade.                                                                                                                                                                                                                                          | Higher selection index values indicate greater profitability. |
| Heavy Grain<br>Index                 |        | Genetic differences between animals in net profitability per<br>cow joined in a commercial self replacing herd targeting<br>pasture grown steers with a 200 day feedlot finishing period<br>for the grain fed high quality, highly marbled markets.                                                                                                                                                  | Higher selection index values indicate greater profitability. |
| Heavy Grass<br>Index                 |        | Genetic differences between animals in net profitability per<br>cow joined in a commercial self replacing herd targeting<br>pasture finished steers.                                                                                                                                                                                                                                                 | Higher selection index values indicate greater profitability. |





### RECESSIVE GENETIC CONDITIONS INFORMATION FOR BULL BUYERS

This is information for bull buyers about the recessive genetic conditions, Arthrogryposis Multiplex (AM), Hydrocephalus (NH), Contractural Arachnodactyly (CA) and Developmental Duplications (DD).

#### Putting undesirable Genetic Recessive Conditions in perspective

All animals, including humans, carry single copies (alleles) of undesirable or "broken" genes. In single copy form, these undesirable alleles usually cause no harm to the individual. But when animals carry 2 copies of certain undesirable or "broken" alleles it often results in bad consequences. Advances in genomics have facilitated the development of accurate diagnostic tests to enable the identification and management of numerous undesirable or "broken" genes. Angus Australia is proactive in providing its members and their clients with relevant tools and information to assist them in the management of known undesirable genes and our members are leading the industry in their use of this technology.

Key point: With today's DNA tools undesirable genetic conditions can be managed!

#### What are AM, NH, CA and DD?

AM, NH, CA and DD are all recessive conditions caused by "broken" alleles within the DNA of individual animals. When a calf inherits 2 copies of the AM or NH alleles their development is so adversely affected that they will be still-born.

In other cases, such as CA and DD, calves carrying 2 copies of the broken allele may reach full-term. In such cases the animal may either appear relatively normal, or show physical symptoms that affect their health and/or performance.

#### Key point: The number of reported observations of AM, NH, CA and DD calves is very low and there is certainly no need for panic.

#### How are the conditions inherited?

Research in the U.S. and Australia indicates that AM, NH, CA and DD are simply inherited recessive conditions. This means that a single gene (or pair of alleles) controls the condition. For this mode of inheritance two copies of the undesirable allele need to be present before the condition is seen; in which case you may get an abnormal calf. A more common example of a trait with a simple recessive pattern of inheritance is black and red coat colour.

Animals with only one copy of the undesirable allele (and one copy of the normal form of the allele) appear normal and are known as "carriers".

#### What happens when carriers are mated to other animals?

Carriers, will on average, pass the undesirable allele to a random half (50 %) of their progeny.



If animals tested free of the undesirable gene are mated to carrier animals the condition will not be expressed at all. All calves will appear normal, but approximately half (50%) could be expected to be carriers.

Key point: For the condition to be expressed the undesirable gene needs to be present on both sides of the pedigree and both the sire and dam need to be a carrier.

#### How is the genetic status of animals reported?

DNA-based diagnostic tests have been developed which can be used to determine whether an individual animal i either a carrier or free of the alleles resulting in AM, NH, CA or DD.

Angus Australia uses advanced software to calculate the probability of (untested) animals to being carriers of AN NH, CA or DD. The software uses the test results of any relatives in the calculations and the probabilities may change as new results for additional animals become available.

The genetic status of animals is being reported using five categories:

| AMF  | Tested AM free                                         |
|------|--------------------------------------------------------|
| AMFU | Based on pedigree AM free – Animal has not been tested |
| AM%  | % probability the animal is an AM carrier              |
| AMC  | Tested AM-Carrier                                      |
| AMA  | AM-Affected                                            |

For NH, CA and DD, simply replace AM in the above table with NH, CA or DD.

Registration certificates and the Angus Australia web-database display these codes. This information is displayec on the animal details page and can be accessed by conducting an "Animal Search" from the Angus Australia website or looking up individual animals listed in a sale catalogue.

#### Key point: The genetic status of an animal is subject to change and will be re- analysed and adjusted each week as DNA test results of relatives are received.

#### Implications for Commercial Producers

Your decision on the importance of the genetic condition status of replacement bulls should depend on the genetics of your cow herd (which bulls you previously used) and whether some female progeny will be retained c sold as breeders.

Most Angus breeders are proactive and transparent in managing known genetic conditions, endeavouring to provide the best information available. The greatest risk to the commercial sector from undesirable genetic recessive conditions comes from unregistered bulls with unknown genetic background. The genetic condition testing that Angus Australia seedstock producers are investing in provides buyers of registered Angus bulls with unmatched quality assurance.

For further information contact Angus Australia's Breed Development and Innovation Manager at (02) 6773 4602





### IMPORTANT NOTICES FOR PURCHASERS

#### ~ SALE CATALOGUE DISCLAIMER ~

All reasonable care has been taken by the vendor to ensure that the information provided in this catalogue is correct at the time of publication. However, neither the vendor nor the selling agents make any other representations about the accuracy, reliability or completeness of any information provided in this catalogue and do not assume any responsibility for the use or interpretation of the information included in this catalogue. You are encouraged to seek independent verification of any information contained in this catalogue before relying on such information.

#### ~ DNA PATERNITY VERIFICATION ~

It is a requirement of Angus Australia that all bulls used to sire calves for registration in the Angus Australia Herd Book Register, Red Angus Register or Angus Performance Register must have been DNA paternity verified if they are born in or after the 'Y' year (2003). Buyers intending to use bulls listed in this catalogue to produce calves to be registered in these registers should obtain DNA paternity verification on those bulls before they are used for breeding.

#### ~ PRIVACY INFORMATION ~

In order for Angus Australia to process the transfer of a registered animal in this catalogue, the vendor will need to provide certain information to Angus Australia and the buyer consents to the collection and disclosure of that information by Angus Australia in certain circumstances. If the buyer does not wish for his or her information to be stored and disclosed by Angus Australia, the buyer must complete the form included below and forward it to Angus Australia. If the form is not completed, the buyer will be taken to have consented to the disclosure of such information.

#### BUYER'S OPTION TO OPT OUT OF DISCLOSING PERSONAL INFORMATION TO THE ANGUS AUSTRALIA

If you do not complete this form, you will be taken to have consented to Angus Australia using your name, address and phone number for the purposes of effecting a change of registration of the animal(s) that you have purchased, maintaining its databases and disclosing that information to its members on its website.

I, the buyer of animals with the following registration numbers .....

Signature: .....

Date: .....

Please forward this completed consent form to Angus Australia, Glen Innes Road, Locked Bag 11, Armidale NSW 2350. If you have any queries, please telephone 02 6772 3011 or e-mail office@angusaustralia.com.au.



|                              | 5 9                  | GRN          | \$223     | \$280    | \$247    | \$306    | \$262    | \$334    | \$260     | \$207     | \$267    | \$284    | \$279    | \$204    | \$240    | \$318    | \$287    | \$221    | \$206    | .        | \$290    | \$293    | \$304    | \$265    | \$261      | \$271    | \$282    | \$188     | \$292     | \$262    | .        |  |
|------------------------------|----------------------|--------------|-----------|----------|----------|----------|----------|----------|-----------|-----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|------------|----------|----------|-----------|-----------|----------|----------|--|
|                              | Selection<br>Indexes | DOM 0        | \$143 \$  | \$179 \$ | \$157 \$ | \$191 \$ | \$173 \$ | \$211 \$ | \$169 \$  | \$131 \$  | \$180 \$ | \$141 \$ | \$153 \$ | \$138 \$ | \$160 \$ | \$188 \$ | \$147 \$ | \$134 \$ | \$152 \$ |          | \$185 \$ | \$179 \$ | \$169 \$ | \$157 \$ | \$172 \$   | \$171 \$ | \$173 \$ | \$106 \$  | \$182 \$  | \$162 \$ |          |  |
|                              |                      | Leg [        | 06.0+     | +1.02    | +0.92    | +1.08    |          | +0.98    | +1.02     | +1.26     | +0.98    | +0.98    |          | ,        | -        |          | +1.00    | +1.02    | +0.94    |          | +1.04    | +1.04    | +1.10    | +1.22    | ,          | +0.92    | +0.98    | +1.02     | ,         |          |          |  |
|                              | Structural           | Angle        | +0.78 +   | +1.12 +  | +0.78 +  | +0.88 +  |          | +0.94 +  | + 96.0+   | +0.92 +   | +0.86 +  | +1.08 +  | +0.86    |          | +0.98    |          | +0.94 +  | +1.22 +  | +0.84 +  |          | +1.04 +  | + 06.0+  | +1.04 +  | +1.24 +  |            | +0.92 +  | +1.14 +  | +1.08 +   |           |          |          |  |
|                              | Str                  | Claw A       | +0.64 +   | +0.80 +  | +0.72 +  | +0.50 +  |          | +0.54 +  | +0.88 +   | + 86.0+   | + 99.0+  | +1.00 +  | +0.92 +  |          | +1.02 +  |          | +0.94 +  | +1.06 +  | + 09.0+  |          | + 92.0+  | + 06.0+  | +1.00 +  | +0.84 +  |            | +0.74 +  | + 86.0+  | + 0.80 +  |           |          |          |  |
|                              | Temp.                | Doc (        | +14 +     | +25 +    | +14 +    | +10 +    | +23      | +21 +    | + 17 +    | +13 +     | +14 +    | +11 +    | +31 +    | +10      | +29 +    | +22      | +17 +    | + 8+     | +2+      |          | +25 +    | +22      | +20      | +20 +    | +12        | +17 +    | +20      | +11 +     | +18       | +15      |          |  |
|                              | Feed To              | NFLF         | +0.04     | -0.29    | +0.70    | +0.59    | +0.01    | +0.81    | -0.05     | -0.01     | +0.37    | +0.43    | +0.24    | -0.60    | +0.56    | +0.34    | +0.83    | +0.56    | -0.11    |          | -0.40    | -0.41    | +0.30    | +0.68    | -0.04      | +0.34    | +0.48    | -0.27     | +0.36     | +0.01    |          |  |
|                              | ш.<br>               | IMF N        | +1.1 +    | +1.8 -   | +4.0 +   | +3.1 +   | +1.7 +   | +3.8 +   | +1.6 -    | +2.5 -    | +1.7 +   | +5.9 +   | +3.7 +   | -0.7     | + 6.0+   | +3.5 +   | +5.5 +   | +2.1 +   | -1.2 -   |          | -0.2 -   | +2.8 -   | +4.8 +   | +3.5 +   | +1.1       | +2.7 +   | +2.3 +   | +1.7 -    | +3.5 +    | +1.5 +   |          |  |
|                              |                      | RBY          | +0.7      | +0.8     | +0.5     | +0.4     | -0.6     | +0.4     | - 6.0+    | -1.2      | - 2.0+   | -0.4     | -0.4     | 6.0+     | +1.6     | -0.3     | +0.5     | - 6:0-   | 6.0+     |          | +1.3     | -0.3     | -0.3     | -0.2     | +1.0       | +0.5     | +0.5     | -0.7      | +0.5      | +1.1     |          |  |
|                              | a                    | P8           | -0.3      | -2.5 +   | -0.5     | +1.2 +   | +3.4     | +3.2     | -2.3      | +2.0      | +2.9     | +3.4     | -0.3     | -5.8     | -0.2 +   | -1.5     | -0.7     | -1.1     | -2.6     |          | +1.6 +   | -0.7     | +1.5     | +2.2     | +0.4       | -0.7     | +1.5 +   | +1.0      | -1.5      | -2.6 +   |          |  |
|                              | Carcase              | RIB          | +0.6      | -2.0     | +0.2     | +2.8     | +3.0     | +2.8     | -1.7      | +2.3      | +2.6     | +4.1 -   | -0.4     | 4.1      | +0.5     | -0.1     | +0.2     | -0.1     | -2.7     |          | +2.3     | +1.7     | +2.3 -   | +2.3 -   | +1.2       | +0.3     | +1.8     | +1.8      | -0.6      | -1.7     |          |  |
| l Sale                       |                      | EMA          | +7.3 -    | 9.9+     | +6.3     | · L.7+   | +0.8     | +8.1     | +7.4      | -3.5      | +10.1    | - 9.7+   | 9.9+     | +5.4     | +14.3    | +4.6     | +13.9    | +1.9     | +2.6     |          | +11.5 -  | +3.4     | +5.5     | +7.1 -   | +9.2       | +7.8     | +12.5 -  | +1.1      | +8.7      | +10.8    |          |  |
| 23 Bul                       |                      | CWT          | +61       |          | +49      | +54      | +59      | +39      | +61       | +54       | +53 +    | +28      | +64      | +75      | +41 +    | +80      | +34 +    | +61      | +71      |          | +73 +    | +82      | +61      | +65      | +59        | - 69+    | +49 +    | +59       | +54       | + 82+    |          |  |
| igus 20                      |                      | DTC 0        | -3.9      | -3.5     | -4.2     | -5.6     | -6.0     | -7.1     | -4.6      | -4.6      | -5.4     | -3.7     | -3.5     | -2.8     | -4.1     | -5.0     | -2.3     | -5.8     | -5.8     |          | -4.0     | -4.5     | 4.2      | -3.6     | 4.9        | -4.1     | -3.3     | -4.3      | -4.8      | -3.1     |          |  |
| Hardhat Angus 2023 Bull Sale | Fertility            | SS [         | +3.1      | +3.1     | +4.1     | +3.7     | +0.8     | +3.4     | +2.4      | +4.7      | +5.3     | -0.3     | +0.6     | +1.4     | +0.9     | +2.6     | +1.6     | +4.9     | +4.2     |          | -1.2     | +1.1     | +0.7     | +2.4     | +1.6       | +3.1     | +3.6     | +2.0      | +2.5      | +2.7     |          |  |
| Hard                         |                      | Milk         | +13       | +20      | +16      | +19      | +17      | +18      | +19       | +15       | +13      | +14      | +19      | +26      | +19      | +27      | +21      | +26      | +19      |          | +18      | +10      | +16      | +17      | +17        | +11      | +14      | +16       | +18       | +18      |          |  |
|                              |                      | MCW          | +135      | +113     | +91      | +74      | +79      | +57      | +98       | +109      | +94      | +19      | +105     | +104     | +53      | +89      | +56      | +92      | +121     |          | +98      | +117     | +75      | +97      | +88        | +118     | +77      | +116      | +92       | +125     |          |  |
|                              | Growth               | 600 N        | +130 -    | +129     | +100     | +103     | +109     | +82      |           | +114      | +110     | +68      | +120 -   | +133     | +78      | +134     | +87      | +117     | +131     |          | +124     | +135     | +110     | +111     | +107       | +122 -   | +100     | +110 -    | +112      | +137 -   |          |  |
|                              | U                    | 400          | - 86+     | +105     | +80      | +82      | - 88+    | +71      | +92       | +93       | - 28+    | +50      | - 26+    | +106     | +66      | +101 -   | +70      | +85      | +98      |          | - 26+    | +106 -   | +82      | - 68+    | 1 <u>8</u> | - 66+    | 98+      | +83       | - 68+     | +108     |          |  |
|                              |                      | 200          | +55       | + 09+    | +39      | +49      | +46      | +45      | +55       | +53       | +47      | +27      | +55      | + - 22+  | +33      | +        | +37      | +47      | +58      |          | +56      | +62 +    | +44      | +45      | +47        | +57      | +49      | +50       | +48       | +62 +    |          |  |
|                              |                      | BWT          | +7.0      | +4.1     | +1.9     | +3.8     | +2.8     | +1.9     | +4.1      | +6.3      | +4.6     | -1.4     | +3.3     | +4.4     | +0.2     | +2.6     | +1.2     | +1.4     | +6.9     |          | +5.0     | +3.7     | +1.8     | +2.8     | +3.7       | +5.9     | +4.3     | +4.4      | +2.6      | +6.7     |          |  |
|                              | Ease                 | GL E         | -1.5 +    | -5.3     | -3.4     | -7.1 -   | -7.7     | -2.5 +   | -6.0      | -2.0 +    | -3.5     | -5.1     | -9.2     | -5.6     | -6.7 +   | -9.4     | -10.1    | -15.1 +  | -6.4     |          | -3.4 +   | -3.2     | -2.4     | -4.1     | -3.3       | + 0.0+   | -6.0     | -3.4      | -8.8      | -0.6     |          |  |
|                              | Calving E            |              | -1.0      | -0.7     | +7.2     | +4.5     | +5.7     | +9.8     | -1.6      | +1.3      | +2.0     | +4.6     | -1.0     | -5.4     | +4.2     | +4.1     | - 6.0+   | +6.6 -   | -1.0     |          | +4.3     | +1.0     | +4.6     | +3.1     | +2.1       | +0.3     | +1.8     | -1.4      | +6.8      | 4.4      | ,        |  |
|                              |                      | CEDir CEDtrs | -1.4      | +2.3     | + 0.9+   | +5.8 +   | +3.2     | +6.7 +   | -0.6      | -1.3 +    | +3.1 +   | +8.6     | -1.9     | -1.3     | + 7.7 +  | +6.7 +   | +3.5 +   | +10.1 +  | - 6:0+   |          | -2.6 +   | + 7.0+   | + 9.7+   | +4.1 +   | +3.8       | -1.6     | +2.0     | -1.0      | +5.7 +    | -5.6     | ,        |  |
|                              | t                    |              |           |          |          |          |          |          |           |           |          |          |          |          |          |          |          |          |          | T47      |          |          |          |          |            |          |          |           |           |          | S21      |  |
|                              | Animal Ident         |              | DKK21S101 | DKK21S38 | DKK21S50 | DKK21S60 | DKK21S28 | DKK21S68 | DKK21S126 | DKK21S106 | DKK21S74 | DKK21S49 | DKK22T2  | DKK22T3  | DKK22T5  | DKK22T17 | DKK22T45 | DKK22T35 | DKK22T42 | DKK22T47 | DKK22T73 | DKK22T81 | DKK21S80 | DKK21S52 | DKK21S94   | DKK21S77 | DKK21S53 | DKK21S136 | DKK21S133 | DKK21S85 | DKK21S21 |  |
|                              |                      |              | -         | 2        | e        | 4        | 2        | 9        | 2         | 8         | 6        | 10       | ÷        | 12       | 13       | 14       | 15       | 16       | 17       | 18       | 19       | 20       | 21       | 22       | 23         | 24       | 25       | 26        | 27        | 28       | 29       |  |



GRN +339

Claw Angle Leg DOM +0.84 +0.97 +1.03 +163

NFI-F Doc +0.19 +20

1MF +2.2

RIB P8 RBY +0.0 -0.3 +0.5

SS DTC CWT EMA +2.1 -4.7 +66 +6.3

Milk +17

600 MCW +117 +100

200 400 +50 +90

GL BWT -4.8 +4.0

CEDtrs +2.6

#### REFERENCE SIRES

#### G A R OUANTUM<sup>PV</sup>

HBR

Ident: USA18636059 DOB: 18/08/2016 Mating Type: Natural GAR PREDESTINED\* G A R PROGRESS<sup>sv</sup> G A R OBJECTIVE 2345#

Sire: USA17354145 G A R MOMENTUMPV ALC BIG EYE D09N# GARBIGEYE1770#

GAR OBJECTIVE 3387#

MYTTY IN FOCUS# CONNEALY IN SURE 8524# ENTREENA OF CONANGA 657#

Dam: USA17965254 G A R IN SURE 1524#

SUMMITCREST COMPLETE 1P55# G A R COMPLETE 3011#

G A R OBJECTIVE 277L#

GAR PREDESTINED\*

TE MANIA AFRICA A217PV

ARDROSSAN DIRECTION W109PV

BOOROOMOOKA UNDERTAKEN Y145PV

KENNY'S CREEK MITTAGONG C75<sup>SV</sup>

ARDROSSAN WILCOOLA W2#

**RENNYLEA W449sv** 

RENNYLEA B124PV

ARDROSSAN DIRECTION A50<sup>sv</sup>

HARDHAT U170 MITTAGONG E10PV

| Selection Indexes |       |  |  |  |  |  |  |  |  |  |
|-------------------|-------|--|--|--|--|--|--|--|--|--|
| DOM               | GRN   |  |  |  |  |  |  |  |  |  |
| \$197             | \$329 |  |  |  |  |  |  |  |  |  |

Traits Oberserved: Genomics Genetic Conditions: AMF,CAF,DDF,NHF,DWF,MHF,OHF, OSF.RGF

| TACE                                 |       | Mid August 2023 TransTasman Angus Cattle Evaluation |       |      |      |      |      |       |       |       |       |  |  |
|--------------------------------------|-------|-----------------------------------------------------|-------|------|------|------|------|-------|-------|-------|-------|--|--|
| Transformer Angen Eartin Existention | CEDir | CEDtrs                                              | GL    | BW   | 200  | 400  | 600  | MCW   | Milk  | SS    | Doc   |  |  |
| EBV                                  | +0.6  | -1.6                                                | -3.2  | +4.9 | +63  | +109 | +132 | +109  | +20   | +3.2  | +24   |  |  |
| Acc                                  | 74%   | 59%                                                 | 98%   | 97%  | 95%  | 95%  | 94%  | 88%   | 84%   | 93%   | 54%   |  |  |
| Perc                                 | 68    | 86                                                  | 74    | 69   | 6    | 8    | 20   | 35    | 27    | 14    | 29    |  |  |
| TACE                                 | DC    | CWT                                                 | EMA   | Rib  | Rump | RBY  | IMF  | NFI-F | Claw  | Angle | Leg   |  |  |
| EBV                                  | -2.6  | +77                                                 | +15.1 | -1.9 | -3.0 | +1.2 | +2.9 | +0.44 | +0.92 | +1.06 | +1.04 |  |  |
| Acc                                  | 53%   | 86%                                                 | 86%   | 84%  | 82%  | 79%  | 86%  | 63%   | 96%   | 96%   | 65%   |  |  |
| Perc                                 | 92    | 20                                                  | 1     | 87   | 89   | 11   | 28   | 80    | 66    | 71    | 52    |  |  |

Statistics: Number of Herds: 5, Prog Analysed: 248, Genomic Prog: 35

RENNYLEA C511PV

RENNYLEA E176PV

Dam: DKKJ51 HARDHAT A50 MITTAGONG E10 J51\*

Sire: NORH708 RENNYLEA H708PV

| HARI | <b>TAHC</b> | H708 | MAIMURU | J51 M41 <sup>sv</sup> |
|------|-------------|------|---------|-----------------------|

APR

Ident: DKKM41

RS

#### DOB: 29/07/2016 Mating Type: Al

Selection Indexes DOM GRN \$159 \$287

Traits Oberserved: GL,CE,BWT, 200WT,400WT,600WT.SC. Scan(EMA, Rib, Rump, IMF), DOC, Structure (Claw Set x 1, Foot Angle x 1), Genomics Genetic Conditions: AMFU,CAFU,DDFU,NHFU

| TACE                             |       | Mid August 2023 TransTasman Angus Cattle Evaluation |      |      |      |      |      |       |       |       |       |  |  |  |
|----------------------------------|-------|-----------------------------------------------------|------|------|------|------|------|-------|-------|-------|-------|--|--|--|
| Jamilarian Arpst Later Ivan ator | CEDir | CEDtrs                                              | GL   | BW   | 200  | 400  | 600  | MCW   | Milk  | SS    | Doc   |  |  |  |
| EBV                              | +3.7  | +3.5                                                | -2.4 | +2.2 | +45  | +88  | +116 | +97   | +10   | +1.1  | +26   |  |  |  |
| Acc                              | 70%   | 56%                                                 | 95%  | 93%  | 89%  | 89%  | 90%  | 83%   | 72%   | 79%   | 85%   |  |  |  |
| Perc                             | 42    | 44                                                  | 84   | 15   | 71   | 56   | 53   | 55    | 95    | 84    | 23    |  |  |  |
| TACE 200                         | DC    | CWT                                                 | EMA  | Rib  | Rump | RBY  | IMF  | NFI-F | Claw  | Angle | Leg   |  |  |  |
| EBV                              | -4.1  | +62                                                 | +2.6 | +1.1 | -2.4 | -0.4 | +6.7 | +0.14 | +1.00 | +0.98 | +1.06 |  |  |  |
| Acc                              | 56%   | 88%                                                 | 87%  | 86%  | 88%  | 78%  | 89%  | 81%   | 88%   | 88%   | 85%   |  |  |  |
| Perc                             | 66    | 64                                                  | 89   | 24   | 83   | 91   | 1    | 44    | 79    | 52    | 59    |  |  |  |

HARDHAT

RS

|                  | REFE                                                                                                    | RENCE SIRES          |                                       |                                                                     |
|------------------|---------------------------------------------------------------------------------------------------------|----------------------|---------------------------------------|---------------------------------------------------------------------|
| RS               | HARDHAT K5                                                                                              | 22 KODAK M33         | <b>Q110</b> <sup>sv</sup>             | HBR                                                                 |
| Ident: DKKQ110   | DOB: 06/09/2019                                                                                         | Mating Type: Natural |                                       |                                                                     |
| RE               | BOOROOMOOKA UN<br>NNYLEA EDMUND E11 <sup>PV</sup>                                                       |                      | Selectior                             | n Indexes                                                           |
| Sire: NORK522 RE | LAWSONS HENRY V<br>NNYLEA KODAK K522 <sup>sv</sup>                                                      |                      | DOM                                   | GRN                                                                 |
| RE               | TE MANIA BERKLEY<br>NNYLEA EISA ERICA F810 <sup>#</sup><br>RENNYLEA EISA ERI                            |                      | \$185                                 | \$288                                                               |
|                  | TE MANIA BARTEL B<br>RVALE BARTEL E7 <sup>™</sup><br>EAGLEHAWK JEDDA<br><b>RDHAT E7 ANNIE K44 M33</b> * |                      | 400WT,SC,Scan(E<br>Structure(Claw Set | rved: CE,BWT,<br>MA,Rib,Rump,IMF)<br>x 1, Foot Angle x 1),<br>omics |
|                  | SINCLAIR EMULATIC<br>RDHAT XXP ANNIE Y21 K44 <sup>#</sup>                                               | ON XXP <sup>sv</sup> | Genetic C                             | conditions:<br>NHF,DWF,MAF,                                         |

|                                   | Mid August 2023 TransTasman Angus Cattle Evaluation |        |      |      |      |      |      |       |       |       |       |
|-----------------------------------|-----------------------------------------------------|--------|------|------|------|------|------|-------|-------|-------|-------|
| , handsoner Angel Eatte Folkation | CEDir                                               | CEDtrs | GL   | BW   | 200  | 400  | 600  | MCW   | Milk  | SS    | Doc   |
| EBV                               | +7.2                                                | +10.1  | -8.2 | +2.3 | +49  | +88  | +117 | +106  | +16   | +2.8  | +11   |
| Acc                               | 69%                                                 | 56%    | 89%  | 89%  | 84%  | 79%  | 79%  | 76%   | 67%   | 75%   | 79%   |
| Perc                              | 14                                                  | 1      | 8    | 16   | 57   | 57   | 51   | 40    | 62    | 23    | 89    |
| TACE                              | DC                                                  | CWT    | EMA  | Rib  | Rump | RBY  | IMF  | NFI-F | Claw  | Angle | Leg   |
| EBV                               | -5.9                                                | +60    | +7.4 | -1.6 | -3.4 | +0.8 | +3.7 | +0.24 | +0.64 | +0.68 | +0.76 |
| Acc                               | 47%                                                 | 71%    | 65%  | 68%  | 68%  | 63%  | 69%  | 60%   | 76%   | 76%   | 73%   |
| Perc                              | 19                                                  | 70     | 35   | 82   | 92   | 28   | 14   | 58    | 13    | 4     | 2     |

Statistics: Number of Herds: 5, Prog Analysed: 34, Genomic Prog: 21

RS

#### HARDHAT K522 NEBRASKA F143 N43<sup>PV</sup>

Ident: DKKN43 DOB: 05/07/2017 Mating Type: AI BOOROOMOOKA UNDERTAKEN Y145<sup>PV</sup> RENNYLEA EDMUND E11<sup>PV</sup> LAWSONS HENRY VIII Y5<sup>SV</sup> Sire: NORK522 RENNYLEA KODAK K522<sup>SV</sup> TE MANIA BERKLEY B1<sup>PV</sup> RENNYLEA EISA ERICA F810<sup>#</sup> RENNYLEA EISA ERICA C299<sup>PV</sup> CONNEALY ONWARD<sup>#</sup> SITZ UPWARD 307R<sup>SV</sup>

**KANSAS ANNIE Y21sv** 

#### SITZ HENRIETTA PRIDE 81M<sup>#</sup> Dam: NKLF143 KANSAS ANNIE F143<sup>™</sup> ARDROSSAN DIRECTION W109<sup>™</sup> KANSAS ANNIE C10<sup>™</sup> KANSAS ANNIE Y21<sup>™</sup>

Traits Oberserved: BWT,600WT,SC, Scan(EMA,Rib,Rump,IMF), Structure (Claw Set x 1, Foot Angle x 1), Genomics Genetic Conditions: AMFU,CAFU,DDFU,NHFU

Selection Indexes

DOM

\$170

HBR

GRN

\$251

MHF,OHF,OSF,RGF

| TACE                                    | Mid August 2023 TransTasman Angus Cattle Evaluation |        |       |      |      |      |      |       |       |       |       |
|-----------------------------------------|-----------------------------------------------------|--------|-------|------|------|------|------|-------|-------|-------|-------|
| Translationar Angel Lattie Teals attait | CEDir                                               | CEDtrs | GL    | BW   | 200  | 400  | 600  | MCW   | Milk  | SS    | Doc   |
| EBV                                     | +10.0                                               | +8.5   | -10.2 | +2.0 | +61  | +107 | +142 | +132  | +15   | +5.3  | +7    |
| Acc                                     | 73%                                                 | 60%    | 94%   | 95%  | 92%  | 91%  | 88%  | 83%   | 71%   | 85%   | 88%   |
| Perc                                    | 3                                                   | 4      | 2     | 13   | 10   | 10   | 9    | 10    | 63    | 1     | 96    |
|                                         | DC                                                  | CWT    | EMA   | Rib  | Rump | RBY  | IMF  | NFI-F | Claw  | Angle | Leg   |
| EBV                                     | -5.8                                                | +81    | +3.1  | +0.6 | +0.2 | -0.5 | +0.3 | +0.12 | +0.76 | +0.88 | +0.90 |
| Acc                                     | 50%                                                 | 87%    | 85%   | 85%  | 86%  | 77%  | 88%  | 78%   | 90%   | 90%   | 85%   |
| Perc                                    | 21                                                  | 13     | 85    | 34   | 40   | 93   | 92   | 42    | 32    | 28    | 12    |



### **REFERENCE SIRES**

| RS                | HARDH                                                                                                                                                     | AT KODAK Q5 <sup>sv</sup>    | V                                                     | HBR                                                                                                         |
|-------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|-------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|
| Ident: DKKQ5      | DOB: 24/02/2019                                                                                                                                           | Mating Type: Natural         |                                                       |                                                                                                             |
|                   | BOOROOMOOKA UN                                                                                                                                            | IDERTAKEN Y145 <sup>PV</sup> |                                                       |                                                                                                             |
| REN               | INYLEA EDMUND E11 <sup>PV</sup>                                                                                                                           |                              | Selectio                                              | on Indexes                                                                                                  |
| Sire: NORK522 REI | LAWSONS HENRY V<br>NNYLEA KODAK K522 <sup>sv</sup>                                                                                                        | III Y5 <sup>sv</sup>         | DOM                                                   | GRN                                                                                                         |
| REM               | TE MANIA BERKLEY<br>INYLEA EISA ERICA F810 <sup>#</sup><br>RENNYLEA EISA ER                                                                               |                              | \$181                                                 | \$276                                                                                                       |
| Dam: DKKM6 HARI   | DUNOON EVIDENT E<br>ISAS EVIDENTLY J81 <sup>SV</sup><br>KANSAS ANNIE E109<br>DHAT J81 ANNIE G158 M6#<br>SITZ UPWARD 307R<br>ISAS ANNIE G158 <sup>SV</sup> | ₽<br>₽<br>\$v                | (EMA,Rib,Run<br>(Claw Set x 1, Foot<br><b>Genetic</b> | <b>d:</b> BWT,600WT,Scan<br>np,IMF),Structure<br>t Angle x 1),Genomics<br><b>Conditions:</b><br>U,DDFU,NHFU |
|                   | KANSAS ANNIE X164                                                                                                                                         | <b>1</b> <sup>#</sup>        |                                                       |                                                                                                             |

| TACE                             | Mid August 2023 TransTasman Angus Cattle Evaluation |        |      |      |      |      |      |       |       |       |       |
|----------------------------------|-----------------------------------------------------|--------|------|------|------|------|------|-------|-------|-------|-------|
| Territorne lega Cette Dollaritor | CEDir                                               | CEDtrs | GL   | BW   | 200  | 400  | 600  | MCW   | Milk  | SS    | Doc   |
| EBV                              | +6.2                                                | +2.4   | -3.9 | +3.0 | +50  | +87  | +112 | +92   | +18   | +3.6  | +14   |
| Acc                              | 66%                                                 | 54%    | 72%  | 83%  | 76%  | 73%  | 75%  | 73%   | 66%   | 69%   | 53%   |
| Perc                             | 21                                                  | 56     | 64   | 27   | 48   | 59   | 61   | 63    | 44    | 8     | 77    |
| TACE                             | DC                                                  | CWT    | EMA  | Rib  | Rump | RBY  | IMF  | NFI-F | Claw  | Angle | Leg   |
| EBV                              | -6.3                                                | +60    | +6.1 | +1.2 | -0.1 | +0.4 | +2.1 | +0.19 | +0.60 | +0.92 | +1.00 |
| Acc                              | 44%                                                 | 67%    | 64%  | 66%  | 66%  | 61%  | 68%  | 58%   | 74%   | 69%   | 71%   |
| Perc                             | 13                                                  | 69     | 51   | 22   | 46   | 53   | 49   | 51    | 9     | 37    | 39    |

Statistics: Number of Herds: 1, Prog Analysed: 13, Genomic Prog: 2

Ident: DKKQ39

#### HARDHAT M518 QUANTUM L230 Q39<sup>sv</sup>

Mating Type: Al

**HBR** 

| G A R PROGRESS <sup>SV</sup>                       |
|----------------------------------------------------|
| G A R MOMENTUM <sup>₽V</sup>                       |
| G A R BIG EYE 1770 <sup>#</sup>                    |
| Sire: VLYM518 LAWSONS MOMENTOUS M518 <sup>PV</sup> |
| TE MANIA AFRICA A217 <sup>PV</sup>                 |
| LAWSONS AFRICA H229 <sup>sv</sup>                  |
| LAWSONS ROCKND AMBUSH E1103 <sup>PV</sup>          |
| G A R INGENUITY <sup>#</sup>                       |
| H P C A INTENSITY#                                 |
| G A R PREDESTINED 287L#                            |
| Dam: NDIL230 KENNY'S CREEK L230#                   |
| SYDGEN TRUST 6228#                                 |
|                                                    |

KENNY'S CREEK H389#

DOB: 21/07/2019

Selection Indexes GRN DOM \$184 \$319

Traits Oberserved: GL,BWT, 400WT,SC,Scan(EMA,Rump,IMF)Structure(Claw Set x 1, Foot Angle x 1), Genomics Genetic Conditions: AMFU,CAFU,DDFU,NHFU

| TACE                              | Mid August 2023 TransTasman Angus Cattle Evaluation |        |       |      |      |      |      |       |       |       |       |
|-----------------------------------|-----------------------------------------------------|--------|-------|------|------|------|------|-------|-------|-------|-------|
| Terreforme legar Cette Eviluation | CEDir                                               | CEDtrs | GL    | BW   | 200  | 400  | 600  | MCW   | Milk  | SS    | Doc   |
| EBV                               | +5.6                                                | +4.2   | -4.5  | +0.7 | +39  | +67  | +76  | +36   | +18   | +1.5  | +26   |
| Acc                               | 68%                                                 | 57%    | 83%   | 84%  | 78%  | 76%  | 76%  | 75%   | 67%   | 77%   | 64%   |
| Perc                              | 26                                                  | 37     | 54    | 4    | 91   | 96   | 99   | 99    | 39    | 71    | 23    |
|                                   | DC                                                  | CWT    | EMA   | Rib  | Rump | RBY  | IMF  | NFI-F | Claw  | Angle | Leg   |
| EBV                               | -4.8                                                | +40    | +10.2 | +1.8 | +1.6 | +0.2 | +4.8 | +0.77 | +0.76 | +0.86 | +0.88 |
| Acc                               | 48%                                                 | 69%    | 66%   | 68%  | 68%  | 63%  | 69%  | 59%   | 79%   | 79%   | 75%   |
| Perc                              | 46                                                  | 98     | 12    | 14   | 18   | 66   | 4    | 97    | 32    | 24    | 9     |

KENNY'S CREEK BARUNAH E275<sup>sv</sup>

HARDHAT



### **REFERENCE SIRES**

| RS                 | HARDHAT MR I                                                                                           | INCOLN J18      | L17 <sup>sv</sup>             | HBR                                                          |
|--------------------|--------------------------------------------------------------------------------------------------------|-----------------|-------------------------------|--------------------------------------------------------------|
| Ident: DKKL17      | DOB: 28/07/2015                                                                                        | Mating Type: Al |                               |                                                              |
| SCH                | SCHURR 77 1346 EXCEL <sup>#</sup><br>IURRTOP REALITY X723 <sup>#</sup>                                 | 1               | Selection                     | n Indexes                                                    |
| Sire: NZE146470088 | SCHURRTOP 8019 V141#<br>B39 MATAURI REALITY 839#                                                       |                 | DOM                           | GRN                                                          |
| MAT                | TE MANIA ULONG U41 <sup>sv</sup><br>AURI 06663 <sup>#</sup><br>MATAURI 04456 AB <sup>#</sup>           |                 | \$148                         | \$238                                                        |
|                    | BT RIGHT TIME 24J <sup>#</sup><br>CLAIR GRASS MASTER <sup>#</sup><br>N BAR PRIMROSE Y3051 <sup>#</sup> | ŧ               | 200WT,400V<br>Scan(EMA,Rib,Ri | e <b>rved:</b> CE,BWT,<br>VT,600WT,SC,<br>ump,IMF),Structure |
|                    | DHAT RM RADO A12 J18 <sup>#</sup><br>ARISAIG INNOVATOR X8 <sup>#</sup><br>DHAT A12 <sup>#</sup>        |                 | Gen                           | Foot Angle x 1),<br>omics<br><b>Conditions:</b>              |
|                    | MILLAH MURRAH RADO                                                                                     | N2#             |                               | ,DDFU,NHFU                                                   |
|                    |                                                                                                        |                 |                               |                                                              |

| TACE                              |       | Mid August 2023 TransTasman Angus Cattle Evaluation |      |      |      |      |      |       |       |       |       |
|-----------------------------------|-------|-----------------------------------------------------|------|------|------|------|------|-------|-------|-------|-------|
| Transformer legan Cette Holaution | CEDir | CEDtrs                                              | GL   | BW   | 200  | 400  | 600  | MCW   | Milk  | SS    | Doc   |
| EBV                               | -0.1  | +0.5                                                | -4.4 | +5.6 | +53  | +91  | +110 | +108  | +15   | +4.2  | +18   |
| Acc                               | 68%   | 60%                                                 | 74%  | 82%  | 77%  | 77%  | 78%  | 74%   | 67%   | 79%   | 55%   |
| Perc                              | 72    | 73                                                  | 56   | 81   | 37   | 46   | 65   | 36    | 70    | 3     | 61    |
| TACE 200                          | DC    | CWT                                                 | EMA  | Rib  | Rump | RBY  | IMF  | NFI-F | Claw  | Angle | Leg   |
| EBV                               | -4.2  | +52                                                 | +5.0 | +2.4 | +1.5 | -0.3 | +2.3 | +0.06 | +0.64 | +0.84 | +1.08 |
| Acc                               | 54%   | 69%                                                 | 68%  | 69%  | 69%  | 65%  | 70%  | 61%   | 78%   | 78%   | 74%   |
| Perc                              | 64    | 86                                                  | 65   | 8    | 19   | 88   | 43   | 34    | 13    | 20    | 65    |

Statistics: Number of Herds: 1, Prog Analysed: 17, Genomic Prog: 2

RS

#### LAWSONS MIRACULOUS Q44<sup>PV</sup>

**HBR** 

| Ident: VLYQ44 | DOB: 06/03/2019                      | Mating Type: Al        |
|---------------|--------------------------------------|------------------------|
|               | G A R PROGRESS <sup>SV</sup>         |                        |
|               | G A R MOMENTUM <sup>PV</sup>         |                        |
|               | G A R BIG EYE 1770 <sup>#</sup>      |                        |
| Sire: VLYM518 | LAWSONS MOMENTOUS M518 <sup>PV</sup> |                        |
|               | TE MANIA AFRICA A217 <sup>PV</sup>   |                        |
|               | LAWSONS AFRICA H229 <sup>sv</sup>    |                        |
|               | LAWSONS ROCKND AMBU                  | SH E1103 <sup>PV</sup> |
|               | MCC DAYBREAK <sup>#</sup>            |                        |
|               | G A R ANTICIPATION#                  |                        |
|               | G A R 5050 NEW DESIGN 0              | 530#                   |
| Dam: VLYK914  | LAWSONS K914 <sup>sv</sup>           |                        |
|               |                                      |                        |

LAWSONS TANK B1155PV LAWSONS TANK B1155 G625# LAWSONS GRADE UP D83#

Selection Indexes DOM GRN \$206 \$326

Traits Oberserved: GL.BWT.200WT (x2),400WT(x2),SC,Scan (EMA,Rump,IMF),Genomics Genetic Conditions: AMF, CAF, DDF, NHF, DWF, MAF, MHF,OHF,OSF,RGF

|                                     | Mid August 2023 TransTasman Angus Cattle Evaluation |        |       |      |      |      |      |       |       |       |       |
|-------------------------------------|-----------------------------------------------------|--------|-------|------|------|------|------|-------|-------|-------|-------|
| Terreforment legan Cette Evoluntion | CEDir                                               | CEDtrs | GL    | BW   | 200  | 400  | 600  | MCW   | Milk  | SS    | Doc   |
| EBV                                 | +3.7                                                | -1.1   | -7.9  | +3.3 | +49  | +91  | +111 | +98   | +11   | +2.6  | +37   |
| Acc                                 | 72%                                                 | 57%    | 97%   | 95%  | 91%  | 91%  | 88%  | 82%   | 71%   | 88%   | 78%   |
| Perc                                | 42                                                  | 84     | 10    | 33   | 54   | 48   | 64   | 53    | 91    | 29    | 5     |
|                                     | DC                                                  | CWT    | EMA   | Rib  | Rump | RBY  | IMF  | NFI-F | Claw  | Angle | Leg   |
| EBV                                 | -4.0                                                | +49    | +21.6 | +0.9 | +0.4 | +2.0 | +2.4 | +0.94 | +0.98 | +0.96 | +0.94 |
| Acc                                 | 49%                                                 | 77%    | 76%   | 77%  | 77%  | 72%  | 77%  | 62%   | 70%   | 71%   | 68%   |
| Perc                                | 69                                                  | 91     | 1     | 28   | 36   | 1    | 41   | 99    | 76    | 47    | 21    |



#### **REFERENCE SIRES** - 1387

| RS                | LAWSONS MO                                                                                                                                                                                                                                     | MENTOUS M5          | <b>18</b> <sup>PV</sup>                                              | HBR                                                                                          |
|-------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|----------------------------------------------------------------------|----------------------------------------------------------------------------------------------|
| Ident: VLYM518    | DOB: 30/06/2016<br>G A R PREDESTINED#                                                                                                                                                                                                          | Mating Type: Al     |                                                                      |                                                                                              |
| GAF               | R PROGRESS <sup>SV</sup>                                                                                                                                                                                                                       |                     | Selection                                                            | n Indexes                                                                                    |
| Sire: USA17354145 | G A R OBJECTIVE 2345 <sup>#</sup><br>G A R MOMENTUM <sup>PV</sup>                                                                                                                                                                              |                     | DOM                                                                  | GRN                                                                                          |
| GAF               | ALC BIG EYE D09N <sup>#</sup><br>R BIG EYE 1770 <sup>#</sup><br>G A R OBJECTIVE 3387 <sup>#</sup>                                                                                                                                              |                     | \$177                                                                | \$330                                                                                        |
| Dam: VLYH229 LAW  | TE MANIA ULONG U41 <sup>SV</sup><br>IANIA AFRICA A217 <sup>FV</sup><br>TE MANIA JEDDA Y32 <sup>SV</sup><br><b>ISONS AFRICA H229<sup>SV</sup></b><br>B/R AMBUSH 28 <sup>#</sup><br>SONS ROCKND AMBUSH E1103 <sup>P</sup><br>LAWSONS FAIR DINKUM |                     | 200WT(x2),400<br>Scan(EMA,Rib,Ru<br><b>Genetic C</b><br>AMF,CAF,DDF, | rved: GL,BWT,<br>WT(x2),600WT,<br>mp,IMF),Genomics<br>onditions:<br>NHF,DWF,MAF,<br>;OSF,RGF |
| TACE              | Mid August 2023 Tra                                                                                                                                                                                                                            | ansTasman Angus Cat | tle Evaluation                                                       |                                                                                              |

| TACE                       |       | Mid August 2023 TransTasman Angus Cattle Evaluation |       |      |      |      |      |       |       |       |       |
|----------------------------|-------|-----------------------------------------------------|-------|------|------|------|------|-------|-------|-------|-------|
| Tandaene legacõeta balante | CEDir | CEDtrs                                              | GL    | BW   | 200  | 400  | 600  | MCW   | Milk  | SS    | Doc   |
| EBV                        | -3.2  | -4.6                                                | -5.9  | +4.0 | +51  | +94  | +113 | +85   | +22   | +2.6  | +41   |
| Acc                        | 96%   | 83%                                                 | 99%   | 99%  | 99%  | 99%  | 99%  | 98%   | 97%   | 99%   | 98%   |
| Perc                       | 87    | 96                                                  | 31    | 48   | 46   | 40   | 59   | 74    | 12    | 29    | 2     |
|                            | DC    | CWT                                                 | EMA   | Rib  | Rump | RBY  | IMF  | NFI-F | Claw  | Angle | Leg   |
| EBV                        | -3.0  | +50                                                 | +13.6 | -0.9 | -0.7 | +0.6 | +5.8 | +0.87 | +0.90 | +0.98 | +1.06 |
| Acc                        | 72%   | 96%                                                 | 94%   | 94%  | 94%  | 91%  | 94%  | 86%   | 99%   | 99%   | 98%   |
| Perc                       | 88    | 89                                                  | 2     | 69   | 57   | 40   | 2    | 99    | 62    | 52    | 59    |

Statistics: Number of Herds: 115, Prog Analysed: 4331, Genomic Prog: 2343

RS

#### **RENNYLEA KODAK K522<sup>sv</sup>**

Ident: NORK522 DOB: 11/08/2014 Mating Type: Al BOOROOMOOKA UNDERTAKEN U170PV BOOROOMOOKA UNDERTAKEN Y145PV BOOROOMOOKA UAAISE U101sv Sire: NORE11 RENNYLEA EDMUND E11PV YTHANBRAE HENRY VIII U8sv LAWSONS HENRY VIII Y5SV YTHANBRAE DIRECTION T270\* TE MANIA YORKSHIRE Y437PV TE MANIA BERKLEY B1PV TE MANIA LOWAN Z53# Dam: NORF810 RENNYLEA EISA ERICA F810# HYLINE RIGHT TIME 338# RENNYLEA EISA ERICA C299PV **RENNYLEA EISA ERICA X571#** 

Selection Indexes DOM GRN \$174 \$276

HBR

Traits Oberserved: GL,BWT, 200WT,400WT,600WT,SC, Scan(EMA, Rib, Rump, IMF), DOC, Genomics Genetic Conditions: AMFU,CAFU,DDFU,NHFU

| TACE                                 |       | Mid August 2023 TransTasman Angus Cattle Evaluation |      |      |      |      |      |       |       |       |       |
|--------------------------------------|-------|-----------------------------------------------------|------|------|------|------|------|-------|-------|-------|-------|
| Transformen leigun Cette Faciliarios | CEDir | CEDtrs                                              | GL   | BW   | 200  | 400  | 600  | MCW   | Milk  | SS    | Doc   |
| EBV                                  | +10.6 | +10.9                                               | -5.5 | +1.2 | +46  | +85  | +111 | +109  | +10   | +4.6  | +6    |
| Acc                                  | 93%   | 80%                                                 | 99%  | 99%  | 98%  | 98%  | 98%  | 97%   | 97%   | 98%   | 95%   |
| Perc                                 | 2     | 1                                                   | 37   | 6    | 69   | 67   | 63   | 35    | 94    | 2     | 97    |
|                                      | DC    | CWT                                                 | EMA  | Rib  | Rump | RBY  | IMF  | NFI-F | Claw  | Angle | Leg   |
| EBV                                  | -6.3  | +57                                                 | +4.3 | +3.5 | +2.0 | -0.4 | +4.1 | +0.37 | +0.62 | +0.82 | +1.00 |
| Acc                                  | 71%   | 95%                                                 | 93%  | 93%  | 93%  | 91%  | 93%  | 86%   | 96%   | 96%   | 95%   |
| Perc                                 | 13    | 77                                                  | 73   | 3    | 14   | 91   | 9    | 74    | 11    | 17    | 39    |

HARDHAT



Ident: USA17298481 DOB: 15/03/2012 Mating Type: Natural PAWS UP ALLIANCE 9561# S ALLIANCE 3313# PAWS UP 9048 EMULATION EXT# Sire: USA15511451 S CHISUM 6175<sup>PV</sup> S ECLIPSE 169# S GLORIA 464# S GLORIA 209# H A IMAGE MAKER 0415# SHIPWHEEL CHINOOK# APEX ERISKAY 5506# Dam: USA16661905 S BLOSSOM 0278\* **R&S EXPEDITION 1404#** 

S BLOSSOM 4190#

|                                      |       |        | 0 DLOOC | 50101 4150 |           |          |          |             |       |       |       |
|--------------------------------------|-------|--------|---------|------------|-----------|----------|----------|-------------|-------|-------|-------|
| TACE                                 |       |        | Mid     | August 20  | 023 Trans | Tasman A | Angus Ca | ttle Evalua | ation |       |       |
| , Rendlamin, Rigar, Cetta, Dolantise | CEDir | CEDtrs | GL      | BW         | 200       | 400      | 600      | MCW         | Milk  | SS    | Doc   |
| EBV                                  | +5.0  | +9.8   | -4.4    | +2.2       | +52       | +77      | +91      | +52         | +17   | +1.2  | +36   |
| Acc                                  | 86%   | 68%    | 98%     | 98%        | 97%       | 97%      | 96%      | 92%         | 92%   | 96%   | 91%   |
| Perc                                 | 31    | 2      | 56      | 15         | 41        | 85       | 92       | 98          | 46    | 81    | 5     |
|                                      | DC    | CWT    | EMA     | Rib        | Rump      | RBY      | IMF      | NFI-F       | Claw  | Angle | Leg   |
| EBV                                  | -4.1  | +53    | +9.5    | +1.3       | +2.2      | +1.1     | +0.3     | +0.32       | +0.84 | +0.94 | +1.02 |
| Acc                                  | 58%   | 89%    | 88%     | 88%        | 86%       | 83%      | 87%      | 67%         | 90%   | 89%   | 73%   |
| Perc                                 | 66    | 85     | 16      | 21         | 12        | 14       | 92       | 68          | 49    | 42    | 45    |

Statistics: Number of Herds: 62, Prog Analysed: 658, Genomic Prog: 329

S BLOSSOM 8378#

RS

#### SITZ STELLAR 726DPV

Ident: USA18397542 DOB: 23/01/2016 Mating Type: Natural H A IMAGE MAKER 0415# **BENFIELD SUBSTANCE 8506# BENFIELD EDELLA 1105<sup>#</sup>** Sire: USA17292558 MOHNEN SUBSTANTIAL 272# LT TERRITORY 5824 OF EA# MOHNEN GLYN MAWR ELBA 1758# MOHNEN GLYN MAWR ELBA 1345# CONNEALY PRODUCT 568# CONNEALY FINAL PRODUCTPV Traits Oberserved: Genomics EBONISTA OF CONANGA 471# Dam: USA17776820 SITZ PRIDE 200B# AMF,CAF,DDF,NHF,DWF,MAF, SITZ UPWARD 307Rsv SITZ PRIDE 308Y# SITZ PRIDE 44P#

| TACE                          |       | Mid August 2023 TransTasman Angus Cattle Evaluation |      |      |      |      |      |       |       |       |       |
|-------------------------------|-------|-----------------------------------------------------|------|------|------|------|------|-------|-------|-------|-------|
| Technese legacións liviturios | CEDir | CEDtrs                                              | GL   | BW   | 200  | 400  | 600  | MCW   | Milk  | SS    | Doc   |
| EBV                           | +5.5  | +7.5                                                | -9.6 | +2.5 | +55  | +106 | +133 | +99   | +18   | +1.3  | +29   |
| Acc                           | 79%   | 50%                                                 | 98%  | 98%  | 97%  | 97%  | 96%  | 89%   | 83%   | 94%   | 93%   |
| Perc                          | 27    | 9                                                   | 3    | 19   | 26   | 12   | 20   | 52    | 40    | 78    | 16    |
| TACE                          | DC    | CWT                                                 | EMA  | Rib  | Rump | RBY  | IMF  | NFI-F | Claw  | Angle | Leg   |
| EBV                           | -6.4  | +64                                                 | +4.9 | +4.0 | +3.6 | -0.1 | +1.5 | +0.27 | +0.62 | +0.80 | +1.14 |
| Acc                           | 44%   | 86%                                                 | 86%  | 84%  | 81%  | 77%  | 86%  | 57%   | 99%   | 99%   | 78%   |
| Perc                          | 12    | 55                                                  | 66   | 2    | 4    | 81   | 67   | 62    | 11    | 14    | 81    |



HBR

GRN

\$326

Selection Indexes DOM GRN \$197 \$309

Traits Oberserved: Genomics Genetic Conditions: AMF,CAF,DDF,NHF,DWF,MHF,OHF, OSF.RGF

Selection Indexes

Genetic Conditions:

MHF, OHF, OSF

DOM

\$218



#### **REFERENCE SIRES**

HBR

RS

#### SITZ UPWARD 307R<sup>sv</sup>

Ident: USA14963730 DOB: 12/03/2005 Mating Type: Natural CONNEALY LEADTIME<sup>#</sup> CONNEALY LEAD ON<sup>#</sup>

ELIGENCE PLUS OF CONANGA#

Sire: USA14216491 CONNEALY ONWARD#

G A R TRAVELER 1489# ALTUNE OF CONANGA 6104# AVALON 1418 OF CONANGA 6276#

SITZ TRAVELER 6802#

SITZ VALUE 7097#

SITZ EISA EVERGREEN 791<sup>#</sup>

#### Dam: USA14087650 SITZ HENRIETTA PRIDE 81M#

O C C GREAT PLAINS 943G<sup>#</sup> SITZ HENRIETTA PRIDE 1370<sup>#</sup> SITZ HENRIETTA PRIDE 2155<sup>#</sup>

| Selection Indexes |       |  |  |  |  |  |
|-------------------|-------|--|--|--|--|--|
| DOM               | GRN   |  |  |  |  |  |
| \$160             | \$239 |  |  |  |  |  |

Traits Oberserved: Genomics Genetic Conditions: AMF,CAF,DDF,NHF,MAF

|                                     |       | Mid August 2023 TransTasman Angus Cattle Evaluation |      |      |      |      |      |       |       |       |       |
|-------------------------------------|-------|-----------------------------------------------------|------|------|------|------|------|-------|-------|-------|-------|
| Transforman Angel Gathe Trailant in | CEDir | CEDtrs                                              | GL   | BW   | 200  | 400  | 600  | MCW   | Milk  | SS    | Doc   |
| EBV                                 | -0.4  | +1.3                                                | -4.2 | +4.1 | +60  | +107 | +130 | +102  | +26   | +2.1  | -3    |
| Acc                                 | 96%   | 92%                                                 | 99%  | 99%  | 98%  | 98%  | 98%  | 98%   | 98%   | 98%   | 97%   |
| Perc                                | 74    | 67                                                  | 59   | 51   | 12   | 11   | 24   | 46    | 3     | 48    | 99    |
|                                     | DC    | CWT                                                 | EMA  | Rib  | Rump | RBY  | IMF  | NFI-F | Claw  | Angle | Leg   |
| EBV                                 | -3.2  | +82                                                 | +7.4 | -2.4 | -5.8 | +0.7 | +0.1 | -0.16 | +1.02 | +0.78 | +1.02 |
| Acc                                 | 85%   | 97%                                                 | 96%  | 96%  | 96%  | 95%  | 96%  | 90%   | 99%   | 99%   | 95%   |
| Perc                                | 85    | 11                                                  | 35   | 92   | 99   | 33   | 94   | 13    | 82    | 11    | 45    |

Statistics: Number of Herds: 93, Prog Analysed: 1283, Genomic Prog: 111





Lot 2

#### HARDHAT S101<sup>sv</sup>

| Ident: DK                       | K21S10   | 1 C      | OB: 15/0 | 8/2021            | Mati                  | ng Type: | Natural   |        |
|---------------------------------|----------|----------|----------|-------------------|-----------------------|----------|-----------|--------|
|                                 |          |          | RENNYL   | EA EDML           | JND E11 <sup>PV</sup> |          |           |        |
|                                 | R        | ENNYLEA  |          |                   |                       |          |           |        |
|                                 |          |          | RENNYL   | EA EISA I         | ERICA F81             | 0#       |           |        |
| Sire: DK                        | KQ5 HAF  | RDHAT KO |          | sv                |                       |          |           |        |
| 0                               |          |          |          |                   |                       |          |           |        |
|                                 | н        | ARDHAT J |          |                   |                       |          |           |        |
|                                 | 112      |          | •••••    | ANNIE G           |                       |          |           |        |
|                                 |          |          | NANGAG   |                   | 1150                  |          |           |        |
|                                 |          |          | TC ABEF  | RDEEN 75          | 9 <sup>sv</sup>       |          |           |        |
|                                 | K        | ANSAS AB | ERDEEN   | F84 <sup>sv</sup> |                       |          |           |        |
|                                 |          |          | KANSAS   | ANNIE D           | 62#                   |          |           |        |
| Dam: NK                         | I K182 K | ANSAS H  | (182#    |                   |                       |          |           | Tra    |
|                                 |          |          |          | T WORTH           | 4200#                 |          |           |        |
|                                 | K        | ANSAS BE |          |                   | 1 1200                |          |           |        |
|                                 | 10       |          |          | BEAUTY            | D45#                  |          |           |        |
|                                 |          |          | RANSAS   | DEAUT             | D43"                  |          |           |        |
| TACE                            |          |          | Mid      | August 2          | 023 Trans             | Tasman A | Angus Cat | ttle E |
| Trealment legal (atta lustance) | CEDir    | CEDtro   | CL       | D\//              | 200                   | 400      | 600       | MC     |

| Selection Indexes |       |  |  |  |  |  |
|-------------------|-------|--|--|--|--|--|
| DOM               | GRN   |  |  |  |  |  |
| \$143             | \$223 |  |  |  |  |  |

raits Oberserved: BWT, Genomics Genetic Conditions: AMFU, CAFU, DDFU, NHFU

| TACE                               |       | Mid August 2023 TransTasman Angus Cattle Evaluation |      |      |      |      |      |       |       |       |       |
|------------------------------------|-------|-----------------------------------------------------|------|------|------|------|------|-------|-------|-------|-------|
| Thereformer legal Cattle Evolution | CEDir | CEDtrs                                              | GL   | BW   | 200  | 400  | 600  | MCW   | Milk  | SS    | Doc   |
| EBV                                | -1.4  | -1.0                                                | -1.5 | +7.0 | +55  | +98  | +130 | +135  | +13   | +3.1  | +14   |
| Acc                                | 54%   | 43%                                                 | 66%  | 70%  | 70%  | 67%  | 68%  | 65%   | 58%   | 63%   | 39%   |
| Perc                               | 80    | 83                                                  | 91   | 95   | 26   | 27   | 24   | 8     | 80    | 16    | 80    |
| TACE 200                           | DC    | CWT                                                 | EMA  | Rib  | Rump | RBY  | IMF  | NFI-F | Claw  | Angle | Leg   |
| EBV                                | -3.9  | +61                                                 | +7.3 | +0.6 | -0.3 | +0.7 | +1.1 | +0.04 | +0.64 | +0.78 | +0.90 |
| Acc                                | 35%   | 58%                                                 | 57%  | 59%  | 59%  | 52%  | 62%  | 49%   | 65%   | 64%   | 61%   |
| Perc                               | 72    | 65                                                  | 36   | 34   | 49   | 33   | 77   | 32    | 13    | 11    | 12    |

Comments: A stylish bull loaded with power! The BEST FOOTED bull in the sale. Use this sire to add growth, fertility, feed efficiency and improve hoof shape in your herd.

Purchaser:.....

HARDHAT S38<sup>sv</sup>

HBR

\$:....

| Ident: DKK21S38     | DOB: 19/07/2021                                                                                                                                                                                                            | Mating Type: Al             |           |                                                 |
|---------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|-----------|-------------------------------------------------|
| GAR                 | G A R PROGRESS <sup>SV</sup><br>MOMENTUM <sup>PV</sup>                                                                                                                                                                     |                             | Selectio  | on Indexes                                      |
| Sire: USA18636059 G | G A R BIG EYE 1770 <sup>#</sup><br>■ <b>A R QUANTUM</b> <sup>PV</sup>                                                                                                                                                      |                             | DOM       | GRN                                             |
| GAR                 | CONNEALY IN SURE 852<br>IN SURE 1524 <sup>#</sup><br>G A R COMPLETE 3011 <sup>#</sup>                                                                                                                                      | 4#                          | \$179     | \$280                                           |
| Dam: DKKP66 HARD    | S A V REGISTRY 2831 <sup>#</sup><br>SENSATION 5615 <sup>SV</sup><br>S A V BLACKCAP MAY 41<br>HAT SENS BARA L18 P66 <sup>#</sup><br>S CHISUM 6175 <sup>PV</sup><br>Y'S CREEK BARA L18 <sup>SV</sup><br>KENNY'S CREEK BARA ( |                             | Genetic C | : GL,BWT,Genomics<br>Conditions:<br>I,DDFU,NHFU |
|                     |                                                                                                                                                                                                                            | 5094"<br>InsTasman Angus Ca |           |                                                 |

| TACE                         |       | Mid August 2023 TransTasman Angus Cattle Evaluation |      |      |      |      |      |       |       |       |       |
|------------------------------|-------|-----------------------------------------------------|------|------|------|------|------|-------|-------|-------|-------|
| heelanar lega lats luitarise | CEDir | CEDtrs                                              | GL   | BW   | 200  | 400  | 600  | MCW   | Milk  | SS    | Doc   |
| EBV                          | +2.3  | -0.7                                                | -5.3 | +4.1 | +60  | +105 | +129 | +113  | +20   | +3.1  | +25   |
| Acc                          | 55%   | 44%                                                 | 82%  | 72%  | 72%  | 70%  | 70%  | 67%   | 61%   | 67%   | 33%   |
| Perc                         | 55    | 82                                                  | 41   | 51   | 11   | 13   | 26   | 28    | 26    | 16    | 25    |
| TACE                         | DC    | CWT                                                 | EMA  | Rib  | Rump | RBY  | IMF  | NFI-F | Claw  | Angle | Leg   |
| EBV                          | -3.5  | +67                                                 | +6.6 | -2.0 | -2.5 | +0.8 | +1.8 | -0.29 | +0.80 | +1.12 | +1.02 |
| Acc                          | 36%   | 61%                                                 | 61%  | 62%  | 61%  | 55%  | 64%  | 49%   | 70%   | 70%   | 57%   |
| Perc                         | 80    | 47                                                  | 44   | 88   | 84   | 28   | 58   | 6     | 40    | 82    | 45    |

Comments: S38 is possibly the most impressive bull in the flesh we have ever bred. Very balanced data with explosive EARLY GROWTH and FEED EFFICIENCY. A bull with dimension and scale from every angle.S38 has a huge amaount of visible muscle over his topline and hindquarter. Standing on great feet and legs makes him appealling to the most astute judge. The maternal heritage of Purchaser:.....

\$:....



#### HARDHAT S50<sup>sv</sup>

| Ident: DKK21S50    | DOB: 21/07/2021                                                                        | Mating Type: Al                       |
|--------------------|----------------------------------------------------------------------------------------|---------------------------------------|
| RENN               | BOOROOMOOKA UNE<br>IYLEA EDMUND E11 <sup>PV</sup>                                      | DERTAKEN Y145 <sup>PV</sup> Selection |
| Sire: NORK522 RENI | LAWSONS HENRY VII<br>NYLEA KODAK K522 <sup>sv</sup>                                    | DOM                                   |
| RENN               | TE MANIA BERKLEY E<br>IYLEA EISA ERICA F810#<br>RENNYLEA EISA ERIC                     | \$157                                 |
| LAWS               | G A R MOMENTUM <sup>PV</sup><br>SONS MOMENTOUS M518 <sup>PV</sup><br>LAWSONS AFRICA H2 |                                       |

LAWSONS AFRICA H2295<sup>v</sup> Dam: DKKQ40 HARDHAT M518 SPICE GIRL J520 Q40<sup>#</sup> SINCLAIR GRASS MASTER<sup>#</sup>

HARDHAT GM SPICE GIRL Y97 J520<sup>PV</sup> KANSAS SPICE GIRL Y97<sup>SV</sup>

| Selectio | n Indexes |
|----------|-----------|
| DOM      | GRN       |
| \$157    | \$247     |

Traits Oberserved: GL,BWT,Genomics Genetic Conditions: AMFU,CAFU,DDFU,NHFU

| TACE                            |       | Mid August 2023 TransTasman Angus Cattle Evaluation |      |      |      |      |      |       |       |       |       |  |  |  |
|---------------------------------|-------|-----------------------------------------------------|------|------|------|------|------|-------|-------|-------|-------|--|--|--|
| herdomet legat latte livitation | CEDir | CEDtrs                                              | GL   | BW   | 200  | 400  | 600  | MCW   | Milk  | SS    | Doc   |  |  |  |
| EBV                             | +6.0  | +7.2                                                | -3.4 | +1.9 | +39  | +80  | +100 | +91   | +16   | +4.1  | +14   |  |  |  |
| Acc                             | 63%   | 53%                                                 | 82%  | 73%  | 74%  | 72%  | 72%  | 71%   | 66%   | 69%   | 56%   |  |  |  |
| Perc                            | 22    | 10                                                  | 72   | 12   | 91   | 79   | 82   | 66    | 62    | 4     | 79    |  |  |  |
| TACE                            | DC    | CWT                                                 | EMA  | Rib  | Rump | RBY  | IMF  | NFI-F | Claw  | Angle | Leg   |  |  |  |
| EBV                             | -4.2  | +49                                                 | +6.3 | +0.2 | -0.5 | +0.5 | +4.0 | +0.70 | +0.72 | +0.78 | +0.92 |  |  |  |
| Acc                             | 45%   | 66%                                                 | 65%  | 66%  | 67%  | 62%  | 69%  | 59%   | 68%   | 68%   | 67%   |  |  |  |
| Perc                            | 64    | 91                                                  | 48   | 43   | 53   | 46   | 10   | 95    | 24    | 11    | 16    |  |  |  |

Comments: S50 is a CALVING EASE, HIGH MARBLING bull with incredible balance. His easy fleshing nature and structural soundness makes him a favorite at Hardhat. Use over heifers to increase carcase guality and improve structure.

Lot 4 HARDHAT S60<sup>sv</sup> HBR Ident: DKK21S60 DOB: 22/07/2021 Mating Type: Al BOOROOMOOKA UNDERTAKEN Y145PV Selection Indexes RENNYLEA EDMUND E11PV LAWSONS HENRY VIII Y5sv DOM GRN Sire: NORK522 RENNYLEA KODAK K522<sup>sv</sup> TE MANIA BERKLEY B1PV \$191 \$306 **RENNYLEA EISA ERICA F810#** RENNYLEA EISA ERICA C299PV G A R MOMENTUMPV LAWSONS MOMENTOUS M518PV LAWSONS AFRICA H229<sup>sv</sup> Traits Oberserved: BWT. Genomics Dam: DKKQ27 HARDHAT M518 ANNIE F113 Q27\* Genetic Conditions: SITZ UPWARD 307R<sup>sv</sup> AMFU.CAFU.DDFU.NHFU **KANSAS ANNIE F113sv KANSAS ANNIE Y66**#

| TACE                              |       | Mid August 2023 TransTasman Angus Cattle Evaluation |      |      |      |      |      |       |       |       |       |  |  |
|-----------------------------------|-------|-----------------------------------------------------|------|------|------|------|------|-------|-------|-------|-------|--|--|
| Torelariar legal (atta liaitariar | CEDir | CEDtrs                                              | GL   | BW   | 200  | 400  | 600  | MCW   | Milk  | SS    | Doc   |  |  |
| EBV                               | +5.8  | +4.5                                                | -7.1 | +3.8 | +49  | +82  | +103 | +74   | +19   | +3.7  | +10   |  |  |
| Acc                               | 63%   | 54%                                                 | 73%  | 72%  | 73%  | 71%  | 72%  | 71%   | 66%   | 69%   | 57%   |  |  |
| Perc                              | 24    | 33                                                  | 16   | 44   | 57   | 74   | 77   | 86    | 36    | 7     | 92    |  |  |
| TACE                              | DC    | CWT                                                 | EMA  | Rib  | Rump | RBY  | IMF  | NFI-F | Claw  | Angle | Leg   |  |  |
| EBV                               | -5.6  | +54                                                 | +7.7 | +2.8 | +1.2 | +0.4 | +3.1 | +0.59 | +0.50 | +0.88 | +1.08 |  |  |
| Acc                               | 45%   | 66%                                                 | 65%  | 66%  | 66%  | 62%  | 69%  | 59%   | 69%   | 69%   | 69%   |  |  |
| Perc                              | 25    | 83                                                  | 32   | 6    | 23   | 53   | 24   | 91    | 3     | 28    | 65    |  |  |

Comments: S60 similar to the previous lot is a HIGH MARBLING, CALVING EASE bull who ranks in the top 3% of the breed for claw shape. The Kodak x Momentous pedigree is a great breeding combination that we will repeat for many years. Very balanced dataset!

Purchaser:......



<sup>\$:....</sup> 

Ident: DKK21S28 DOB: 18/07/2021

**BENFIELD SUBSTANCE 8506#** MOHNEN SUBSTANTIAL 272\* MOHNEN GLYN MAWR ELBA 1758#

Sire: USA18397542 SITZ STELLAR 726DPV CONNEALY FINAL PRODUCTPV

SITZ PRIDE 200B# SITZ PRIDE 308Y#

N BAR EMULATION EXT\*

SINCLAIR EMULATION XXPSV

N BAR PRIMROSE Y3051# Dam: DKKL35 HARDHAT XXP MITTAGONG E10 L35\*

DOB: 24/07/2021

S GLORIA 464#

S CHISUM 6175PV

S BLOSSOM 0278#

Dam: DKKQ88 HARDHAT K522 ANNIE M78 Q88\*

CEDtrs

+9.8

48%

2

CWT

**RENNYLEA KODAK K522<sup>sv</sup>** 

HARDHAT G950 ANNIE F38 M78#

GL

-2.5

81%

83

EMA

Sire: USA17298481 S CHISUM 255<sup>sv</sup>

S ALLIANCE 3313#

S BLOSSOM 8378# RENNYLEA EDMUND E11PV

KANSAS ANNIE F38sv

BW

+1.9

72%

12

Rib

SHIPWHEEL CHINOOK\*

**RENNYLEA EISA ERICA F810<sup>#</sup>** 

TE MANIA GOTHENBURG G950PV

BOOROOMOOKA UNDERTAKEN Y145PV HARDHAT U170 MITTAGONG E10PV

KENNY'S CREEK MITTAGONG C75<sup>sv</sup>

### \$173 \$262

Selection Indexes

DOM

Traits Oberserved: BWT Genetic Conditions: AMFU.CAFU.DDFU.NHFU

| TACE                              |        | Mid August 2023 TransTasman Angus Cattle Evaluation |      |      |      |      |      |            |            |                  |     |  |  |  |
|-----------------------------------|--------|-----------------------------------------------------|------|------|------|------|------|------------|------------|------------------|-----|--|--|--|
| Interfacture legas Latis Lobarize | CEDir  | CEDtrs                                              | GL   | BW   | 200  | 400  | 600  | MCW        | Milk       | SS               | Doc |  |  |  |
| EBV                               | +3.2   | +5.7                                                | -7.7 | +2.8 | +46  | +88  | +109 | +79        | +17        | +0.8             | +23 |  |  |  |
| Acc                               | 54%    | 39%                                                 | 65%  | 67%  | 66%  | 65%  | 64%  | 62%        | 55%        | 61%              | 52% |  |  |  |
| Perc                              | 47     | 22                                                  | 11   | 23   | 67   | 58   | 67   | 82         | 48         | 90               | 35  |  |  |  |
| TACE                              | DC     | CWT                                                 | EMA  | Rib  | Rump | RBY  | IMF  | NFI-F      | Claw       | Angle            | Leg |  |  |  |
| EBV                               | -6.0   | +59                                                 | +0.8 | +3.0 | +3.4 | -0.6 | +1.7 | +0.01      | -          | -                | -   |  |  |  |
| Acc                               | 33%    | 57%                                                 | 57%  | 58%  | 57%  | 53%  | 58%  | 43%        | -          | -                | -   |  |  |  |
| Perc                              | 18     | 71                                                  | 96   | 5    | 5    | 95   | 61   | 28         | -          | -                | -   |  |  |  |
| C                                 | C 20 : | ممم منامما (ب                                       |      |      | -    |      |      | فمطف الديط | متمام امام | a a hilith c a a |     |  |  |  |

HARDHAT S28<sup>sv</sup>

Mating Type: Al

Comments: S28 is a deep sided Stellar son with amazing breed character.a POSITIVE FAT bull that will add doing ability and type to your herd.

Purchaser: \$·....

Lot 6

TACE

EBV

Acc

Perc

TACE DO

CEDir

+6.7

60%

17

DC

Ident: DKK21S68

HARDHAT S68<sup>sv</sup>

Mating Type: Al

Selection Indexes DOM GRN \$211 \$334

HBR

Traits Oberserved: GL,BWT,Genomics Genetic Conditions: AMFU,CAFU,DD13%,NHFU

SS

+3.4

67%

11

Angle

\$:....

Doc

+21

53%

44

Leg

Milk

+18

63%

42

Claw

| EBA      | -7.1          | +39 | +8.1 | +2.8 | +3.2 | +0.4          | +3.8        | +0.81       | +0.54      | +0.94    | +0.98     |
|----------|---------------|-----|------|------|------|---------------|-------------|-------------|------------|----------|-----------|
| Acc      | 39%           | 62% | 61%  | 62%  | 62%  | 57%           | 64%         | 51%         | 69%        | 68%      | 64%       |
| Perc     | 5             | 98  | 28   | 6    | 6    | 53            | 13          | 98          | 5          | 42       | 32        |
| Comments | : S68 is an e |     | 0    |      |      | g ability. An | all round c | arcase perf | ormer with | HIGH EMA | , FAT and |
|          |               |     |      |      |      |               |             |             |            |          |           |

200

+45

72%

74

Rump

Mid August 2023 TransTasman Angus Cattle Evaluation

400

+71

70%

93

RBY

600

+82

70%

97

IMF

MCW

+57

67%

96

NFI-F

MARBLING. Another bull with oustanding structural information for claw shape and angle.

Purchaser:.....



GRN

| T | -4 | _ |
|---|----|---|
| 1 | στ | 5 |

| Lot 7                          |         | 6 D                                                  | <b>OB</b> : 10/0                                                                  |                                                                  | RDHA<br>Mat                  | ing Type |                 |             |             |                                   | HBI    |
|--------------------------------|---------|------------------------------------------------------|-----------------------------------------------------------------------------------|------------------------------------------------------------------|------------------------------|----------|-----------------|-------------|-------------|-----------------------------------|--------|
|                                | LA      | WSONS N                                              |                                                                                   |                                                                  | <b>/</b> ₽V                  | 0 71     |                 |             | Selectio    | on Indexes                        | 3      |
|                                | 2       |                                                      |                                                                                   | IS AFRIC                                                         |                              |          |                 |             | OM          | GRN                               |        |
| Sire: DKI                      | KQ39 HA |                                                      |                                                                                   |                                                                  |                              | SV .     |                 |             |             | Gr                                | KIN    |
|                                | KE      | ENNY'S CI                                            | REEK L23                                                                          | NTENSIT<br>0 <sup>#</sup><br>8 CREEK                             |                              |          |                 | \$          | 169         | \$2                               | 60     |
| Dam: DK                        | KN208 H | NCLAIR G<br>I <b>ARDHAT</b><br>ANSAS RI <sup>-</sup> | RASS MA<br>N BAR P<br><b>N208<sup>#</sup></b><br>SITZ UP<br>TA F181 <sup>sv</sup> | T TIME 24<br>STER <sup>#</sup><br>RIMROSE<br>WARD 307<br>ANNIE C | E Y3051#<br>7R <sup>sv</sup> |          |                 |             | Genetic C   | d: BWT,G<br>conditions<br>DDFU,NH | :      |
|                                |         |                                                      | Mid                                                                               | August 20                                                        | 023 Trans                    | Tasman A | Angus Cat       | ttle Evalua | ation       |                                   |        |
| Temperating a Linia Laboration | CEDir   | CEDtrs                                               | GL                                                                                | BW                                                               | 200                          | 400      | 600             | MCW         | Milk        | SS                                | Doc    |
| EBV                            | -0.6    | -1.6                                                 | -6.0                                                                              | +4.1                                                             | +55                          | +92      | +111            | +98         | +19         | +2.4                              | +17    |
| Acc                            | 55%     | 45%                                                  | 69%                                                                               | 69%                                                              | 71%                          | 68%      | 68%             | 66%         | 59%         | 66%                               | 43%    |
| Perc                           | 75      | 86                                                   | 30                                                                                | 51                                                               | 26                           | 44       | 63              | 54          | 36          | 36                                | 67     |
| TACE                           | DC      | CWT                                                  | EMA                                                                               | Rib                                                              | Rump                         | RBY      | IMF             | NFI-F       | Claw        | Angle                             | Leg    |
| EBV                            | -4.6    | +61                                                  | +7.4                                                                              | -1.7                                                             | -2.3                         | +0.9     | +1.6            | -0.05       | +0.88       | +0.96                             | +1.0   |
| Acc                            | 37%     | 59%                                                  | 59%                                                                               | 61%                                                              | 61%                          | 54%      | 64%             | 51%         | 67%         | 67%                               | 63%    |
| Perc                           | 52      | 65                                                   | 35                                                                                | 84                                                               | 82                           | 23       | 64              | 22          | 58          | 47                                | 45     |
| urchase<br>Lot 8               | r:      | Annie N26.                                           |                                                                                   | HA                                                               | RDHA                         |          | 6 <sup>sv</sup> |             | \$:         |                                   | AP     |
|                                |         |                                                      |                                                                                   |                                                                  | LITY X72                     | 3#       |                 |             | O a la atia |                                   |        |
|                                | M       | ATAURI RI                                            | ALITY 83<br>MATAUR                                                                |                                                                  |                              |          |                 |             |             | n Indexes                         |        |
| Sire: DKI                      | KL17 HA |                                                      |                                                                                   |                                                                  | .17 <sup>sv</sup>            |          |                 |             | MOM         | GF                                | RN     |
|                                | HA      | ARDHAT F                                             |                                                                                   | A12 J18#                                                         | MASTER                       | ¥        |                 | \$          | 131         | \$2                               | 07     |
|                                |         | ENNYLEA                                              | KODAK K                                                                           | 522 <sup>sv</sup><br>EA EISA E                                   | IND E11 <sup>PV</sup>        | 0#       |                 | Traite (    | Dharcary    | d: BWT.G                          | onomia |

IARDHAI K522 ANNIE M46 Q102 HARDHAT GM AGRONOMIST Y21 J516PV HARDHAT J516 OF K69 M46# UNKNOWN

mics Genetic Conditions: AM2%,CA2%,DD2%,NH2%

| TACE                                |       | Mid August 2023 TransTasman Angus Cattle Evaluation |      |      |      |      |      |       |       |       |       |  |  |  |
|-------------------------------------|-------|-----------------------------------------------------|------|------|------|------|------|-------|-------|-------|-------|--|--|--|
| Thereformer Regulation Contaction ( | CEDir | CEDtrs                                              | GL   | BW   | 200  | 400  | 600  | MCW   | Milk  | SS    | Doc   |  |  |  |
| EBV                                 | -1.3  | +1.3                                                | -2.0 | +6.3 | +53  | +93  | +114 | +109  | +15   | +4.7  | +13   |  |  |  |
| Acc                                 | 54%   | 45%                                                 | 67%  | 69%  | 69%  | 66%  | 67%  | 65%   | 57%   | 64%   | 38%   |  |  |  |
| Perc                                | 79    | 67                                                  | 87   | 90   | 33   | 43   | 57   | 35    | 68    | 2     | 82    |  |  |  |
| TACE                                | DC    | CWT                                                 | EMA  | Rib  | Rump | RBY  | IMF  | NFI-F | Claw  | Angle | Leg   |  |  |  |
| EBV                                 | -4.6  | +54                                                 | -3.5 | +2.3 | +2.0 | -1.2 | +2.5 | -0.01 | +0.98 | +0.92 | +1.26 |  |  |  |
| Acc                                 | 37%   | 58%                                                 | 58%  | 60%  | 60%  | 53%  | 63%  | 50%   | 64%   | 64%   | 61%   |  |  |  |
| Perc                                | 52    | 83                                                  | 99   | 9    | 14   | 99   | 38   | 26    | 76    | 37    | 97    |  |  |  |

Comments: S106 is a big long bodied Hardhat L17 son. L17 produced our top priced bull in 2020 and this bull is a similar type. High early growth, FERTILITY and FEED EFFICIENCY.

Purchaser:.... \$:....



#### HARDHAT S74<sup>sv</sup>

GRN \$267

| Ident: DKK21S74   | DOB: 25/07/2021                                                                                                                                                                | Mating Type: Al               |                                              |            |
|-------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|----------------------------------------------|------------|
| RENN              | BOOROOMOOKA UND<br>IYLEA EDMUND E11 <sup>PV</sup>                                                                                                                              |                               | Selectio                                     | n Indexes  |
| Sire: NORK522 REN | LAWSONS HENRY VIII<br>NYLEA KODAK K522 <sup>sv</sup>                                                                                                                           | Y5 <sup>sv</sup>              | DOM                                          | GRN        |
| RENN              | TE MANIA BERKLEY B<br>IYLEA EISA ERICA F810#<br>RENNYLEA EISA ERIC                                                                                                             |                               | \$180                                        | \$267      |
| Dam: DKKM59 HARI  | RITO 707 OF IDEAL 34<br>RESOURCE 1441 <sup>PV</sup><br>S A V BLACKCAP MAY<br>DHAT RES WINKIE W03 M55<br>NOONEE ULMARRA U<br>DHAT WINKIE W03 <sup>#</sup><br>NOONEE WINKIE P121 | 4136#<br>#<br>19 <sup>#</sup> | Traits Oberserved:<br>Genetic C<br>AMFU,CAFU | onditions: |
| TACE              |                                                                                                                                                                                | TransTasman Angus Cat         | tle Evaluation                               |            |

GL,BWT,Genomics nditions: DFU.NHFU

| TACE                               |       | Mid August 2023 TransTasman Angus Cattle Evaluation |       |      |      |      |      |       |       |       |       |  |  |  |
|------------------------------------|-------|-----------------------------------------------------|-------|------|------|------|------|-------|-------|-------|-------|--|--|--|
| Transformer kegun Latte Evoluation | CEDir | CEDtrs                                              | GL    | BW   | 200  | 400  | 600  | MCW   | Milk  | SS    | Doc   |  |  |  |
| EBV                                | +3.1  | +2.0                                                | -3.5  | +4.6 | +47  | +87  | +110 | +94   | +13   | +5.3  | +14   |  |  |  |
| Acc                                | 62%   | 53%                                                 | 83%   | 74%  | 73%  | 71%  | 72%  | 70%   | 66%   | 69%   | 55%   |  |  |  |
| Perc                               | 48    | 60                                                  | 70    | 62   | 63   | 60   | 65   | 60    | 83    | 1     | 79    |  |  |  |
| TACE                               | DC    | CWT                                                 | EMA   | Rib  | Rump | RBY  | IMF  | NFI-F | Claw  | Angle | Leg   |  |  |  |
| EBV                                | -5.4  | +53                                                 | +10.1 | +2.6 | +2.9 | +0.7 | +1.7 | +0.37 | +0.66 | +0.86 | +0.98 |  |  |  |
| Acc                                | 44%   | 65%                                                 | 64%   | 66%  | 66%  | 61%  | 68%  | 57%   | 69%   | 69%   | 68%   |  |  |  |
| Perc                               | 30    | 85                                                  | 13    | 7    | 7    | 33   | 61   | 74    | 15    | 24    | 32    |  |  |  |

Comments: S74 is from a repeated mating we have been doing for years with great success. Rennylea Kodak K522 x SAV Resource. GREAT FERTILITY! the top 1% of the breed for Scrotal. HIGH EMA, POSITIVE FATS and excellent STRUCTURAL DATA.

Purchaser: \$•.....

Lot 10 HARDHAT S49<sup>sv</sup> APR Ident: DKK21S49 DOB: 21/07/2021 Mating Type: Al **RENNYLEA C511PV** Selection Indexes **RENNYLEA H708**PV RENNYLEA E176PV DOM GRN Sire: DKKM41 HARDHAT H708 MAIMURU J51 M41<sup>sv</sup> ARDROSSAN DIRECTION A50<sup>sv</sup> \$141 \$284 HARDHAT A50 MITTAGONG E10 J51# HARDHAT U170 MITTAGONG E10PV BON VIEW NEW DESIGN 1407# MURRAY 1407 Z366sv MURRAY DIRECTION X323# Traits Oberserved: GL,BWT,Genomics Dam: DKKK33 HARDHAT Z366 DIANA E19 K33\* Genetic Conditions: S A V 5175 BANDO 0699# AMFU, CAFU, DDFU, NHFU HARDHAT 0699 DIANA E19# HARDHAT DIANA X07# Mid August 2023 TransTasman Angus Cattle Evaluation TACE CEDir BW MCW CEDtrs GL 200 400 600 Milk SS Doc -0.3 EBV +8.6 +4.6-5.1 -1.4 +27+50+68 +19 +14 +11 55% 44% 82% 73% 72% 71% 68% 60% 65% Acc 70% 51% Perc 7 32 44 1 99 99 99 74 99 88 99 TACE 🖂 CWT EMA Rib IMF DC Rump RBY NFI-F Claw Angle Leg EBV -3.7 +28 +7.6 +4.1 +3.4 -0.4 +5.9 +0.43+1.00 +1.08 +0.98 66% 64% Acc 40% 64% 64% 65% 65% 58% 67% 56% 66% Perc 76 99 33 2 5 91 1 79 79 75 32

Comments: S49 is a proven BOMBPROOF CALVING EASE bull and was used over stud heifers in 2022. He is now in the top 1% for MARBLING and in the top 2% for RIB FAT and 5% for RUMP FAT. He has very impressive muscle shape for a +5.9 Marbling bull. For

Ś:.....



Purchaser:....

Harden Showground Cattle Shed

| Lot 1                               | 1        |                                                     | HA                               | RDH/      | <b>\T M5</b> 1                | 18 TA1   | T MUT          | 2 <sup>PV</sup>     |          |                               | HBR                    |  |
|-------------------------------------|----------|-----------------------------------------------------|----------------------------------|-----------|-------------------------------|----------|----------------|---------------------|----------|-------------------------------|------------------------|--|
| Ident: DK                           | K22T2    | D                                                   | <b>OB:</b> 14/0                  | 2/2022    |                               | Mating T | <b>ype:</b> ET |                     |          |                               |                        |  |
|                                     | G        | A R MOM                                             | ENTUM <sup>PV</sup>              | ROGRESS   |                               |          |                |                     | Selectio | on Indexes                    | 6                      |  |
| Sire: VLY                           | ME40 I A | WEONE                                               |                                  | G EYE 17  | -                             |          |                | D                   | MOM      | GF                            | RN                     |  |
| Sile. VLI                           |          | WSONS A                                             | TE MANI<br>AFRICA H2             | AAFRICA   | ٧                             | \$       | \$153 \$279    |                     |          |                               |                        |  |
| Dam: NK                             | -        |                                                     | RD 307R <sup>s</sup><br>SITZ HEI | NRIETTA I | ARD <sup>#</sup><br>PRIDE 811 | M#       |                |                     |          | <b>d:</b> BWT,60<br>5 IMF) DO | 0WT,SC,<br>C,Structure |  |
| Dam: NK                             |          | ANSAS AN                                            | x 1, Foot<br>Genetic C           | . ,.      | Genomics<br>:                 |          |                |                     |          |                               |                        |  |
| TACE                                |          | Mid August 2023 TransTasman Angus Cattle Evaluation |                                  |           |                               |          |                |                     |          |                               |                        |  |
| Transformer legar Latte Finitaation | CEDir    | CEDtrs                                              | GL                               | BW        | 200                           | 400      | 600            | 600 MCW Milk SS Doc |          |                               |                        |  |
| EBV                                 | -1.9     | -1.0                                                | -9.2                             | +3.3      | +55                           | +97      | +120           | +105                | +19      | +0.6                          | +31                    |  |

| EBV  | -1.9 | -1.0 | -9.2 | +3.3 | +55  | +97  | +120 | +105  | +19   | +0.6  | +31 |
|------|------|------|------|------|------|------|------|-------|-------|-------|-----|
| Acc  | 66%  | 57%  | 73%  | 74%  | 75%  | 74%  | 74%  | 72%   | 68%   | 73%   | 62% |
| Perc | 82   | 83   | 4    | 33   | 27   | 31   | 44   | 41    | 33    | 93    | 11  |
| TACE | DC   | CWT  | EMA  | Rib  | Rump | RBY  | IMF  | NFI-F | Claw  | Angle | Leg |
| EBV  | -3.5 | +64  | +6.6 | -0.4 | -0.3 | -0.4 | +3.7 | +0.24 | +0.92 | +0.86 | -   |
| Acc  | 48%  | 68%  | 67%  | 68%  | 69%  | 63%  | 70%  | 61%   | 63%   | 67%   | -   |
| Perc | 80   | 56   | 44   | 58   | 49   | 91   | 14   | 58    | 66    | 24    | -   |

Comments: T2 is one of the picks of the sale. We love his structural soundness. He has a strong head and powerful outlook. His dam has produced many of our best! Including our top priced bull in 2019 N43 who sold to Boonaroo Angus and did very well. T2 has an amazing depth of rib and walks on great feet and legs.

| Lot 12            | HARDHA                               | T UPWARD T3 <sup>PV</sup> |
|-------------------|--------------------------------------|---------------------------|
| Ident: DKK22T3    | DOB: 18/02/2022                      | Mating Type: ET           |
|                   | CONNEALY LEAD ON#                    |                           |
| CON               | NEALY ONWARD <sup>#</sup>            |                           |
|                   | ALTUNE OF CONANG                     | A 6104 <sup>#</sup>       |
| Sire: USA14963730 | SITZ UPWARD 307R <sup>sv</sup>       |                           |
|                   | SITZ VALUE 7097#                     |                           |
| SITZ              | HENRIETTA PRIDE 81M#                 |                           |
|                   | SITZ HENRIETTA PRID                  | DE 1370 <sup>#</sup>      |
|                   | BT RIGHT TIME 24J#                   |                           |
| SINC              | LAIR GRASS MASTER <sup>#</sup>       |                           |
|                   | N BAR PRIMROSE Y30                   | )51 <sup>#</sup> ·        |
| Dam: DKKJ541 HAF  | RDHAT GM ANNIE Y21 J541 <sup>P</sup> | v Sca                     |
|                   | BON VIEW NEW DESI                    |                           |
| KAN               | SAS ANNIE Y21 <sup>sv</sup>          |                           |

Purchaser:.....

AMAROO EXPO ANNIE U024#

Traits Oberserved: BWT,600WT,SC, Scan(EMA, Rib, Rump, IMF), DOC, Genomics Genetic Conditions: AMFU,CAFU,DDFU,NHFU

Selection Indexes

DOM

\$138

Ś:....

HBR

GRN

\$204

|                                    |       |        | Mid  | August 20 | 023 Trans | Tasman A | Angus Cat | tle Evalua | ation |       |     |
|------------------------------------|-------|--------|------|-----------|-----------|----------|-----------|------------|-------|-------|-----|
| Transformer legan Cartin Evolution | CEDir | CEDtrs | GL   | BW        | 200       | 400      | 600       | MCW        | Milk  | SS    | Doc |
| EBV                                | -1.3  | -5.4   | -5.6 | +4.4      | +57       | +106     | +133      | +104       | +26   | +1.4  | +10 |
| Acc                                | 64%   | 58%    | 73%  | 73%       | 74%       | 72%      | 73%       | 71%        | 67%   | 72%   | 59% |
| Perc                               | 79    | 97     | 36   | 58        | 20        | 12       | 20        | 44         | 4     | 75    | 91  |
| TACE                               | DC    | CWT    | EMA  | Rib       | Rump      | RBY      | IMF       | NFI-F      | Claw  | Angle | Leg |
| EBV                                | -2.8  | +75    | +5.4 | -4.1      | -5.8      | +0.9     | -0.7      | -0.60      | -     | -     | -   |
| Acc                                | 51%   | 67%    | 67%  | 68%       | 68%       | 64%      | 70%       | 61%        | -     | -     | -   |
| Perc                               | 90    | 25     | 60   | 99        | 99        | 23       | 99        | 1          | -     | -     | -   |

Comments: T3 is a cow maker with a cow makers pedigree. One of the last Sitz Upward sons to sell in Aust. Hid dam Annie J541 is one of our originial Sinclair Grass Master x Kansas Annie Y21 daughters who produced so many great animals at Hardhat. T3 has been the standout weight gain bull of out Autumn T bulls.

Purchaser:..... \$:....



| Lot 13        |     |         | H                                | ARDH                | AT Q4                         | 4 TSZ              | YU T <sub>5</sub> | sv         |                        |                                                    | HBR           |
|---------------|-----|---------|----------------------------------|---------------------|-------------------------------|--------------------|-------------------|------------|------------------------|----------------------------------------------------|---------------|
| Ident: DKK221 | Г5  | D       | <b>OB:</b> 20/0                  | 2/2022              |                               | Mating T           | ype: ET           |            |                        |                                                    |               |
|               | LA  | WSONS I | MOMENT                           | OMENTUN<br>DUS M518 | 3 <sup>PV</sup>               |                    |                   |            | Selectio               | on Indexe                                          | S             |
| Sire: VLYQ44  | 1   |         |                                  | IS AFRIC            |                               |                    |                   | C          | MOM                    | GF                                                 | RN            |
| 0116. VLI Q44 |     | WSONS I | G A R AN<br>(914 <sup>sv</sup>   | ITICIPATIO          | ON#                           |                    |                   | \$         | 160                    | \$2                                                | 40            |
|               |     |         |                                  |                     | 31155 G62                     | 25#                |                   | L          |                        |                                                    |               |
|               |     |         | RD 307R <sup>s</sup><br>SITZ HEI | NRIETTAI            | ARD <sup>#</sup><br>PRIDE 811 | W#                 |                   |            |                        | : BWT,600                                          |               |
| Dam: NKLF14   |     |         | ARDROS                           | SAN DIR             | ECTION V<br>21 <sup>sv</sup>  | V109 <sup>PV</sup> |                   | (Claw Set  | x 1, Foot<br>Genetic C | ,IMF),DOC<br>Angle x 1)<br>Conditions<br>I,DDFU,NH | ,Genomic<br>: |
| TACE          |     |         | Mid                              | August 20           | 023 Trans                     | Tasman A           | Angus Ca          | ttle Evalu | ation                  |                                                    | -             |
| CEL           | Dir | CEDtrs  | GL                               | BW                  | 200                           | 400                | 600               | MCW        | Milk                   | SS                                                 | Doc           |
| EDV +7        | 7   | +4.2    | 67                               | 10.2                | 100                           | 100                | +70               | + 5 2      | +40                    | +0.0                                               | +20           |

| EBV  | +7.7 | +4.2 | -6.7  | +0.2 | +33  | +66  | +78  | +53   | +19   | +0.9  | +29 |
|------|------|------|-------|------|------|------|------|-------|-------|-------|-----|
| Acc  | 59%  | 48%  | 73%   | 73%  | 74%  | 72%  | 71%  | 69%   | 61%   | 71%   | 54% |
| Perc | 11   | 37   | 21    | 2    | 98   | 97   | 98   | 98    | 37    | 88    | 15  |
| TACE | DC   | CWT  | EMA   | Rib  | Rump | RBY  | IMF  | NFI-F | Claw  | Angle | Leg |
| EBV  | -4.1 | +41  | +14.3 | +0.5 | -0.2 | +1.6 | +0.9 | +0.56 | +1.02 | +0.98 | -   |
| Acc  | 40%  | 63%  | 62%   | 64%  | 64%  | 58%  | 66%  | 54%   | 47%   | 57%   | -   |
| Perc | 66   | 98   | 2     | 36   | 48   | 4    | 82   | 89    | 82    | 52    | -   |

Comments: T5 is our only bull by the EYE MUSCLE king Lawsons Miraculous Q44. T5 is again from a favorite donor cow Kansas Annie F143. Use T5 to add muscle and CARCASE YIELD to your herd.

Purchaser:.....

Lot 14

HARDHAT QUANTUM T17<sup>sv</sup> Ident: DKK22T17 Mating Type: Natural DOB: 20/03/2022 G A R MOMENTUM<sup>₽V</sup> Selection Indexes LAWSONS MOMENTOUS M518PV LAWSONS AFRICA H229sv DOM Sire: DKKQ39 HARDHAT M518 QUANTUM L230 Q39<sup>sv</sup> H P C A INTENSITY# \$188 KENNY'S CREEK L230# KENNY'S CREEK H389# RENNYLEA EDMUND E11PV **RENNYLEA KODAK K522<sup>sv</sup> RENNYLEA EISA ERICA F810#** Dam: DKKP155 HARDHAT P155# S A V NET WORTH 4200# HARDHAT NW SPICE GIRL Y97 M139# KANSAS SPICE GIRL Y97<sup>sv</sup>

Traits Oberserved: BWT,400WT,SC, Scan(EMA, Rib, Rump, IMF), DOC, Genomics Genetic Conditions: AMFU, CAFU, DDFU, NHFU

\$:....

HBR

GRN

\$318

|                                    |       |        | Mid  | August 20 | 023 Trans | Tasman A | Angus Cat | ttle Evalua | ation |       |     |
|------------------------------------|-------|--------|------|-----------|-----------|----------|-----------|-------------|-------|-------|-----|
| Transformer legan Cartin Evolution | CEDir | CEDtrs | GL   | BW        | 200       | 400      | 600       | MCW         | Milk  | SS    | Doc |
| EBV                                | +6.7  | +4.1   | -9.4 | +2.6      | +56       | +101     | +134      | +89         | +27   | +2.6  | +22 |
| Acc                                | 55%   | 45%    | 68%  | 69%       | 69%       | 66%      | 66%       | 65%         | 58%   | 70%   | 45% |
| Perc                               | 17    | 38     | 4    | 20        | 22        | 21       | 17        | 68          | 3     | 29    | 36  |
| TACE                               | DC    | CWT    | EMA  | Rib       | Rump      | RBY      | IMF       | NFI-F       | Claw  | Angle | Leg |
| EBV                                | -5.0  | +80    | +4.6 | -0.1      | -1.5      | -0.3     | +3.5      | +0.34       | -     | -     | -   |
| Acc                                | 36%   | 57%    | 57%  | 58%       | 58%       | 52%      | 61%       | 50%         | -     | -     | -   |
| Perc                               | 41    | 15     | 70   | 50        | 71        | 88       | 17        | 70          | -     | -     | -   |

Comments: T17 is a deep sided, long bdied bull descending from the Kansas Spice Girl family. His Rennylea Kodak x SAV Net Worth dam is an outstanding female. His data replicates the balance of his phenotype, calving ease and curve bending!

Purchaser:....

\$:....



| Lot 15          |                                        | HA                                                     | RDHA                                       | T MON                                            | IENTO     | DUS TA    | <b>45</b> <sup>sv</sup> |                                     |           | HBR |
|-----------------|----------------------------------------|--------------------------------------------------------|--------------------------------------------|--------------------------------------------------|-----------|-----------|-------------------------|-------------------------------------|-----------|-----|
| Ident: DKK22T45 | 0                                      | <b>OB</b> : 15/0                                       |                                            |                                                  | Mating    | Type: Al  |                         |                                     |           |     |
| G               | A R MOM                                | ENTUM <sup>PV</sup>                                    | ROGRESS                                    |                                                  |           |           |                         | Selectio                            | on Indexe | S   |
| Sire: VLYM518 L | AWSONS                                 |                                                        | G EYE 17<br>T <b>OUS M5</b>                | -                                                |           |           |                         | MOM                                 | GF        | RN  |
| L               | AWSONS                                 | AFRICA H                                               | IA AFRICA<br>229 <sup>s∨</sup><br>NS ROCKI |                                                  | SH E1103⁼ | ₽V        | \$                      | 147                                 | \$2       | 87  |
| Dam: DKKM19 H   | INCLAIR G<br><b>ARDHAT</b><br>ARDHAT 7 | RASS MA<br>N BAR P<br>GM SPIC<br>S A V PIC<br>301 SPIC | RIMROSE<br>E GIRL J<br>ONEER 73            | E Y3051#<br><b>527 M M</b> 1<br>801#<br>97 J527# | 19#       |           | Scan(EMA<br>(Claw Set   | ,Rib,Rump<br>x 1, Foot<br>Genetic C | o,IMF),DO | -   |
| TACE 200        |                                        | Mid                                                    | August 20                                  | 023 Trans                                        | Tasman A  | Angus Cat | ttle Evalua             | ation                               |           |     |
| CEDir           | CEDtrs                                 | GL                                                     | BW                                         | 200                                              | 400       | 600       | MCW                     | Milk                                | SS        | Doc |
| EBV +3.5        | +0.9                                   | -10.1                                                  | +1.2                                       | +37                                              | +70       | +87       | +56                     | +21                                 | +1.6      | +17 |

| Acc  | 63%  | 54% | 83%    | 74%  | 74%  | 72%  | 72%  | 70%   | 65%   | 74%   | 57%   |
|------|------|-----|--------|------|------|------|------|-------|-------|-------|-------|
| Perc | 44   | 70  | 2      | 6    | 94   | 93   | 94   | 97    | 21    | 68    | 65    |
| TACE | DC   | CWT | EMA    | Rib  | Rump | RBY  | IMF  | NFI-F | Claw  | Angle | Leg   |
| EBV  | -2.3 | +34 | +13.9  | +0.2 | -0.7 | +0.5 | +5.5 | +0.83 | +0.94 | +0.94 | +1.00 |
| EDV  | -2.5 |     | . 10.5 |      | •    | .0.0 |      |       |       |       |       |
| Acc  | 45%  | 66% | 64%    | 66%  | 66%  | 61%  | 68%  | 57%   | 66%   | 66%   | 61%   |

Comments: T45 is the highest marbling and muscle scanning bull Hardhat Angus has ever seen. TOP 2% for both IMF and EMA! At 12 months of age he scanned 8.2% IMF and 98cm EMA. His best feature however is his donor grade dam Hardhat Spice Girl M19 who one of the favorites in our herd. Carcase and Cow quality is what we strive for!
Purchaser:.....\$:

| Lot 16           | HARDHAT                                                                                                                                                              | NEBRASKA T3          | 5 <sup>sv</sup>                                             | HBR                                                                                           |
|------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|-------------------------------------------------------------|-----------------------------------------------------------------------------------------------|
| Ident: DKK22T35  | DOB: 06/07/2022                                                                                                                                                      | Mating Type: Al      |                                                             |                                                                                               |
| RENN             | RENNYLEA EDMUND                                                                                                                                                      |                      | Selectio                                                    | on Indexes                                                                                    |
|                  | RENNYLEA EISA ERIC<br>1AT K522 NEBRASKA F143                                                                                                                         |                      | DOM                                                         | GRN                                                                                           |
|                  | SITZ UPWARD 307R <sup>sv</sup><br>AS ANNIE F143 <sup>sv</sup><br>KANSAS ANNIE C10 <sup>sv</sup>                                                                      |                      | \$134                                                       | \$221                                                                                         |
| Dam: DKKJ43 HARD | ARDROSSAN DIRECT<br>OSSAN DIRECTION A50 <sup>SV</sup><br>ARDROSSAN WILCOC<br>HAT A50 JEDDA C11 J43"<br>B T ULTRAVOX 297E#<br>HAT UV JEDDA C11#<br>COMFORT HILL JEDDA | DLA W2*              | Scan(EMA,Rib,Rum<br>(Claw Set x 1, Foot<br><b>Genetic C</b> | GL,BWT,400WT,SC,<br>o,IMF),DOC,Structure<br>Angle x 1),Genomics<br>Conditions:<br>I,DDFU,NHFU |
| TACE 200         | Mid August 2023                                                                                                                                                      | TransTasman Angus Ca | attle Evaluation                                            |                                                                                               |

| TACE                             |       |        | Mid   | August 20 | 023 Trans | Tasman A | Angus Cat | ttle Evalua | ation |       |       |
|----------------------------------|-------|--------|-------|-----------|-----------|----------|-----------|-------------|-------|-------|-------|
| hereformer ingut fatte funkation | CEDir | CEDtrs | GL    | BW        | 200       | 400      | 600       | MCW         | Milk  | SS    | Doc   |
| EBV                              | +10.1 | +6.6   | -15.1 | +1.4      | +47       | +85      | +117      | +92         | +26   | +4.9  | +8    |
| Acc                              | 56%   | 46%    | 83%   | 74%       | 73%       | 71%      | 71%       | 68%         | 59%   | 73%   | 52%   |
| Perc                             | 3     | 14     | 1     | 7         | 64        | 67       | 49        | 64          | 4     | 1     | 94    |
| TACE                             | DC    | CWT    | EMA   | Rib       | Rump      | RBY      | IMF       | NFI-F       | Claw  | Angle | Leg   |
| EBV                              | -5.8  | +61    | +1.9  | -0.1      | -1.1      | -0.9     | +2.1      | +0.56       | +1.06 | +1.22 | +1.02 |
| Acc                              | 38%   | 64%    | 63%   | 64%       | 65%       | 58%      | 67%       | 56%         | 64%   | 64%   | 57%   |
| Perc                             | 21    | 64     | 92    | 50        | 64        | 98       | 49        | 89          | 87    | 93    | 45    |

Comments: T35 is a CALVING EASE bull with growth and type. By Hardhat Nebraska N43 who's dam F143 is the mother of lot 11 and 13.

Purchaser:.....\$:....



| ldent: DK                         | K22T42  | D        | <b>OB:</b> 14/0 |          |                       | Mating              | Type: Al    |             |          |                          |       |
|-----------------------------------|---------|----------|-----------------|----------|-----------------------|---------------------|-------------|-------------|----------|--------------------------|-------|
|                                   | RI      | ENNYLEA  |                 |          | JND E11 <sup>PV</sup> |                     |             |             | Selectio | on Indexe                | S     |
|                                   |         |          |                 |          | ERICA F81             |                     |             |             | MOM      | GF                       | RN    |
| Sire: DKI                         | (N43 HA | RDHAT K  |                 | NARD 30  |                       | FV                  |             |             |          | -                        |       |
|                                   | K       | ANSAS AN |                 |          |                       |                     |             | \$          | 152      | \$2                      | 06    |
|                                   |         |          | KANSAS          | ANNIE C  | 10 <sup>sv</sup>      |                     |             |             |          |                          |       |
|                                   |         |          | RITO 707        | OF IDEA  | AL 3407 70            | 75#                 |             |             |          |                          |       |
|                                   | S       | A V RENO | WN 3439         | v        |                       |                     |             |             |          |                          |       |
|                                   |         |          |                 | ACKCAP   | MAY 4136              | #                   |             |             |          | GL,BWT,4<br>p),DOC,St    |       |
| Dam: DK                           | KN59 HA | ARDHAT I |                 |          |                       |                     |             |             |          | 0),DOC,3נ<br>Angle x 1), |       |
|                                   | ц       | ARDHAT N | B/R NEW         |          | ER 095"               |                     |             |             |          | Conditions               |       |
|                                   | 10      |          |                 |          | EATHER V              | V49#                |             | AN          | IFU,CAFU | ,DDFU,NH                 | IFU   |
|                                   |         |          | Mid             | August 2 | 023 Trans             | Tasman /            | Angus Ca    | ttle Evalua | ation    |                          |       |
| Terrefacture input Catta Datastor | CEDir   | CEDtrs   | GL              | BW       | 200                   | 400                 | 600         | MCW         | Milk     | SS                       | Doc   |
| EBV                               | +0.9    | -1.0     | -6.4            | +6.9     | +58                   | +98                 | +131        | +121        | +19      | +4.2                     | +5    |
| Acc                               | 56%     | 46%      | 82%             | 73%      | 72%                   | 69%                 | 69%         | 67%         | 59%      | 72%                      | 53%   |
| Perc                              | 66      | 83       | 24              | 94       | 18                    | 28                  | 23          | 19          | 33       | 3                        | 98    |
| TACE                              | DC      | CWT      | EMA             | Rib      | Rump                  | RBY                 | IMF         | NFI-F       | Claw     | Angle                    | Leg   |
| EBV                               | -5.8    | +71      | +2.6            | -2.7     | -2.6                  | +0.9                | -1.2        | -0.11       | +0.60    | +0.84                    | +0.94 |
| Acc                               | 36%     | 63%      | 62%             | 63%      | 63%                   | 56%                 | 66%         | 54%         | 64%      | 65%                      | 57%   |
| Perc                              | 21      | 36       | 89              | 95       | 86                    | 23                  | 99          | 16          | 9        | 20                       | 21    |
| Perc                              |         |          |                 |          | م ما ا م ما ا         | + N   o   - o   - o | N142 1144 4 | o add carca |          | . مليات امير             |       |
|                                   | 21      | 36       | 89              | 95       | 86                    | 23                  | 99          | 16          | 9        | 20                       |       |

| Lot 1     | 8               |                                        | HA                                                          | RDH/                            | AT NE                | BRASI    | KA T4     | 7 <sup>sv</sup> |          |            | HBR |
|-----------|-----------------|----------------------------------------|-------------------------------------------------------------|---------------------------------|----------------------|----------|-----------|-----------------|----------|------------|-----|
| Ident: DK | K22T47          | D                                      | <b>OB:</b> 15/0                                             | 7/2022                          |                      | Mating   | Type: Al  |                 |          |            |     |
|           | RE              | ENNYLEA                                | KODAK K                                                     | 522 <sup>sv</sup>               | IND E11 <sup>₽</sup> |          |           |                 | Selectio | on Indexes | 3   |
| Sire: DKI | ZN 42 LLA       |                                        |                                                             |                                 | ERICA F81            |          |           | C               | MOM      | GF         | RN  |
| Sile. DRI | <b>11143 HA</b> |                                        |                                                             | WARD 30                         |                      |          |           |                 |          |            |     |
|           | KA              | NSAS AN                                |                                                             |                                 |                      |          |           |                 | -        | -          |     |
|           |                 |                                        | KANSAS                                                      | ANNIE C                         | 10 <sup>sv</sup>     |          |           |                 |          |            |     |
| Dam: DK   | KP7 HAF         | ATTEMER<br>R <b>DHAT P</b><br>ARDHAT G | RE WEIGH<br>BARBAR<br>7 <sup>#</sup><br>SINCLAI<br>GM ANNIE | A OF PLA<br>R GRASS<br>Y21 J506 | MASTER               |          |           |                 |          | served: No |     |
|           |                 |                                        |                                                             | ANNIE Y                         |                      | Teemen ( |           |                 | otion    |            |     |
| TACE      |                 |                                        |                                                             |                                 |                      |          | Angus Cat |                 |          |            | -   |
|           | CEDir           | CEDtrs                                 | GL                                                          | BW                              | 200                  | 400      | 600       | MCW             | Milk     | SS         | Doc |
| EBV       | -               | -                                      | -                                                           | -                               | -                    | -        | -         | -               | -        | -          | -   |
| Acc       | -               | -                                      | -                                                           | -                               | -                    | -        | -         | -               | -        | -          | -   |
| Perc      | -               | -                                      | -                                                           | -                               | -                    | -        | -         | -               | -        | -          | -   |
| TACE      | DC              | CWT                                    | EMA                                                         | Rib                             | Rump                 | RBY      | IMF       | NFI-F           | Claw     | Angle      | Leg |
| EBV       | -               | -                                      | -                                                           | -                               | -                    | -        | -         | -               | -        | -          | -   |
| Acc       | -               | -                                      | -                                                           | -                               | -                    | -        | -         | -               | -        | -          | -   |
| Perc      | -               | -                                      | -                                                           | -                               | -                    | -        | -         | -               | -        | -          | -   |

Comments: T47 is another high growth Hardhat Nebraska N43 son. Please see updated EBV's on Supplementary Sheet.

\$:....



|                                                                                          |                                                                                                                                   |                                                                                                               | BENFIEL                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                           | 0                                                                                                                                              |                                                                   |                                                                                              |                                                                                                                                                     |                                                                                                                    |                                                                                                                     |
|------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|----------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|
|                                                                                          | M                                                                                                                                 | OHNEN S                                                                                                       |                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                           |                                                                                                                                                |                                                                   |                                                                                              | Selectio                                                                                                                                            | on Indexes                                                                                                         | 5                                                                                                                   |
| Sire: US/                                                                                | A1839754                                                                                                                          | 12 SITZ S                                                                                                     | TELLAR                                                                                                                                                                                                                                                                                                                                                | 726D <sup>PV</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | AWR ELB                                                                                                                                                                                                                                                                   |                                                                                                                                                |                                                                   |                                                                                              | MOM                                                                                                                                                 | GF                                                                                                                 | RN                                                                                                                  |
|                                                                                          | SI                                                                                                                                | TZ PRIDE                                                                                                      | 200B#                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | . PRODUC                                                                                                                                                                                                                                                                  | CT <sup>PV</sup>                                                                                                                               |                                                                   | \$                                                                                           | 185                                                                                                                                                 | \$2                                                                                                                | 90                                                                                                                  |
|                                                                                          |                                                                                                                                   |                                                                                                               |                                                                                                                                                                                                                                                                                                                                                       | IDE 308Y*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                           |                                                                                                                                                |                                                                   |                                                                                              |                                                                                                                                                     |                                                                                                                    |                                                                                                                     |
|                                                                                          | V                                                                                                                                 | A R INDEX                                                                                                     |                                                                                                                                                                                                                                                                                                                                                       | GENUITY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <del>.</del>                                                                                                                                                                                                                                                              |                                                                                                                                                |                                                                   |                                                                                              |                                                                                                                                                     |                                                                                                                    |                                                                                                                     |
|                                                                                          |                                                                                                                                   |                                                                                                               |                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | CKBIRD 88                                                                                                                                                                                                                                                                 | 309#                                                                                                                                           |                                                                   |                                                                                              |                                                                                                                                                     | GL,BWT,4<br>0,IMF),DO                                                                                              |                                                                                                                     |
| Jam: DK                                                                                  | KN103 H                                                                                                                           | ARDHAT                                                                                                        |                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | N103"<br>ERFORMI                                                                                                                                                                                                                                                          | FR#                                                                                                                                            |                                                                   |                                                                                              |                                                                                                                                                     | Angle x 1),                                                                                                        |                                                                                                                     |
|                                                                                          | HA                                                                                                                                | ARDHAT B                                                                                                      | P ABIGAI                                                                                                                                                                                                                                                                                                                                              | L E2#                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                           |                                                                                                                                                |                                                                   |                                                                                              |                                                                                                                                                     | Conditions                                                                                                         |                                                                                                                     |
|                                                                                          | 1                                                                                                                                 |                                                                                                               | MILLAH                                                                                                                                                                                                                                                                                                                                                | MURRAH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ABIGAIL                                                                                                                                                                                                                                                                   | N71#                                                                                                                                           |                                                                   | AN                                                                                           | IFU,CAFU                                                                                                                                            | ,DDFU,NH                                                                                                           |                                                                                                                     |
| TACE 200                                                                                 |                                                                                                                                   |                                                                                                               | Mid                                                                                                                                                                                                                                                                                                                                                   | August 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 023 Trans                                                                                                                                                                                                                                                                 | Tasman A                                                                                                                                       | Angus Ca                                                          | ttle Evalu                                                                                   | ation                                                                                                                                               |                                                                                                                    |                                                                                                                     |
| konforme kopa fatte fuelance.                                                            | CEDir                                                                                                                             | CEDtrs                                                                                                        | GL                                                                                                                                                                                                                                                                                                                                                    | BW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 200                                                                                                                                                                                                                                                                       | 400                                                                                                                                            | 600                                                               | MCW                                                                                          | Milk                                                                                                                                                | SS                                                                                                                 | Doc                                                                                                                 |
| EBV                                                                                      | -2.6                                                                                                                              | +4.3                                                                                                          | -3.4                                                                                                                                                                                                                                                                                                                                                  | +5.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | +56                                                                                                                                                                                                                                                                       | +97                                                                                                                                            | +124                                                              | +98                                                                                          | +18                                                                                                                                                 | -1.2                                                                                                               | +25                                                                                                                 |
| Acc                                                                                      | 58%                                                                                                                               | 43%                                                                                                           | 83%                                                                                                                                                                                                                                                                                                                                                   | 74%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 72%                                                                                                                                                                                                                                                                       | 70%                                                                                                                                            | 70%                                                               | 67%                                                                                          | 61%                                                                                                                                                 | 73%                                                                                                                | 56%                                                                                                                 |
| Perc                                                                                     | 85                                                                                                                                | 36                                                                                                            | 72                                                                                                                                                                                                                                                                                                                                                    | 71                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 24                                                                                                                                                                                                                                                                        | 30                                                                                                                                             | 34                                                                | 54                                                                                           | 42                                                                                                                                                  | 99                                                                                                                 | 28                                                                                                                  |
|                                                                                          | DC                                                                                                                                | CWT                                                                                                           | EMA                                                                                                                                                                                                                                                                                                                                                   | Rib                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Rump                                                                                                                                                                                                                                                                      | RBY                                                                                                                                            | IMF                                                               | NFI-F                                                                                        | Claw                                                                                                                                                | Angle                                                                                                              | Leg                                                                                                                 |
| EBV                                                                                      | -4.0                                                                                                                              | +73                                                                                                           | +11.5                                                                                                                                                                                                                                                                                                                                                 | +2.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | +1.6                                                                                                                                                                                                                                                                      | +1.3                                                                                                                                           | -0.2                                                              | -0.40                                                                                        | +0.76                                                                                                                                               | +1.04                                                                                                              | +1.04                                                                                                               |
|                                                                                          | 35%                                                                                                                               | 61%<br>28                                                                                                     | 61%<br>7                                                                                                                                                                                                                                                                                                                                              | 62%<br>9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 61%<br>18                                                                                                                                                                                                                                                                 | 56%<br>9                                                                                                                                       | 64%<br>97                                                         | 48%                                                                                          | 66%<br>32                                                                                                                                           | 66%<br>66                                                                                                          | 56%<br>52                                                                                                           |
| Purchase                                                                                 | r:                                                                                                                                |                                                                                                               |                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | T bull by SI                                                                                                                                                                                                                                                              |                                                                                                                                                |                                                                   |                                                                                              |                                                                                                                                                     | d foot quali                                                                                                       |                                                                                                                     |
| Perc<br>Comments<br>Purchase                                                             | : T73 is a H<br>r:                                                                                                                |                                                                                                               |                                                                                                                                                                                                                                                                                                                                                       | ARDH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                           | AIMUR                                                                                                                                          |                                                                   |                                                                                              |                                                                                                                                                     | ·                                                                                                                  |                                                                                                                     |
| Perc<br>Comments<br>Purchase                                                             | : T73 is a H<br>r:<br>:0<br>:K22T81                                                                                               |                                                                                                               | H.<br>00B: 22/0<br>RENNYL                                                                                                                                                                                                                                                                                                                             | ARDH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | AT MA                                                                                                                                                                                                                                                                     | AIMUR                                                                                                                                          | U T81                                                             |                                                                                              | \$:                                                                                                                                                 |                                                                                                                    | API                                                                                                                 |
| Perc<br>Comments<br>Purchase<br>Lot 2<br>Ident: DK                                       | : T73 is a H<br>r:<br>:0<br>:K22T81<br>RI                                                                                         | D                                                                                                             | H.<br>00B: 22/0<br>RENNYL<br>H708 <sup>₽V</sup><br>RENNYL                                                                                                                                                                                                                                                                                             | <b>ARDH</b><br>17/2022<br>EA C511 <sup>p</sup><br>EA E176 <sup>p</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ×                                                                                                                                                                                                                                                                         | AIMUR                                                                                                                                          | U T81                                                             | [sv                                                                                          | \$:<br>Selectio                                                                                                                                     | on Indexe:                                                                                                         |                                                                                                                     |
| Perc<br>Comments<br>Purchase<br>Lot 2<br>Ident: DK                                       | : T73 is a H<br>r:<br>:0<br>:K22T81<br>RI                                                                                         |                                                                                                               | H<br>OB: 22/0<br>RENNYL<br>H708 <sup>PV</sup><br>RENNYL<br>I708 MAI                                                                                                                                                                                                                                                                                   | <b>ARDH</b><br>17/2022<br>EA C511 <sup>p</sup><br>EA E176 <sup>p</sup><br><b>MURU J</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <b>AT MA</b><br>51 M41 <sup>sv</sup>                                                                                                                                                                                                                                      | AIMUR<br>Mating                                                                                                                                | U T81                                                             | [sv                                                                                          | \$:                                                                                                                                                 |                                                                                                                    |                                                                                                                     |
| Perc<br>Comments<br>Purchase<br>Lot 2<br>Ident: DK                                       | : T73 is a H<br>r:<br>30<br>(K22T81<br>RE<br>KM41 HA                                                                              | D                                                                                                             | EI<br>POB: 22/0<br>RENNYL<br>H708 <sup>₽V</sup><br>RENNYL<br>I708 MAI<br>ARDROS<br>50 MITTA                                                                                                                                                                                                                                                           | ARDH<br>17/2022<br>EA C511 <sup>p</sup><br>EA E176 <sup>p</sup><br>MURU J3<br>SSAN DIR<br>GONG E1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <b>51 M41<sup>sv</sup></b><br>ECTION A<br>0 J51#                                                                                                                                                                                                                          | Mating 50 <sup>sv</sup>                                                                                                                        | U T81                                                             | [sv                                                                                          | \$:<br>Selectio                                                                                                                                     | on Indexe:                                                                                                         | API<br>5<br>RN                                                                                                      |
| Perc<br>Comments<br>Purchase<br>Lot 2<br>Ident: DK                                       | : :T73 is a H<br>r:<br>30<br>KK22T81<br>RE<br>KM41 HA<br>H/                                                                       | D<br>ENNYLEA<br><b>RDHAT H</b><br>ARDHAT A                                                                    | H<br>OB: 22/0<br>RENNYL<br>H708 <sup>PV</sup><br>RENNYL<br><b>ARDROS</b><br>50 MITTA<br>HARDHA<br>RENNYL                                                                                                                                                                                                                                              | ARDH<br>17/2022<br>EA C511 <sup>p</sup><br>EA E176 <sup>p</sup><br>MURU J<br>SSAN DIR<br>GONG E1<br>AT U170 M<br>EA KODA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <b>AT MA</b><br>51 M41 <sup>sv</sup><br>ECTION A<br>0 J51 <sup>#</sup><br>IITTAGON<br>K K522 <sup>sv</sup>                                                                                                                                                                | Mating 50 <sup>sv</sup>                                                                                                                        | U T81                                                             | [sv                                                                                          | \$:<br>Selectio                                                                                                                                     | on Indexes                                                                                                         | API<br>5<br>RN                                                                                                      |
| Perc<br>Comments<br>Purchase<br>Lot 2<br>Ident: DK                                       | : :T73 is a H<br>r:<br>30<br>KK22T81<br>RE<br>KM41 HA<br>H/                                                                       | D<br>ENNYLEA<br>RDHAT H                                                                                       | H<br>OB: 22/0<br>RENNYL<br>H708 <sup>#V</sup><br>RENNYL<br>ARDROS<br>50 MITA<br>HARDHA<br>HARDHA<br>RENNYL<br>522 NIKO                                                                                                                                                                                                                                | ARDH<br>17/2022<br>EA C511 <sup>p</sup><br>EA E176 <sup>p</sup><br>MURU J<br>SSAN DIR<br>GONG E1<br>AT U170 M<br>EA KODA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | AT MA<br>51 M41 <sup>sv</sup><br>ECTION A<br>0 J51 <sup>#</sup><br>IITTAGON<br>K K522 <sup>sv</sup><br>87 <sup>Pv</sup>                                                                                                                                                   | Mating 50 <sup>sv</sup>                                                                                                                        | <b>IU T81</b><br>Type: Al                                         | Traits Ob                                                                                    | \$:<br>Selectio<br>DOM<br>3179<br>erserved:                                                                                                         | on Indexes<br>GF<br>\$2<br>GL,BWT,4                                                                                | API<br>5<br>RN<br>93                                                                                                |
| Perc<br>Comments<br>Purchase<br>Lot 2<br>Ident: DK                                       | : 773 is a H<br>r:<br>:K22T81<br>RI<br>KM41 HA<br>H/                                                                              | D<br>ENNYLEA<br>RDHAT H<br>ARDHAT A                                                                           | H<br>OB: 22/0<br>RENNYL<br>H708 <sup>PV</sup><br>RENNYL<br>I708 MAI<br>ARDROS<br>50 MITTA<br>HARDHA<br>RENNYL<br>5522 NIKO<br>KANSAS<br>N87 ANN                                                                                                                                                                                                       | ARDH<br>17/2022<br>EA C511 <sup>P</sup><br>EA C511 <sup>P</sup><br>SSAN DIR<br>GONG E1<br>TU170 M<br>EA KODA<br>N F113 N<br>ANNIE F<br>ANNIE F<br>IE N26 Q                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <b>AT MA</b><br><b>5</b><br><b>5</b><br><b>5</b><br><b>1</b><br><b>1</b><br><b>1</b><br><b>1</b><br><b>1</b><br><b>1</b><br><b>1</b><br><b>1</b>                                                                                                                          | Mating 50 <sup>sv</sup>                                                                                                                        | <b>IU T81</b><br>Type: Al                                         | LSV                                                                                          | \$:<br>Selectic<br>DOM<br>3179<br>erserved:<br>A,Rib,Rum                                                                                            | on Indexes<br>GF<br>\$2<br>GL,BWT,4<br>o,IMF),DO                                                                   | API<br>3<br>RN<br>93<br>000WT, S                                                                                    |
| Perc<br>Comments<br>Purchase<br>Lot 2<br>Ident: DK                                       | : 773 is a H<br>r:<br>30<br>KK22T81<br>R!<br>KM41 HA<br>H/<br>H/<br>KQ94 H/                                                       | D<br>ENNYLEA<br>RDHAT H<br>ARDHAT A<br>ARDHAT K                                                               | H<br>OB: 22/0<br>RENNYL<br>H708 <sup>PV</sup><br>RENNYL<br>TO8 MAI<br>ARDROS<br>50 MITTA<br>HARDHA<br>RENNYL<br>522 NIKO<br>KANSAS<br>N87 ANN<br>SA V RE                                                                                                                                                                                              | <b>ARDH</b><br>17/2022<br>EA C511 <sup>P</sup><br>EA E176 <sup>P</sup><br><b>MURU J</b><br>SGAN DIR<br>GONG E1<br>AT U170 M<br>EA KODA<br>N F113 N<br>GANNE F<br><b>IE N26 Q</b><br>SNOWN 3 <sup>2</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | AT MA<br>51 M41 <sup>sv</sup><br>ECTION A<br>0 J51 <sup>#</sup><br>IITTAGON<br>K K522 <sup>sv</sup><br>87 <sup>pv</sup><br>113 <sup>sv</sup><br>94 <sup>#</sup><br>439 <sup>pv</sup>                                                                                      | Mating 50 <sup>sv</sup>                                                                                                                        | <b>IU T81</b><br>Type: Al                                         | Traits Ob<br>Scan(EMA<br>(Claw Sel                                                           | \$:<br>Selectic<br>DOM<br>3179<br>erserved:<br>,,,Rib,Rum,<br>x 1, Foot                                                                             | on Indexe:<br>GF<br>\$2<br>GL,BWT,4<br>o,IMF),DO<br>Angle x 1),                                                    | API<br>S<br>RN<br>93<br>400WT, S<br>C, Struct<br>Genom                                                              |
| Perc<br>Comments<br>Purchase<br>Lot 2<br>Ident: DK                                       | : 773 is a H<br>r:<br>30<br>KK22T81<br>R!<br>KM41 HA<br>H/<br>H/<br>KQ94 H/                                                       | D<br>ENNYLEA<br>RDHAT H<br>ARDHAT A                                                                           | H<br>OB: 22/0<br>RENNYL<br>H708 <sup>#V</sup><br>RENNYL<br>T708 MAI<br>ARDROS<br>50 MITA<br>HARDHA<br>HARDHA<br>KANSAS<br>N87 ANN<br>S A V RE<br>EEN ANNIE                                                                                                                                                                                            | <b>ARDH</b><br>17/2022<br>EA C511 <sup>P</sup><br>EA E176 <sup>P</sup><br><b>MURU J</b><br>SGAN DIR<br>GONG E1<br>AT U170 M<br>EA KODA<br>NI F113 N<br>GANIE F<br><b>IE N26 Q</b><br>SNOWN 3 <sup>2</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | AT MA<br>51 M41 <sup>sv</sup><br>ECTION A<br>0 J51 <sup>#</sup><br>IITTAGON<br>K K522 <sup>sv</sup><br>87 <sup>Pv</sup><br>113 <sup>sv</sup><br><b>94</b> <sup>#</sup><br>139 <sup>Pv</sup><br>6 <sup>#</sup>                                                             | Mating 50 <sup>sv</sup>                                                                                                                        | <b>IU T81</b><br>Type: Al                                         | LSV                                                                                          | \$:<br>Selectio<br>DOM<br>3179<br>erserved:<br>A,Rib,Rum <sub>1</sub><br>x 1, Foot<br>Genetic C                                                     | on Indexes<br>GF<br>\$2<br>GL,BWT,4<br>o,IMF),DO                                                                   | API<br>S<br>RN<br>93<br>400WT,S<br>C,Struct<br>Genomic                                                              |
| Perc<br>Comments<br>Purchase<br>Lot 2<br>Ident: DK                                       | : 773 is a H<br>r:<br>30<br>KK22T81<br>R!<br>KM41 HA<br>H/<br>H/<br>KQ94 H/                                                       | D<br>ENNYLEA<br>RDHAT H<br>ARDHAT A<br>ARDHAT K                                                               | H<br>OB: 22/0<br>RENNYL<br>H708 <sup>PV</sup><br>RENNYL<br>708 MAI<br>ARDROS<br>50 MITA<br>HARDHA<br>HARDHA<br>RENNYL<br>522 NIKO<br>KANSAS<br>N87 ANN<br>S A V RE<br>EN ANNIE<br>KANSAS                                                                                                                                                              | <b>ARDH</b><br>17/2022<br>EA C511 <sup>p</sup><br>EA E176 <sup>p</sup><br><b>MURU J</b><br>SSAN DIR<br>GONG E1<br>AT U170 M<br>EA KODA<br>IN F113 N<br>ANNIE F<br><b>IE N26 Q</b><br>IN GNUN 32<br>E F181 N2<br>F117 F18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | AT MA<br>51 M41 <sup>sv</sup><br>ECTION A<br>0 J51 <sup>#</sup><br>IITTAGON<br>K K522 <sup>sv</sup><br>87 <sup>Pv</sup><br>113 <sup>sv</sup><br><b>94</b> <sup>#</sup><br>139 <sup>Pv</sup><br>6 <sup>#</sup>                                                             | Mating<br>50 <sup>sv</sup><br>G E10 <sup>pv</sup>                                                                                              | <b>IU T81</b><br>Type: Al                                         | Traits Ob<br>Scan(EMA<br>(Claw Set<br>AM                                                     | \$:<br>Selectic<br>DOM<br>179<br>erserved:<br>,,Rib,Rum<br>x, 1, Foot.<br>Genetic C<br>Genetic C                                                    | on Indexes<br>GF<br>\$2<br>GL,BWT,4<br>op,IMF),DO<br>Angle x 1),<br>conditions                                     | API<br>S<br>RN<br>93<br>400WT,S<br>C,Struct<br>Genomic                                                              |
| Perc<br>Comments<br>Purchase<br>Lot 2<br>Ident: DK                                       | : 773 is a H<br>r:<br>30<br>KK22T81<br>R!<br>KM41 HA<br>H/<br>H/<br>KQ94 H/                                                       | D<br>ENNYLEA<br>RDHAT H<br>ARDHAT A<br>ARDHAT K                                                               | H<br>OB: 22/0<br>RENNYL<br>H708 <sup>PV</sup><br>RENNYL<br>708 MAI<br>ARDROS<br>50 MITA<br>HARDHA<br>HARDHA<br>RENNYL<br>522 NIKO<br>KANSAS<br>N87 ANN<br>S A V RE<br>EN ANNIE<br>KANSAS                                                                                                                                                              | <b>ARDH</b><br>17/2022<br>EA C511 <sup>p</sup><br>EA E176 <sup>p</sup><br><b>MURU J</b><br>SSAN DIR<br>GONG E1<br>AT U170 M<br>EA KODA<br>IN F113 N<br>ANNIE F<br><b>IE N26 Q</b><br>IN GNUN 32<br>E F181 N2<br>F117 F18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | AT MA<br>51 M41 <sup>sv</sup><br>ECTION A<br>ECTION A<br>UJ51 <sup>#</sup><br>IITTAGON<br>K K522 <sup>sv</sup><br>87 <sup>Pv</sup><br>113 <sup>sv</sup><br>94 <sup>#</sup><br>139 <sup>Pv</sup><br>16 <sup>#</sup><br>15 <sup>v</sup>                                     | Mating<br>50 <sup>sv</sup><br>G E10 <sup>pv</sup>                                                                                              | <b>IU T81</b><br>Type: Al                                         | Traits Ob<br>Scan(EMA<br>(Claw Set<br>AM                                                     | \$:<br>Selectic<br>DOM<br>179<br>erserved:<br>,,Rib,Rum<br>x, 1, Foot.<br>Genetic C<br>Genetic C                                                    | on Indexes<br>GF<br>\$2<br>GL,BWT,4<br>op,IMF),DO<br>Angle x 1),<br>conditions                                     | API<br>S<br>RN<br>93<br>400WT,S<br>C,Struct<br>Genomic                                                              |
| Perc<br>Comments<br>Purchase<br>Lot 2<br>dent: DK                                        | : 773 is a H<br>r:<br>(K22T81<br>RE<br>KM41 HA<br>H/<br>KQ94 H/<br>H/                                                             | D<br>ENNYLEA<br>RDHAT H<br>ARDHAT K<br>ARDHAT K<br>ARDHAT K                                                   | H<br>OB: 22/0<br>RENNYL<br>H708 <sup>PV</sup><br>RENNYL<br><b>708 MAI</b><br>ARDROS<br>50 MITA<br>HARDHA<br>HARDHA<br>RENNYL<br>522 NIKO<br>KANSAS<br><b>8 A V RE</b><br>S A V RE<br>EN ANNIE<br>KANSAS<br>Mid                                                                                                                                        | <b>ARDH</b><br>17/2022<br>EA C511 <sup>P</sup><br>EA E176 <sup>P</sup><br><b>MURU J</b><br>SSAN DIR<br>GONG E1<br>AT U170 M<br>EA KODA<br>NI F113 N<br>CANNE F<br><b>IE N26 Q</b><br>NOWN 32<br>E F181 N2<br>F181 N2<br>F181 N2<br>F181 N2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | AT MA<br>51 M41 <sup>sv</sup><br>0 51 M41 <sup>sv</sup><br>9 4 <sup>#</sup><br>1 39 <sup>sv</sup><br>1 39 <sup>sv</sup><br>1 5 <sup>sv</sup><br>2 23 Trans        | Mating<br>50 <sup>sv</sup><br>G E10 <sup>pv</sup>                                                                                              | <b>LU T81</b><br>Type: AI                                         | Traits Ob<br>Scan(EMA<br>(Claw Set<br>Ah<br>ttle Evalu                                       | \$<br>Selectic<br>DOM<br>179<br>erserved:<br>,,Rib,Rum<br>x 1, Foot,<br>Genetic C<br>Genetic C<br>IFU,CAFU<br>ation                                 | on Indexes<br>GL,BWT,4<br>o,IMF),DO<br>Angle x 1),<br>onditions<br>,DDFU,NH                                        | API<br>S<br>RN<br>93<br>400WT, S<br>C, Struct<br>Genom<br>:<br>IFU                                                  |
| Perc<br>Comments<br>Purchase<br>Lot 2<br>dent: DK<br>Sire: DKI                           | : 773 is a H<br>r:<br>(0)<br>(K22T81<br>R!<br>(KQ1 HA<br>H/<br>KQ94 HA<br>H/<br>CEDir                                             | D<br>ENNYLEA<br>RDHAT H<br>ARDHAT K<br>ARDHAT K<br>ARDHAT F<br>CEDtrs                                         | H<br>OB: 22/0<br>RENNYL<br>H708 <sup>PV</sup><br>RENNYL<br>708 MAI<br>ARDROS<br>50 MITA<br>HARDHA<br>HARDHA<br>RENNYL<br>522 NIKO<br>KANSAS<br>N87 ANN<br>S A V RE<br>EN ANNIE<br>KANSAS<br>Mid<br>GL                                                                                                                                                 | ARDH<br>17/2022<br>EA C511 <sup>P</sup><br>EA E176 <sup>P</sup><br>MURU J<br>SSAN DIR<br>GONG E1<br>AT U170 M<br>EA KODA<br>IN F113 N<br>ANNIE F<br>IE N26 Q<br>IN COMN 32<br>E F181 N2<br>E R17A F18<br>August 20<br>BW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | AT MA<br>51 M41 <sup>sv</sup><br>ECTION A<br>0 J51 <sup>#</sup><br>IITTAGON<br>K K522 <sup>sv</sup><br>87 <sup>Ev</sup><br>113 <sup>sv</sup><br>94 <sup>#</sup><br>139 <sup>Pv</sup><br>16 <sup>#</sup><br>15 <sup>v</sup><br>200                                         | Mating<br>50 <sup>sv</sup><br>G E10 <sup>pv</sup>                                                                                              | <b>LU T81</b><br>Type: Al                                         | Traits Ob<br>Scan(EMA<br>(Claw Set<br>Ah<br>ttle Evalu                                       | \$:<br>Selectic<br>DOM<br>3179<br>erserved:<br>,,Rib,Rum<br>4 x 1, Foot.<br>Genetic C<br>Genetic C<br>IFU,CAFU<br>ation<br>Milk                     | on Indexe:<br>GL,BWT,4<br>o,IMF),DO<br>Angle x 1),<br>onditions<br>,DDFU,NF                                        | API<br>API<br>S<br>RN<br>93<br>400WT, S<br>C, Struct<br>Genom<br>:<br>IFU<br>Doc                                    |
| Perc<br>Comments<br>Purchase<br>Lot 2<br>Ident: DK<br>Sire: DKI<br>Dam: DK               | : 773 is a H<br>r:<br>(K22T81<br>Rf<br>KM41 HA<br>H/<br>KQ94 H/<br>H/<br>CEDir<br>+0.7                                            | D<br>ENNYLEA<br>RDHAT H<br>ARDHAT A<br>ARDHAT K<br>ARDHAT F<br>CEDtrs<br>+1.0                                 | H<br>OB: 22/0<br>RENNYL<br>H708 <sup>PV</sup><br>RENNYL<br>708 MAI<br>ARDROS<br>50 MITA<br>HARDHA<br>RENNYL<br>522 NIKO<br>KANSAS<br>N87 ANN<br>S A V RE<br>EN ANNIE<br>KANSAS<br>Mid<br>GL<br>-3.2                                                                                                                                                   | ARDH<br>17/2022<br>EA C511 <sup>P</sup><br>EA E176 <sup>P</sup><br><b>MURU J</b><br>SSAN DIR<br>GONG E1<br>AT U170 M<br>EA KODA<br>IN F113 N<br>ANNIE F<br><b>IE N26 Q</b><br>N F113 N<br>ANNIE F<br><b>IE N26 Q</b><br>INOWN 32<br>E F181 N2<br>E R17A F18<br>August 20<br>BW<br>+3.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | AT MA<br>51 M41sv<br>ECTION A<br>0 J51 <sup>#</sup><br>IITTAGON<br>K K522 <sup>sv</sup><br>87 <sup>Ev</sup><br>113 <sup>sv</sup><br>94 <sup>#</sup><br>139 <sup>Pv</sup><br>16 <sup>#</sup><br>15 <sup>v</sup><br>200<br>+62                                              | Mating<br>50 <sup>sv</sup><br>G E10 <sup>pv</sup>                                                                                              | <b>LU T81</b><br>Type: Al<br>Angus Ca<br>600<br>+135              | Traits Ob<br>Scan(EMA<br>(Claw Set<br>Ah<br>ttle Evalue<br>MCW<br>+117                       | \$:<br>Selectic<br>DOM<br>3179<br>erserved:<br>,,Rib,Rum<br>4 x 1, Foot.<br>Genetic C<br>Genetic C<br>Genetic C<br>dFU,CAFU<br>ation<br>Milk<br>+10 | on Indexe:<br>GL,BWT,4<br>o,IMF),DO<br>Angle x 1),<br>onditions<br>,DDFU,NF                                        | API<br>API<br>S<br>RN<br>93<br>400WT, S<br>C, Struct<br>Genom<br>:<br>IFU<br>Doc<br>+22                             |
| Perc<br>Comments<br>Purchase<br>Lot 2<br>Ident: DK<br>Sire: DK<br>Sire: DK<br>Dam: DK    | : 773 is a H<br>r:<br>K22T81<br>Rt<br>K41 HA<br>H/<br>KQ94 H/<br>H/<br>CEDir<br>+0.7<br>54%                                       | D<br>ENNYLEA<br>RDHAT H<br>ARDHAT A<br>ARDHAT K<br>ARDHAT F<br>CEDtrs<br>+1.0<br>42%                          | H<br>OB: 22/0<br>RENNYL<br>H708 <sup>PV</sup><br>RENNYL<br>708 MAI<br>ARDROS<br>50 MITA<br>HARDHA<br>RENNYL<br>522 NIKO<br>KANSAS<br>N87 ANN<br>S A V RE<br>EN ANNIE<br>KANSAS<br>Mid<br>GL<br>-3.2<br>82%                                                                                                                                            | ARDH<br>17/2022<br>EA C511 <sup>P</sup><br>EA E176 <sup>P</sup><br><b>MURU J</b><br>SSAN DIR<br>GONG E1<br>AT U170 M<br>EA KODA<br>IN F113 N<br>ANNIE F<br><b>IE N26 Q</b><br>N F113 N<br>ANNIE F<br><b>IE N26 Q</b><br>N GNUS 12<br>E N21 A<br>E N | AT MA<br>51 M41 <sup>sv</sup><br>ECTION A<br>0 J51 <sup>#</sup><br>IITTAGON<br>K K522 <sup>sv</sup><br>87 <sup>Pv</sup><br>113 <sup>sv</sup><br>94 <sup>#</sup><br>139 <sup>Pv</sup><br>16 <sup>#</sup><br>15 <sup>sv</sup><br>2023 Trans<br>200<br>+62<br>70%            | Mating <sup>™</sup><br>50 <sup>sv</sup><br>G E10 <sup>pv</sup><br>Tasman A<br>400<br>+106<br>68%                                               | <b>LU T81</b><br>Type: Al<br>Angus Ca<br>600<br>+135<br>69%       | Traits Ob<br>Scan(EMA<br>(Claw Set<br>Ah<br>ttle Evalut<br>MCW<br>+117<br>66%                | \$<br>Selectic<br>DOM<br>3179<br>erserved:<br>,,Rib,Rum<br>t x 1, Foot<br>Genetic C<br>Genetic C<br>Genetic C<br>Genetic C<br>Milk<br>+10<br>57%    | on Indexe:<br>GL,BWT,4<br>o,IMF),DO<br>Angle x 1),<br>onditions<br>,DDFU,NF                                        | API<br>API<br>3<br>3<br>3<br>4<br>3<br>4<br>4<br>5<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4 |
| Perc<br>Comments<br>Purchase<br>Lot 2<br>Iddent: DK<br>Sire: DKI<br>Sire: DKI<br>Dam: DK | : 773 is a H<br>r:<br>(X22T81<br>K22T81<br>Rf<br>KQ94 HA<br>H/<br>KQ94 HA<br>H/<br>CEDir<br>+0.7<br>54%<br>67                     | D<br>RDHAT H<br>ARDHAT A<br>ARDHAT K<br>ARDHAT K<br>ARDHAT F<br>CEDtrs<br>+1.0<br>42%<br>69                   | H<br>OB: 22/0<br>RENNYL<br>H708 <sup>PV</sup><br>RENNYL<br>708 MAI<br>ARDROS<br>50 MITA<br>HARDHA<br>RENNYL<br>522 NIKO<br>KANSAS<br>N87 ANN<br>S A V RE<br>EN ANNIE<br>KANSAS<br>Mid<br>GL<br>-3.2<br>82%<br>74                                                                                                                                      | ARDH<br>17/2022<br>EA C511P<br>EA E176P<br>MURU J3<br>SSAN DIR<br>GONG E1<br>AT U170 M<br>EA KODA<br>N F113 N<br>ANNIE F<br>IE N26 Q<br>NOWN 32<br>E F181 N22<br>RITA F18<br>August 20<br>BW<br>+3.7<br>73%<br>41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | AT MA<br>51 M41 <sup>sv</sup><br>ECTION A<br>0 J51 <sup>#</sup><br>IITTAGON<br>K K522 <sup>sv</sup><br>87 <sup>Pv</sup><br>13 <sup>sv</sup><br>94 <sup>#</sup><br>139 <sup>Pv</sup><br>13 <sup>sv</sup><br>94 <sup>#</sup><br>139 <sup>Pv</sup><br>200<br>+62<br>70%<br>7 | Mating <sup>™</sup><br>50 <sup>sv</sup><br>G E10 <sup>pv</sup><br>Tasman A<br>400<br>+106<br>68%<br>13                                         | <b>RU T81</b><br>Type: Al<br>Angus Ca<br>600<br>+135<br>69%<br>17 | Traits Ob<br>Scan(EMA<br>(Claw Sel<br>All<br>ttle Evalu.<br>MCW<br>+117<br>66%<br>23         | \$<br>Selectic<br>DOM<br>3179<br>erserved:<br>,,Rib,Rum,<br>tx 1, Foot<br>Genetic C<br>Genetic C<br>IFU,CAFU<br>ation<br>Milk<br>+10<br>57%<br>93   | on Indexe:<br>GL,BWT,4<br>o,IMF),DO<br>Angle x 1),<br>onditions<br>,DDFU,NH<br>SS<br>+1.1<br>70%<br>84             | API<br>5<br>5<br>6<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7                                 |
| Perc<br>Comments<br>Purchase<br>Lot 2<br>Ident: DK<br>Sire: DKI<br>Sire: DKI<br>Dam: DK  | : 773 is a H<br>r:<br>(0)<br>(K22T81<br>RE<br>(M41 HA<br>H/<br>KQ94 HA<br>H/<br>KQ94 HA<br>H/<br>CEDir<br>+0.7<br>54%<br>67<br>DC | D<br>ENNYLEA<br>RDHAT F<br>ARDHAT A<br>ARDHAT K<br>ARDHAT K<br>ARDHAT R<br>CEDtrs<br>+1.0<br>42%<br>69<br>CWT | H           OB: 22/0           RENNYL           H708 <sup>PV</sup> RENNYL           H708 MAI           ARDROS           50 MITTA           HARDHA           RENNYL           522 NIKC           KANSAS           N87 ANN           S A V RE           EEN ANNIE           KANSAS           Mid           GL           -3.2           82%           74 | ARDH<br>7/2022<br>EA C511 <sup>P</sup><br>EA E176 <sup>P</sup><br><b>MURU J</b><br>SSAN DIR<br>GONG E1<br>TT U170 M<br>EA KODA<br>WIN F113 N<br>ANNIE F<br><b>IE N26 Q</b><br>NOWN 32<br>E F181 N22<br>E F181 N22<br>E F181 N22<br>E F181 N22<br>MURU J<br>August 20<br>BW<br>+3.7<br>73%<br>41<br>Rib                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <b>AT MA</b><br><b>51 M41<sup>sv</sup></b><br>ECTION A<br>0 J51 <sup>#</sup><br>ITTAGON<br>K K522 <sup>sv</sup><br>87 <sup>Pv</sup><br>113 <sup>sv</sup><br>94 <sup>#</sup><br>139 <sup>Pv</sup><br>139 <sup>Pv</sup><br>203 Trans<br>200<br>+62<br>70%<br>7<br>Rump      | IMUR           Mating           50°           G E 10°           Tasman A           400           +106           68%           13           RBY | Angus Ca<br>600<br>+135<br>69%<br>17<br>IMF                       | Traits Ob<br>Scan(EMA<br>(Claw Set<br>Ah<br>ttle Evalu.<br>MCW<br>+117<br>66%<br>23<br>NFI-F | \$:<br>Selectio<br>DOM<br>3179<br>erserved:<br>, Rib, Rum,<br>x 1, Foot,<br>Genetic C<br>GrU, CAFU<br>ation<br>Milk<br>+10<br>57%<br>93<br>Claw     | on Indexes<br>GL,BWT,4<br>o,IMF),DO<br>Angle x 1),<br>ondfitons<br>,DDFU,NF<br>\$S\$<br>+1.1<br>70%<br>84<br>Angle | API<br>API<br>3<br>3<br>3<br>4<br>3<br>4<br>4<br>4<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5 |

HARDHAT STELLAR T73<sup>sv</sup>

Mating Type: Al

DOB: 22/07/2022

HBR



Lot 19

Ident: DKK22T73

Comments: S52 has an extremely well balanced dataset. HIGH for FAT and MARBLING.

61

EMA

+7.1

62%

38

Purchaser:

23

Rib

+2.3

63%

9

73

Rump

+2.2

62%

12

\$:....

36

Angle

+1.24

69%

94

38%

50

Leg

+1.22

60%

94



70%

55

RBY

-0.2

57%

85

64

IMF

+3.5

65%

17

54

NFI-F

+0.68

51%

94

53

Claw

+0.84

69%

49

| - |  |  |
|---|--|--|
|   |  |  |
|   |  |  |
|   |  |  |

DOB: 27/07/2021

RENNYLEA C511PV

#### Mating Type: Al

HARDHAT S80<sup>sv</sup>

| Selection Indexes |       |  |  |  |  |  |
|-------------------|-------|--|--|--|--|--|
| DOM GRN           |       |  |  |  |  |  |
| \$169             | \$304 |  |  |  |  |  |

Traits Oberserved: GL,BWT,Genomics

Ident: DKK21S80

Acc

Perc

EBV

Acc

Perc

TACE POD

56%

39

DC

-3.6

38%

78

49

CWT

+65

62%

53

APR

| ldent: Dk                                                                  | Lot 23 HARDHAT S94 <sup>+</sup> HBR                                               |                                                                                                       |                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                  |                                                                        |                                              |                                                                      |                                                                                              |                                                                                                                                     |                                                                              |
|----------------------------------------------------------------------------|-----------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|----------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|
|                                                                            | K21S94                                                                            | D                                                                                                     | <b>OB:</b> 08/0                                                                                                                                                                                                                                    | 8/2021                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Mat                                                                                                                                                                                                                              | ing Type:                                                              | Natural                                      |                                                                      |                                                                                              |                                                                                                                                     |                                                                              |
|                                                                            |                                                                                   |                                                                                                       |                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ND E11 <sup>PV</sup>                                                                                                                                                                                                             |                                                                        |                                              |                                                                      | Solootic                                                                                     | on Indexes                                                                                                                          |                                                                              |
| RENNYLEA KODAK K522 <sup>sv</sup><br>RENNYLEA EISA ERICA F810 <sup>#</sup> |                                                                                   |                                                                                                       |                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                  |                                                                        |                                              |                                                                      |                                                                                              |                                                                                                                                     |                                                                              |
| Sire: DKI                                                                  | DKKQ5 HARDHAT KODAK Q5 <sup>sv</sup>                                              |                                                                                                       |                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                  |                                                                        |                                              |                                                                      | MOM                                                                                          | GF                                                                                                                                  | RN                                                                           |
|                                                                            |                                                                                   |                                                                                                       | KANSAS                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                  |                                                                        |                                              | ¢                                                                    | 172                                                                                          | \$2                                                                                                                                 | 61                                                                           |
|                                                                            | HA                                                                                | ARDHAT J                                                                                              | 81 ANNIE<br>KANSAS                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                  |                                                                        |                                              | Ψ                                                                    | 172                                                                                          | ΨΖ                                                                                                                                  | 01                                                                           |
|                                                                            |                                                                                   |                                                                                                       | GARIN                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ¥                                                                                                                                                                                                                                |                                                                        |                                              |                                                                      |                                                                                              |                                                                                                                                     |                                                                              |
|                                                                            | V                                                                                 | A R INDEX                                                                                             |                                                                                                                                                                                                                                                    | SENOTIT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                  |                                                                        |                                              |                                                                      |                                                                                              |                                                                                                                                     |                                                                              |
|                                                                            |                                                                                   |                                                                                                       |                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | KBIRD 88                                                                                                                                                                                                                         | 809 <sup>#</sup>                                                       |                                              | Tr                                                                   | aite Obor                                                                                    | served: BV                                                                                                                          | л/ <b>т</b>                                                                  |
| Dam: DK                                                                    | KN103 H                                                                           | ARDHAT                                                                                                |                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <b>\103</b> <sup>#</sup><br>Erformi                                                                                                                                                                                              | =D#                                                                    |                                              |                                                                      |                                                                                              | conditions                                                                                                                          |                                                                              |
|                                                                            | HA                                                                                | ARDHAT B                                                                                              |                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                  |                                                                        |                                              | AM                                                                   | IFU,CAFU                                                                                     | ,DDFU,NH                                                                                                                            | IFU                                                                          |
|                                                                            |                                                                                   |                                                                                                       | MILLAH N                                                                                                                                                                                                                                           | MURRAH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ABIGAIL V                                                                                                                                                                                                                        | V71#                                                                   |                                              |                                                                      |                                                                                              |                                                                                                                                     |                                                                              |
|                                                                            |                                                                                   |                                                                                                       | Mid                                                                                                                                                                                                                                                | August 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 023 Trans                                                                                                                                                                                                                        | Tasman A                                                               | Angus Cat                                    | ttle Evalua                                                          | ation                                                                                        |                                                                                                                                     |                                                                              |
| hereformer legar fathe filolation                                          | CEDir                                                                             | CEDtrs                                                                                                | GL                                                                                                                                                                                                                                                 | BW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 200                                                                                                                                                                                                                              | 400                                                                    | 600                                          | MCW                                                                  | Milk                                                                                         | SS                                                                                                                                  | Doc                                                                          |
| EBV                                                                        | +3.8                                                                              | +2.1                                                                                                  | -3.3                                                                                                                                                                                                                                               | +3.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | +47                                                                                                                                                                                                                              | +84                                                                    | +107                                         | +88                                                                  | +17                                                                                          | +1.6                                                                                                                                | +12                                                                          |
| Acc                                                                        | 51%                                                                               | 41%                                                                                                   | 60%                                                                                                                                                                                                                                                | 70%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 59%                                                                                                                                                                                                                              | 56%                                                                    | 57%                                          | 56%                                                                  | 50%                                                                                          | 53%                                                                                                                                 | 40%                                                                          |
| Perc                                                                       | 41                                                                                | 59                                                                                                    | 73                                                                                                                                                                                                                                                 | 41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 62                                                                                                                                                                                                                               | 69                                                                     | 72                                           | 69                                                                   | 46                                                                                           | 68                                                                                                                                  | 85                                                                           |
| TACE                                                                       | DC                                                                                | CWT                                                                                                   | EMA                                                                                                                                                                                                                                                | Rib                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Rump                                                                                                                                                                                                                             | RBY                                                                    | IMF                                          | NFI-F                                                                | Claw                                                                                         | Angle                                                                                                                               | Leg                                                                          |
| EBV                                                                        | -4.9                                                                              | +59                                                                                                   | +9.2                                                                                                                                                                                                                                               | +1.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | +0.4                                                                                                                                                                                                                             | +1.0                                                                   | +1.1                                         | -0.04                                                                | -                                                                                            | -                                                                                                                                   | -                                                                            |
| Acc                                                                        | 32%                                                                               | 50%                                                                                                   | 50%                                                                                                                                                                                                                                                | 52%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 52%                                                                                                                                                                                                                              | 47%                                                                    | 53%                                          | 43%                                                                  | -                                                                                            | -                                                                                                                                   | -                                                                            |
| Perc                                                                       | 43                                                                                | 72                                                                                                    | 18                                                                                                                                                                                                                                                 | 22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 36                                                                                                                                                                                                                               | 18                                                                     | 77                                           | 23                                                                   | -                                                                                            | -                                                                                                                                   | -                                                                            |
| Lot 24 HARDHAT \$77 <sup>sv</sup> HBR                                      |                                                                                   |                                                                                                       |                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                  |                                                                        |                                              |                                                                      | •                                                                                            | ••••••                                                                                                                              |                                                                              |
|                                                                            | -                                                                                 |                                                                                                       | <b>OR</b> 00/0                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ARDH                                                                                                                                                                                                                             |                                                                        | -                                            |                                                                      |                                                                                              |                                                                                                                                     | HBR                                                                          |
|                                                                            | -                                                                                 | D                                                                                                     | <b>OB:</b> 28/0                                                                                                                                                                                                                                    | 7/2021                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                  | AT S7:<br>Mating                                                       | -                                            |                                                                      |                                                                                              |                                                                                                                                     | HBR                                                                          |
|                                                                            | K21S77                                                                            | D<br>A R MOME                                                                                         | GARPR                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                  |                                                                        | -                                            |                                                                      | Selectio                                                                                     | on Indexes                                                                                                                          |                                                                              |
| dent: Dk                                                                   | G                                                                                 | a r Mome                                                                                              | GARPR<br>ENTUM <sup>₽V</sup><br>GARBIO                                                                                                                                                                                                             | 7/2021<br>OGRESS<br>G EYE 17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | sv                                                                                                                                                                                                                               |                                                                        | -                                            |                                                                      |                                                                                              | on Indexes                                                                                                                          | 3                                                                            |
| dent: Dk                                                                   | G                                                                                 |                                                                                                       | GARPR<br>ENTUM <sup>PV</sup><br>GARBIO                                                                                                                                                                                                             | 7/2021<br>©GRESS<br>G EYE 17<br>M <sup>₽V</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | .sv<br>70 <sup>#</sup>                                                                                                                                                                                                           |                                                                        | -                                            |                                                                      | Selectio                                                                                     |                                                                                                                                     | 3                                                                            |
| dent: Dk                                                                   | G.<br>A <b>186360</b>                                                             | a r Mome                                                                                              | G A R PR<br>ENTUM <sup>PV</sup><br>G A R BIO<br>QUANTU<br>CONNEA                                                                                                                                                                                   | 7/2021<br>OGRESS<br>G EYE 17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | .sv<br>70 <sup>#</sup>                                                                                                                                                                                                           |                                                                        | -                                            | D                                                                    |                                                                                              | on Indexes                                                                                                                          | s<br>RN                                                                      |
| dent: Dk                                                                   | G.<br>A <b>186360</b>                                                             | a r mome<br>59 g a r (                                                                                | G A R PR<br>ENTUM <sup>PV</sup><br>G A R BIO<br>QUANTU<br>CONNEA                                                                                                                                                                                   | 7/2021<br>20GRESS<br>3 EYE 17<br>M <sup>PV</sup><br>LY IN SU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | .sv<br>70 <sup>#</sup><br>RE 8524 <sup>#</sup>                                                                                                                                                                                   |                                                                        | -                                            | D                                                                    | OM                                                                                           | on Indexes                                                                                                                          | s<br>RN                                                                      |
| dent: Dk                                                                   |                                                                                   | a r mome<br>59 <b>g a r (</b><br>a r in su                                                            | G A R PR<br>ENTUM <sup>PV</sup><br>G A R BIO<br>QUANTU<br>CONNEA<br>RE 1524 <sup>#</sup><br>G A R CO<br>RENNYL                                                                                                                                     | 7/2021<br>COGRESS<br>G EYE 17<br>M <sup>PV</sup><br>LY IN SU<br>DMPLETE<br>EA EDMU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | .sv<br>70 <sup>#</sup><br>RE 8524 <sup>#</sup>                                                                                                                                                                                   |                                                                        | -                                            | D                                                                    | OM                                                                                           | on Indexes                                                                                                                          | s<br>RN                                                                      |
| dent: Dk                                                                   |                                                                                   | a r mome<br>59 g a r (                                                                                | G A R PR<br>ENTUM <sup>PV</sup><br>G A R BIO<br>QUANTU<br>CONNEA<br>RE 1524 <sup>#</sup><br>G A R CC<br>RENNYLI<br>KODAK K                                                                                                                         | 7/2021<br>COGRESS<br>EYE 17<br>M <sup>PV</sup><br>LY IN SU<br>DMPLETE<br>EA EDMU<br>522 <sup>SV</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ,sv<br>70 <sup>#</sup><br>RE 8524 <sup>#</sup><br>3011 <sup>#</sup><br>IND E11 <sup>₽V</sup>                                                                                                                                     | Mating 7                                                               | -                                            | D                                                                    | OM                                                                                           | on Indexes                                                                                                                          | s<br>RN                                                                      |
| dent: DK                                                                   |                                                                                   | A R MOME<br>59 <b>G A R (</b><br>A R IN SU<br>ENNYLEA                                                 | G A R PR<br>ENTUM <sup>PV</sup><br>G A R BIO<br>QUANTU<br>CONNEA<br>RE 1524 <sup>#</sup><br>G A R CC<br>RENNYLI<br>KODAK K<br>RENNYLI                                                                                                              | 7/2021<br>COGRESS<br>EYE 17<br>M <sup>PV</sup><br>LY IN SU<br>DMPLETE<br>EA EDMU<br>522 <sup>SV</sup><br>EA EISA E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ,sv<br>70 <sup>#</sup><br>RE 8524 <sup>#</sup><br>3011 <sup>#</sup><br>IND E11 <sup>PV</sup><br>ERICA F81                                                                                                                        | Mating 7                                                               | -                                            | D<br>\$                                                              | 00M<br>171                                                                                   | on Indexes                                                                                                                          | 5<br>RN<br>71                                                                |
| dent: DK<br>Sire: US/                                                      | (K21S77<br>G<br>(A1863605<br>G<br>(RE<br>(KQ58 HA                                 | A R MOME<br>59 G A R (<br>A R IN SU<br>ENNYLEA<br>ARDHAT H                                            | G A R PR<br>ENTUM <sup>₽V</sup><br>G A R BIG<br>CONNEA<br>RE 1524 <sup>#</sup><br>G A R CC<br>RENNYLI<br>KODAK K<br>RENNYLI<br><b>(522 CLE</b><br>RITO 2V <sup>2</sup>                                                                             | 7/2021<br>COGRESS<br>EYE 17<br>M <sup>PV</sup><br>LY IN SU<br>DMPLETE<br>EA EISA E<br>EA EISA E<br>EO D15 C<br>I OF 2536                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ,sv<br>70 <sup>#</sup><br>3011 <sup>#</sup><br>IND E11 <sup>₽V</sup><br>ERICA F81<br><b>58</b> <sup>#</sup><br>5 1407 <sup>#</sup>                                                                                               | Mating 7                                                               | -                                            | D<br>\$<br>Traits Ob                                                 | 00M<br>171<br>perserved<br>Genetic C                                                         | on Indexes<br>GF<br>\$2'<br>: GL,BWT,<br>conditions                                                                                 | 3<br>RN<br>71<br>Genomic                                                     |
| dent: DK<br>Sire: USA                                                      | (K21S77<br>G<br>(A1863605<br>G<br>(RE<br>(KQ58 HA                                 | A R MOME<br>59 <b>G A R (</b><br>A R IN SU<br>ENNYLEA                                                 | G A R PR<br>ENTUM <sup>PV</sup><br>G A R BIO<br>QUANTU<br>CONNEA<br>RE 1524*<br>G A R CO<br>RENNYLI<br>KODAK K<br>RENNYLI<br>K522 CLE<br>RITO 2V'<br>V1 CLEO                                                                                       | 7/2021<br>COGRESS<br>G EYE 17'<br>M <sup>PV</sup><br>LY IN SU<br>DMPLETE<br>EA EDMU<br>522 <sup>SV</sup><br>EA EISA E<br>CO <b>D15</b> C<br>O <b>D15</b> C<br>O <b>D15</b> C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ,sv<br>70 <sup>#</sup><br>3011 <sup>#</sup><br>ND E11 <sup>₽v</sup><br>ERICA F81<br><b>\58</b> <sup>#</sup><br>3 1407 <sup>#</sup><br>;sv                                                                                        | Mating 7                                                               | -                                            | D<br>\$<br>Traits Ob                                                 | 00M<br>171<br>perserved<br>Genetic C                                                         | on Indexes<br>GF<br>\$2<br>: GL,BWT,                                                                                                | 3<br>RN<br>71<br>Genomic                                                     |
| dent: DK<br>Sire: US/<br>Dam: DK                                           | (K21S77<br>G<br>(A1863605<br>G<br>(RE<br>(KQ58 HA                                 | A R MOME<br>59 G A R (<br>A R IN SU<br>ENNYLEA<br>ARDHAT H                                            | G A R PR<br>ENTUM <sup>PV</sup><br>G A R BIO<br>QUANTU<br>CONNEA<br>RE 1524 <sup>#</sup><br>G A R CC<br>RENNYLI<br>KODAK K<br>RENNYLI<br>K522 CLE<br>RITO 2V <sup>7</sup><br>V1 CLEO<br>NOONEE                                                     | 7/2021<br>:OGRESS<br>3 EYE 17'<br>M <sup>PV</sup><br>LY IN SU<br>MPLETE<br>EA EDMU<br>522 <sup>SV</sup><br>EA EISA E<br><b>CO D15</b> C<br><b>CO D15</b> C<br><b>CO D15</b> C<br><b>CO D15</b> C<br><b>CO D15</b> C<br><b>CO D15</b> C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | sv<br>70 <sup>#</sup><br>RE 8524 <sup>#</sup><br>3011 <sup>#</sup><br>IND E11 <sup>p</sup> V<br>ERICA F81<br><b>58</b> <sup>#</sup><br>1407 <sup>#</sup><br>sv<br>165 <sup>#</sup>                                               | Mating <sup>•</sup>                                                    | Type: Al                                     | Traits Ob<br>AM1                                                     | 00M<br>171<br>perserved.<br>Genetic C<br>3%,CAFU                                             | on Indexes<br>GF<br>\$2'<br>: GL,BWT,<br>conditions                                                                                 | 3<br>RN<br>71<br>Genomic                                                     |
| dent: DK<br>Sire: US/<br>Dam: DK                                           | K21S77<br>G<br>A1863605<br>G<br>RE<br>KQ58 H4<br>H/                               | A R MOME<br>59 G A R (<br>A R IN SU<br>ENNYLEA<br>ARDHAT 1<br>ARDHAT 2                                | G A R PR<br>ENTUM <sup>₽V</sup><br>G A R BIG<br>QUANTU<br>CONNEA<br>CONNEA<br>RE 1524 <sup>#</sup><br>G A R CC<br>RENNYLI<br>KODAK K<br>RENNYLI<br>K622 CLE<br>K322 CLE<br>K1TO 2V <sup>7</sup><br>V1 CLEO<br>NOONEE<br>Mid J                      | 7/2021<br>:OGRESS<br>3 EYE 17'<br>M <sup>PV</sup><br>:LY IN SU<br>MPLETE<br>EA EDMU<br>522 <sup>SV</sup><br>EA EISA E<br><b>CO D15</b> C<br><b>CO D15</b> C<br><b>CO D15</b> C<br><b>CO D15</b> C<br><b>CO D15</b> C<br><b>CO LEO U</b><br>:CLEO U<br>August 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | sv<br>70 <sup>#</sup><br>RE 8524 <sup>#</sup><br>3011 <sup>#</sup><br>IND E11 <sup>p</sup> V<br>ERICA F81<br><b>58</b> <sup>#</sup><br>1407 <sup>#</sup><br>sv<br>165 <sup>#</sup><br>223 Trans                                  | Mating 0*                                                              | Type: Al                                     | Traits Ob<br>AM1                                                     | 00M<br>171<br>Genetic C<br>3%, CAFU                                                          | on Indexes<br>GF<br>\$2<br>: GL,BWT,<br>: Conditions<br>; DD25%, N                                                                  | S<br>RN<br>71<br>Genomic<br>:<br>IHFU                                        |
| dent: DK<br>Sire: US/<br>Dam: DK                                           | K21S77<br>G<br>A1863605<br>G<br>RE<br>KQ58 HA<br>H/<br>CEDir                      | A R MOME<br>59 G A R (<br>A R IN SU<br>ENNYLEA<br>ARDHAT I<br>ARDHAT 2<br>CEDtrs                      | G A R PR<br>ENTUM <sup>₽V</sup><br>G A R BIG<br>QUANTU<br>CONNEA<br>CONNEA<br>RE 1524 <sup>#</sup><br>G A R CC<br>RENNYLI<br>KODAK K<br>RENNYLI<br>K622 CLE<br>K322 CLE<br>K1TO 2V'<br>V1 CLEO<br>NOONEE<br>Mid J                                  | 7/2021<br>:OGRESS<br>3 EYE 17'<br>M <sup>PV</sup><br>LY IN SU<br>MPLETE<br>EA EDMU<br>522 <sup>SV</sup><br>EA EISA E<br><b>CO D15</b> C<br><b>CO D15</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                      | SV<br>70 <sup>#</sup><br>RE 8524 <sup>#</sup><br>3011 <sup>#</sup><br>IND E11 <sup>₽V</sup><br>ERICA F81<br><b>58<sup>#</sup></b><br>1407 <sup>#</sup><br>SV<br>165 <sup>#</sup><br>223 Trans<br>200                             | Mating 0<br>0<br>Tasman A<br>400                                       | Type: AI                                     | Traits Ob<br>AM1                                                     | POM<br>171<br>Genetic C<br>3%, CAFU<br>ation                                                 | on Indexes<br>GF<br>\$2<br>: GL,BWT,<br>conditions<br>,DD25%,N<br>SS                                                                | S<br>RN<br>71<br>Genomic<br>:<br>HIFU<br>Doc                                 |
| dent: DK<br>Sire: US/<br>Dam: DK<br>TACE                                   | K21S77<br>G<br>A1863605<br>G<br>RE<br>KQ58 H4<br>H/                               | A R MOME<br>59 G A R (<br>A R IN SU<br>ENNYLEA<br>ARDHAT 1<br>ARDHAT 2                                | G A R PR<br>ENTUM <sup>₽V</sup><br>G A R BIG<br>QUANTU<br>CONNEA<br>CONNEA<br>RE 1524 <sup>#</sup><br>G A R CC<br>RENNYLI<br>KODAK K<br>RENNYLI<br>K622 CLE<br>K322 CLE<br>K1TO 2V <sup>7</sup><br>V1 CLEO<br>NOONEE<br>Mid J                      | 7/2021<br>:OGRESS<br>3 EYE 17'<br>M <sup>PV</sup><br>:LY IN SU<br>MPLETE<br>EA EDMU<br>522 <sup>SV</sup><br>EA EISA E<br><b>CO D15</b> C<br><b>CO D15</b> C<br><b>CO D15</b> C<br><b>CO D15</b> C<br><b>CO D15</b> C<br><b>CO LEO U</b><br>:CLEO U<br>August 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | sv<br>70 <sup>#</sup><br>RE 8524 <sup>#</sup><br>3011 <sup>#</sup><br>IND E11 <sup>p</sup> V<br>ERICA F81<br><b>58</b> <sup>#</sup><br>1407 <sup>#</sup><br>sv<br>165 <sup>#</sup><br>223 Trans                                  | Mating 0*                                                              | Type: Al                                     | Traits Ob<br>AM1                                                     | 00M<br>171<br>Genetic C<br>3%, CAFU                                                          | on Indexes<br>GF<br>\$2<br>: GL,BWT,<br>conditions<br>,DD25%,N<br>SS<br>+3.1                                                        | Genomic<br>:<br>HIFU<br>Doc<br>+17                                           |
| dent: DK<br>Sire: US/<br>Dam: DK                                           | K21S77<br>G<br>A1863605<br>G<br>RE<br>KQ58 HA<br>H/<br>CEDir<br>-1.6              | A R MOME<br>59 G A R (<br>A R IN SU<br>ENNYLEA<br>ARDHAT I<br>ARDHAT 2<br>CEDtrs<br>+0.3              | G A R PR<br>ENTUM <sup>₽V</sup><br>G A R BIG<br>QUANTU<br>CONNEA<br>RE 1524 <sup>#</sup><br>G A R CC<br>RENNYLI<br>KODAK K<br>RENNYLI<br>K622 CLE<br>K622 CLE<br>K622 CLE<br>K1TO 2V'<br>V1 CLEO<br>NOONEE<br>Mid J<br>GL<br>+0.0                  | 7/2021<br>OGRESS<br>3 EYE 17'<br>M <sup>PV</sup><br>LY IN SU<br>MPLETE<br>EA EDMU<br>522 <sup>SV</sup><br>EA EISA E<br><b>CO D15</b> C<br><b>CO D15</b> C<br><b>CO D15</b> C<br><b>CO D15</b> C<br><b>CO D15</b> C<br><b>CO D15</b> C<br><b>SO D15</b> C                                                                                                                                                                                                                                                                                                                                                                                                                                                     | sv<br>70 <sup>#</sup><br>RE 8524 <sup>#</sup><br>3011 <sup>#</sup><br>ND E11 <sup>p</sup> V<br>ERICA F81<br><b>58</b> <sup>#</sup><br>1407 <sup>#</sup><br>sv<br>165 <sup>#</sup><br>223 Trans<br>200<br><b>+57</b>              | Mating<br>0"<br>Tasman A<br>400<br>+99                                 | Angus Cat<br>600<br>+122                     | Traits Ob<br>AM1<br>ttle Evalua<br>MCW<br>+118                       | POM<br>171<br>Genetic C<br>3%, CAFU<br>ation<br>Milk<br>+11                                  | on Indexes<br>GF<br>\$2<br>: GL,BWT,<br>conditions<br>,DD25%,N<br>SS                                                                | S<br>RN<br>71<br>Genomic<br>:<br>HIFU<br>Doc                                 |
| Ident: DK<br>Sire: US/<br>Dam: DK<br>TACE<br>EBV<br>Acc                    | K21S77<br>G<br>A1863605<br>G<br>RE<br>KQ58 HA<br>H/<br>CEDir<br>-1.6<br>57%       | A R MOME<br>59 G A R (<br>A R IN SU<br>ENNYLEA<br>ARDHAT I<br>ARDHAT 2<br>CEDtrs<br>+0.3<br>46%       | G A R PR<br>ENTUM <sup>₽V</sup><br>G A R BIG<br>QUANTU<br>CONNEA<br>RE 1524 <sup>#</sup><br>G A R CC<br>RENNYLI<br>KODAK K<br>RENNYLI<br>KODAK K<br>RENNYLI<br>K622 CLE<br>K322 CLE<br>K1TO 2V'<br>V1 CLEO<br>NOONEE<br>Mid J<br>GL<br>+0.0<br>82% | 7/2021<br>OGRESS<br>3 EYE 17'<br>M <sup>PV</sup><br>LY IN SU<br>MPLETE<br>EA EDMU<br>522 <sup>SV</sup><br>EA EISA E<br><b>CO D15</b> C<br><b>CO D15</b> C<br><b>CO D15</b> C<br><b>CO D15</b> C<br><b>CO D15</b> C<br><b>CO D15</b> C<br><b>O D15</b> C | sv<br>70 <sup>#</sup><br>RE 8524 <sup>#</sup><br>3011 <sup>#</sup><br>ND E11 <sup>p</sup> V<br>ERICA F81<br><b>58</b> <sup>#</sup><br>1407 <sup>#</sup><br>sv<br>165 <sup>#</sup><br>223 Trans<br>200<br><b>+57</b><br>73%       | Mating<br>0"<br>Tasman A<br>400<br>+99<br>71%                          | Angus Cat<br>600<br>+122<br>71%              | Traits Ob<br>AM1<br>ttle Evalua<br>MCW<br>+118<br>69%                | DOM<br>171<br>Derserved<br>Genetic C<br>3%, CAFU<br>ation<br>Milk<br>+11<br>63%              | on Indexes<br>GF<br>\$2'<br>: GL,BWT,<br>conditions<br>,DD25%,N<br>SS<br>+3.1<br>69%                                                | 3<br>RN<br>71<br>Genomic:<br>:<br>HFU<br>Doc<br>+17<br>39%                   |
| Ident: DK<br>Sire: US/<br>Dam: DK<br>TACE<br>EBV<br>Acc<br>Perc            |                                                                                   | A R MOME<br>59 G A R (<br>A R IN SU<br>ENNYLEA<br>ARDHAT 1<br>ARDHAT 2<br>CEDtrs<br>+0.3<br>46%<br>75 | G A R PR<br>ENTUM <sup>™</sup><br>G A R BIG<br>QUANTU<br>CONNEA<br>RE 1524 <sup>#</sup><br>G A R CC<br>RENNYLI<br>KODAK K<br>RENNYLI<br>KODAK K<br>RENNYLI<br>KOZACLE<br>RITO 2V'<br>V1 CLEO<br>NOONEE<br>Mid J<br>GL<br>+0.0<br>82%<br>97         | 7/2021<br>OGRESS<br>3 EYE 17'<br>M <sup>PV</sup><br>LY IN SU<br>DMPLETE<br>EA EDMU<br>522 <sup>SV</sup><br>EA EISA E<br><b>O D15</b> Q<br><b>0 D15</b> Q<br><b>1</b> (F 253)<br>U165 D15<br>CLEO U<br>August 20<br><u>BW</u><br>+5.9<br>73%<br>85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | sv<br>70 <sup>#</sup><br>RE 8524 <sup>#</sup><br>3011 <sup>#</sup><br>ND E11 <sup>p</sup> V<br>ERICA F81<br><b>58</b> <sup>#</sup><br>1407 <sup>#</sup><br>sv<br>165 <sup>#</sup><br>223 Trans<br>200<br><b>+57</b><br>73%<br>19 | Mating<br>0"<br>Tasman A<br>400<br>+99<br>71%<br>25                    | Angus Cat<br>600<br>+122<br>71%<br>39        | Traits Ob<br>AM1<br>ttle Evalua<br>MCW<br>+118<br>69%<br>22          | POM<br>171<br>Genetic C<br>3%, CAFU<br>ation<br>Milk<br>+11<br>63%<br>91                     | on Indexes<br>GF<br>\$2'<br>: GL,BWT,<br>conditions<br>,DD25%,N<br>SS<br>+3.1<br>69%<br>16                                          | 3<br>RN<br>71<br>Genomic:<br>:<br>HFU<br>Doc<br>+17<br>39%<br>65             |
| Ident: DK<br>Sire: US/<br>Dam: DK<br>TACE<br>EBV<br>Acc<br>Perc<br>TACE    | K21S77<br>G<br>A1863605<br>G<br>KQ58 HA<br>H/<br>CEDir<br>-1.6<br>57%<br>81<br>DC | A R MOME<br>59 G A R (<br>A R IN SU<br>ENNYLEA<br>ARDHAT 2<br>CEDtrs<br>+0.3<br>46%<br>75<br>CWT      | G A R PR<br>ENTUM <sup>₽V</sup><br>G A R BIC<br>QUANTU<br>CONNEA<br>RE 1524 <sup>#</sup><br>G A R CC<br>RENNYLL<br>KODAK K<br>RENNYLL<br>K522 CLE<br>RITO 2V'<br>V1 CLEO<br>NOONEE<br>Mid J<br>GL<br>+0.0<br>82%<br>97<br>EMA                      | 7/2021<br>OGRESS<br>G EYE 17'<br>M <sup>PV</sup><br>LLY IN SU<br>DMPLETE<br>EA EDMU<br>522 <sup>SV</sup><br>EA EISA E<br>CO D15 C<br>O D15 C<br>CO D15 C<br>C<br>CO D15 C<br>C<br>C<br>CO D15 C<br>C<br>C<br>CO D15 C<br>C<br>C<br>CO C<br>C<br>C<br>CO C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | sv<br>70 <sup>#</sup><br>RE 8524 <sup>#</sup><br>ND E11 <sup>₽V</sup><br>RICA F81<br><b>58</b> <sup>#</sup><br>1407 <sup>#</sup><br>Sv<br>165 <sup>#</sup><br>223 Trans<br>200<br><b>+57</b><br>73%<br>19<br>Rump                | Mating<br>0 <sup>#</sup><br>Tasman A<br>400<br>+99<br>71%<br>25<br>RBY | Angus Cat<br>600<br>+122<br>71%<br>39<br>IMF | Traits Ob<br>AM1<br>ttle Evalua<br>MCW<br>+118<br>69%<br>22<br>NFI-F | ation<br>Milk<br>4171<br>Agenetic C<br>3%, CAFU<br>ation<br>Milk<br>+11<br>63%<br>91<br>Claw | on Indexes<br>GF<br>\$2'<br>: <i>GL,BWT</i> ,<br><b>Conditions</b><br>( <i>DD25%</i> , N<br>SS<br><b>+3.1</b><br>69%<br>16<br>Angle | 3<br>RN<br>71<br>Genomic:<br>:<br>:<br>HFU<br>Doc<br>+17<br>39%<br>65<br>Leg |

Comments: S77 is a soft, thick, high growth son of GAR Quantum. His carcase and structural data is very positive.

Purchaser:..... \$:....



| Lot 25           | HA              | RDHAT S5    |
|------------------|-----------------|-------------|
| Ident: DKK21S136 | DOB: 05/09/2021 | Mating Type |

G A R PROGRESS<sup>SV</sup> GAR MOMENTUMPV

GAR Big Eye 1770#

Sire: G A R QUANTUMPV CONNEALY IN SURE 8524# GAR IN SURE 1524#

G A R COMPLETE 3011#

RENNYLEA EDMUND E11PV **RENNYLEA KODAK K522<sup>sv</sup>** 

**RENNYLEA EISA ERICA F810<sup>#</sup>** 

Dam: HARDHAT K522 BARUNAH E8 Q57# ARDROSSAN DIRECTION A50<sup>sv</sup> HARDHAT A50 BARUNAH Y10 E8#

DOB: 05/09/2021

**RENNYLEA KODAK K522<sup>sv</sup>** 

HARDHAT J81 ANNIE G158 M6#

SINCLAIR GRASS MASTER#

Dam: DKKJ19 HARDHAT GM FLEUR Z3 J19#

CLARK'S FLEUR Z3#

Sire: DKKQ5 HARDHAT KODAK Q5<sup>sv</sup>

**RENNYLEA EDMUND E11PV** 

KANSAS EVIDENTLY J81sv

N BAR PRIMROSE Y3051#

B T ULTRAVOX 297E#

CLARK'S FLEUR W1#

KANSAS ANNIE G158sv BT RIGHT TIME 24J#

**RENNYLEA EISA ERICA F810<sup>#</sup>** 

WAITARA LD BARUNAH Y010 Y10#

#### Mating Type: Natural

| Selection Indexes |       |  |  |  |  |  |
|-------------------|-------|--|--|--|--|--|
| DOM               | GRN   |  |  |  |  |  |
| \$173             | \$282 |  |  |  |  |  |

Traits Oberserved: BWT. Genomics Genetic Conditions: AMFU, CAFU, DDFU, NHFU

| TACE                              |       | Mid August 2023 TransTasman Angus Cattle Evaluation |       |      |      |      |      |       |       |       |       |
|-----------------------------------|-------|-----------------------------------------------------|-------|------|------|------|------|-------|-------|-------|-------|
| herdinene legat Getta Galactice ; | CEDir | CEDtrs                                              | GL    | BW   | 200  | 400  | 600  | MCW   | Milk  | SS    | Doc   |
| EBV                               | +2.0  | +1.8                                                | -6.0  | +4.3 | +49  | +86  | +100 | +77   | +14   | +3.6  | +20   |
| Acc                               | 57%   | 46%                                                 | 81%   | 72%  | 72%  | 70%  | 70%  | 68%   | 62%   | 67%   | 38%   |
| Perc                              | 57    | 62                                                  | 30    | 55   | 52   | 64   | 82   | 84    | 74    | 8     | 50    |
| TACE                              | DC    | CWT                                                 | EMA   | Rib  | Rump | RBY  | IMF  | NFI-F | Claw  | Angle | Leg   |
| EBV                               | -3.3  | +49                                                 | +12.5 | +1.8 | +1.5 | +0.5 | +2.3 | +0.48 | +0.98 | +1.14 | +0.98 |
| Acc                               | 38%   | 62%                                                 | 62%   | 62%  | 62%  | 56%  | 65%  | 51%   | 69%   | 69%   | 60%   |
| Perc                              | 91    | 4                                                   | 14    | 19   | 46   | 43   | 84   | 76    | 84    | 32    | 45    |

Comments: S53 is an elite EYE MUSCLE bull with marbling and fertilty. GAR Quantum has bred very well at Hardhat.

Purchaser:.... \$:....

Lot 26

Ident: DKK21S136

HARDHAT S136<sup>sv</sup>

Mating Type: Natural

Selection Indexes DOM GRN \$106 \$188

HBR

Traits Oberserved: BWT. Genomics Genetic Conditions: AMFU.CAFU.DDFU.NHFU

\$:....

| TACE                              |       | Mid August 2023 TransTasman Angus Cattle Evaluation |      |      |      |      |      |       |       |       |       |
|-----------------------------------|-------|-----------------------------------------------------|------|------|------|------|------|-------|-------|-------|-------|
| Torelariar legal (atta liaitariar | CEDir | CEDtrs                                              | GL   | BW   | 200  | 400  | 600  | MCW   | Milk  | SS    | Doc   |
| EBV                               | -1.0  | -1.4                                                | -3.4 | +4.4 | +50  | +83  | +110 | +116  | +16   | +2.0  | +11   |
| Acc                               | 54%   | 44%                                                 | 69%  | 69%  | 69%  | 67%  | 68%  | 65%   | 57%   | 62%   | 37%   |
| Perc                              | 77    | 85                                                  | 72   | 58   | 49   | 70   | 65   | 25    | 55    | 52    | 89    |
| TACE                              | DC    | CWT                                                 | EMA  | Rib  | Rump | RBY  | IMF  | NFI-F | Claw  | Angle | Leg   |
| EBV                               | -4.3  | +59                                                 | +1.1 | +1.8 | +1.0 | -0.7 | +1.7 | -0.27 | +0.80 | +1.08 | +1.02 |
| Acc                               | 35%   | 58%                                                 | 57%  | 59%  | 59%  | 53%  | 62%  | 49%   | 65%   | 64%   | 61%   |
| Perc                              | 61    | 72                                                  | 96   | 14   | 26   | 96   | 61   | 7     | 40    | 75    | 45    |

Comments: S136 is a HIGH FEED EFFICIENCY bull in the top 7% of the breed. His Sinclair Grass Master dam is a time tested consistent producer like all the Sinclair Grass Master cows.

Purchaser:....



#### HARDHAT S133"

| EA KODAK K522 <sup>sv</sup>                         | ID E11 <sup>PV</sup>                                                                                                                                                                                      | Selection                                                                                                        |
|-----------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|
|                                                     |                                                                                                                                                                                                           | DOM                                                                                                              |
| AYRVALE BARTEL E<br>T E7 ANNIE K44 M33 <sup>#</sup> | ∃7 <sup>₽V</sup>                                                                                                                                                                                          | \$182                                                                                                            |
|                                                     |                                                                                                                                                                                                           |                                                                                                                  |
| LAWSONS AFRICA                                      | H229 <sup>sv</sup>                                                                                                                                                                                        | Traits Obers                                                                                                     |
|                                                     | EA KODAK K522 <sup>SV</sup><br>RENNYLEA EISA EF<br>AT K522 KODAK M33<br>AYRVALE BARTEL I<br>T E7 ANNIE K44 M33*<br>HARDHAT XXP ANN<br>G A R MOMENTUM'<br>IS MOMENTOUS M518 <sup>P</sup><br>LAWSONS AFRICA | RENNYLEA EISA ERICA F810 <sup>#</sup><br>AT K522 KODAK M33 Q110 <sup>sv</sup><br>AYRVALE BARTEL E7 <sup>PV</sup> |

Dam: DKKQ22 HARDHAT M518 ANNIE G158 Q22 SITZ UPWARD 307Rsv

KANSAS ANNIE G158sv

KANSAS ANNIE X164#

| Selection Indexes |       |  |  |  |  |  |
|-------------------|-------|--|--|--|--|--|
| DOM               | GRN   |  |  |  |  |  |
| \$182             | \$292 |  |  |  |  |  |

its Oberserved: BWT Genetic Conditions: AMFU, CAFU, DDFU, NHFU

| TACE                                |       | Mid August 2023 TransTasman Angus Cattle Evaluation |      |      |      |      |      |       |      |       |     |
|-------------------------------------|-------|-----------------------------------------------------|------|------|------|------|------|-------|------|-------|-----|
| , heerlaurner legus Latie Lusiustee | CEDir | CEDtrs                                              | GL   | BW   | 200  | 400  | 600  | MCW   | Milk | SS    | Doc |
| EBV                                 | +5.7  | +6.8                                                | -8.8 | +2.6 | +48  | +89  | +112 | +92   | +18  | +2.5  | +18 |
| Acc                                 | 52%   | 43%                                                 | 65%  | 69%  | 63%  | 59%  | 59%  | 58%   | 51%  | 56%   | 50% |
| Perc                                | 25    | 13                                                  | 5    | 20   | 61   | 54   | 60   | 63    | 43   | 33    | 56  |
| TACE                                | DC    | CWT                                                 | EMA  | Rib  | Rump | RBY  | IMF  | NFI-F | Claw | Angle | Leg |
| EBV                                 | -4.8  | +54                                                 | +8.7 | -0.6 | -1.5 | +0.5 | +3.5 | +0.36 | -    | -     | -   |
| Acc                                 | 35%   | 53%                                                 | 52%  | 54%  | 54%  | 49%  | 56%  | 46%   | -    | -     | -   |
| Perc                                | 46    | 82                                                  | 22   | 62   | 71   | 46   | 17   | 73    | -    | -     | -   |

Comments: S133 is a smooth shouldered CALVING EASE son of Hardhat Kodak Q110. His balanced carcase data is balanced with HIGH MARBLING and EYE MUSCLE. Descending from our Kansas Annie G158 donor cow.

Purchaser:.....

\$:....

| Lot 2                             | 8                                                                                                                                                                                                                                                                                                                                              |         | HARDHAT S85' HBR |                   |           |          |           |             |           |                                     |     |
|-----------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|------------------|-------------------|-----------|----------|-----------|-------------|-----------|-------------------------------------|-----|
| Ident: Dk                         | K21S85                                                                                                                                                                                                                                                                                                                                         | D       | <b>OB:</b> 29/0  | 7/2021            |           | Mating   | Type: Al  |             |           |                                     |     |
|                                   | G                                                                                                                                                                                                                                                                                                                                              | A R MOM |                  | Selection Indexes |           |          |           |             |           |                                     |     |
| Sira: LIS                         | G A R BIG EYE 1770 <sup>#</sup><br>Sire: USA18636059 G A R QUANTUM <sup>₽V</sup>                                                                                                                                                                                                                                                               |         |                  |                   |           |          |           |             | MO        | GF                                  | RN  |
| Sile. 00/                         | G A R IN SURE 1524"<br>G A R IN SURE 1524"<br>G A R COMPLETE 3011"                                                                                                                                                                                                                                                                             |         |                  |                   |           |          |           |             | 162       | \$2                                 | 62  |
| Dam: DK                           | G A R COMPLETE 3011 <sup>#</sup><br>RENNYLEA KODAK K522 <sup>SV</sup><br>HARDHAT K522 NIKON F113 N87 <sup>PV</sup><br>KANSAS ANNIE F113 <sup>SV</sup><br>Dam: DKKQ125 HARDHAT N87 ANNIE N7 Q125 <sup>#</sup><br>HARDHAT XXP KOMATSU X28 K40 <sup>SV</sup><br>HARDHAT K40 ANNIE J541 N7 <sup>#</sup><br>HARDHAT GM ANNIE Y21 J541 <sup>PV</sup> |         |                  |                   |           |          |           |             | Genetic C | rved: GL,I<br>onditions<br>,DDFU,NH | :   |
| TACE                              |                                                                                                                                                                                                                                                                                                                                                |         | Mid              | August 20         | 023 Trans | Tasman A | Angus Cat | ttle Evalua | ation     |                                     |     |
| Terreformer legan Gatte Guitantee | CEDir                                                                                                                                                                                                                                                                                                                                          | CEDtrs  | GL               | BW                | 200       | 400      | 600       | MCW         | Milk      | SS                                  | Doc |
| EBV                               | -5.6                                                                                                                                                                                                                                                                                                                                           | -4.4    | -0.6             | +6.7              | +62       | +108     | +137      | +125        | +18       | +2.7                                | +15 |
| Acc                               | 52%                                                                                                                                                                                                                                                                                                                                            | 40%     | 82%              | 72%               | 63%       | 61%      | 61%       | 59%         | 53%       | 59%                                 | 33% |

86 Comments: S85 is an elite GROWTH bull ranking highly for all growth traits as well as carcase weight, eye muscle and yield.

7

Rump

-2.6

55%

10

RBY

+1.1

50%

14

14

IMF

+1.5

57%

67

15

NFI-F

+0.01

43%

28

45

Claw

-

26

Angle

-

72

Leg

-

Purchaser:.... \$:....

HARDHAT

Perc

TACE PON

EBV

Acc

Perc

93

DC

-3.1

33%

87

95

CWT

+78

55%

17

96

EMA

+10.8

54%

9

93

Rib

-1.7

56%

84



| Ident: DKK21S21  | DOB: 07/09/2021                     | Mating Type: Al            |
|------------------|-------------------------------------|----------------------------|
|                  | BOOROOMOOKA UND                     | ERTAKEN Y145 <sup>PV</sup> |
| RE               | NNYLEA EDMUND E11PV                 |                            |
|                  | LAWSONS HENRY VIII                  | Y5 <sup>sv</sup>           |
| Sire: NORK522 RE | ENNYLEA KODAK K522 <sup>sv</sup>    |                            |
|                  | TE MANIA BERKLEY B                  | 1 <sup>PV</sup>            |
| RE               | NNYLEA EISA ERICA F810 <sup>#</sup> |                            |
|                  | RENNYLEA EISA ERIC                  | A C299 <sup>PV</sup>       |
|                  | SAV RENOWN 3439PV                   | ,                          |
| HA               | RDHAT RENOWN F143 N21 <sup>PV</sup> |                            |
|                  | KANSAS ANNIE F143 <sup>SV</sup>     | /                          |
| Dam: DKKQ63 HA   | RDHAT N21 HEATHER L40 Q6            | 53 <sup>#</sup> 7          |
|                  | CHERYLTON STEWIE                    |                            |
| HA               | RDHAT D19 HEATHER E26 L40#          | Al                         |
|                  | HARDHAT B219 HEATH                  | HER E26 <sup>#</sup>       |

| Selectio | n Indexes |
|----------|-----------|
| DOM      | GRN       |
| -        | -         |

Traits Oberserved: None Genetic Conditions: AMFU,CAFU,DDFU,NH6%

|                                        |       |        | Mid | August 20 | )23 Trans | Tasman A | Angus Cat | ttle Evalua | ation |       |     |
|----------------------------------------|-------|--------|-----|-----------|-----------|----------|-----------|-------------|-------|-------|-----|
| Translatione, Angest Cartin Evoluation | CEDir | CEDtrs | GL  | BW        | 200       | 400      | 600       | MCW         | Milk  | SS    | Doc |
| EBV                                    | -     | -      | -   | -         | -         | -        | -         | -           | -     | -     | -   |
| Acc                                    | -     | -      | -   | -         | -         | -        | -         | -           | -     | -     | -   |
| Perc                                   | -     | -      | -   | -         | -         | -        | -         | -           | -     | -     | -   |
|                                        | DC    | CWT    | EMA | Rib       | Rump      | RBY      | IMF       | NFI-F       | Claw  | Angle | Leg |
| EBV                                    | -     | -      | -   | -         | -         | -        | -         | -           | -     | -     | -   |
| Acc                                    | -     | -      | -   | -         | -         | -        | -         | -           | -     | -     | -   |
| Perc                                   | -     | -      | -   | -         | -         | -        | -         | -           | -     | -     | -   |

Comments: S21 is a moderate, correct Rennylea Kodak son from the SAV Renown grand daughter. Please see updated EBV's on supplementary sheet.











|         |        |         |      |      |     |     |        |      |      | 8      | REED     | AVER | AGE E | EBVs    |      |      |      |       |     |       |          |       |                                                                                                   |         |
|---------|--------|---------|------|------|-----|-----|--------|------|------|--------|----------|------|-------|---------|------|------|------|-------|-----|-------|----------|-------|---------------------------------------------------------------------------------------------------|---------|
|         | Calvin | ig Ease | Bir  | th   |     | ľ   | Growth |      |      | Fertil | ity      |      |       | Carcase | se   |      |      | Other | r.  | S     | tructure |       | Selection                                                                                         | Indexes |
|         | CEDIr  | CEDtrs  | GL   | BW   | 200 | 400 | 600    | MCW  | Milk | SS     | DTC      | CWT  | EMA   | RIB     | P8   | RBY  | IMF  | NFI-F | DOC | Claw  | Angle    | Leg   | EDir CEDirs GL BW 200 400 600 MCW Maik SS DTC CWT EMA R18 P8 RBY MMF NF1-F DOC Claw Angle Leg \$A | \$A-L   |
| Brd Avg | +2.2   | +2.6    | -4.8 | +4.0 | +50 | +90 | +117   | +100 | +17  | +2.1   | -4.7 +66 |      | +6.3  | +0.0    | -0.3 | +0.5 | +2.2 | +0.19 | +20 | +0.84 | +0.97    | +1.03 | +197                                                                                              | +339    |

· Breed average represents the average EBV of all 2021 drop Australian Angus and Angus-influenced seedstock animals analysed in the Mid August 2023 TransTasman Angus Cattle Evaluation .

|                        |                   |          |                                  |       | _       | _     | _     | _     | _     | _     | _     |       |       |       |       |       | _     |       | _     | _     | _     | _     | _     |       |                                  |
|------------------------|-------------------|----------|----------------------------------|-------|---------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|----------------------------------|
|                        | Selection Indexes | \$A-L    | Greater<br>Profitability         | +449  | +419    | +403  | +392  | +383  | +376  | +369  | +363  | +357  | +350  | +344  | +338  | +331  | +324  | +316  | +308  | +297  | +285  | +267  | +239  | +186  | Profitability                    |
|                        | Selection         | ŝA       | Greater<br>Profitability         | +273  | +253    | +241  | +234  | +228  | +222  | +218  | +213  | +209  | +204  | +200  | +195  | +191  | +186  | +181  | +175  | +167  | +159  | +147  | +129  | +95   | Profitability                    |
|                        | re                | Gen      | Score<br>Lower                   | +0.74 | +0.84   | +0.88 | +0.90 | +0.92 | +0.94 | +0.96 | +0.98 | +1.00 | +1.02 | +1.02 | +1.04 | +1.06 | +1.08 | +1.08 | +1.10 | +1.12 | +1.16 | +1.18 | +1.24 | +1.32 | Score<br>Score                   |
|                        | Structure         | Angle    | Score<br>Lower                   | +0.60 | +0.70   | +0.76 | +0.80 | +0.84 | +0.86 | +0.88 | +0.90 | +0.92 | +0.94 | +0.96 | +0.98 | +1.00 | +1.02 | +1.04 | +1.08 | +1.10 | +1.14 | +1.18 | +1.26 | +1.40 | Higher<br>Score                  |
|                        |                   | Claw     | Score<br>Lower                   | +0.42 | +0.54   | +0.60 | +0.66 | +0.68 | +0.72 | +0.74 | +0.76 | +0.80 | +0.82 | +0.84 | +0.86 | +0.88 | +0.90 | +0.94 | +0.96 | +1.00 | +1.04 | +1.08 | +1.16 | +1.30 | Score<br>Score                   |
|                        | Other             | DOC      | More                             | +43   | +36     | +32   | +29   | +27   | +25   | +24   | +23   | +21   | +20   | +19   | +19   | +18   | +17   | +16   | +15   | +14   | +12   | +10   | L+    | 0+    | Docile                           |
|                        | Of                | NFI-F    | Efficiency<br>Feed<br>Creater    | -0.54 | -0.32   | -0.20 | -0.13 | -0.07 | -0.02 | +0.03 | +0.07 | +0.10 | +0.14 | +0.18 | +0.22 | +0.25 | +0.29 | +0.34 | +0.38 | +0.44 | +0.50 | +0.58 | +0.71 | +0.96 | Efficiency<br>Feed<br>Efficiency |
|                        |                   | IMF      | IWE<br>Worg                      | +5.9  | +4.6    | +4.0  | +3.6  | +3.3  | +3.1  | +2.9  | +2.6  | +2.5  | +2.3  | +2.1  | +1.9  | +1.8  | +1.6  | +1.4  | +1.2  | +1.0  | +0.8  | +0.5  | +0.0  | -0.8  | IWL<br>Fezz                      |
|                        |                   | RBY      | Higher<br>Yield                  | +2.0  | +1.5    | +1.3  | +1.1  | +1.0  | +0.9  | +0.8  | +0.7  | +0.6  | +0.6  | +0.5  | +0.4  | +0.3  | +0.3  | +0.2  | +0.1  | +0.0+ | -0.2  | -0.3  | -0.6  | -1.1  | Lower<br>Yield                   |
| ГE                     | Carcase           | Ъ        | More                             | +5.1  | +3.4    | +2.5  | +1.9  | +1.5  | ť-    | +0.8  | +0.5  | +0.2  | 0.0+  | -0.3  | -0.6  | -0.9  | 1.1.  | -1.4  | -1.7  | -2.1  | -2.5  | -3.1  | -3.9  | -5.7  | Less<br>Fat                      |
| S TABI                 | Car               | RIB      | More                             | +4.3  | +2.9    | +2.2  | +1.7  | +1.4  | +1.1  | +0.8  | +0.6  | +0.4  | +0.2  | -0.1  | -0.3  | -0.5  | -0.7  | -0.9  | -1.2  | -1.4  | -1.8  | -2.2  | -2.8  | -4.2  | Less<br>Fat                      |
| 3AND                   |                   | EMA      | Larger<br>AM3                    | +14.6 | +11.9   | +10.6 | +9.7  | +9.0  | +8.4  | +7.9  | +7.4  | +7.0  | +6.6  | +6.2  | +5.8  | +5.4  | +5.0  | +4.6  | +4.2  | +3.7  | +3.1  | +2.3  | +1.2  | -1.2  | Smaller<br>AM3                   |
| PERCENTILE BANDS TABLE |                   | CWT      | Heavier<br>Carcase<br>Weight     | +99   | +88     | +83   | +79   | +77   | +75   | +73   | +71   | +69   | +68   | +66   | +64   | +63   | +61   | +59   | +57   | +55   | +53   | +49   | +44   | +34   | Lighter<br>Carcase<br>Weight     |
| ERCEN                  | Fertility         | DIC      | Shorter<br>Time to<br>Calving    | -8.0  | -7.1    | -6.5  | -6.2  | -5.9  | -5.6  | -5.4  | -5.2  | -5.1  | -4.9  | -4.7  | -4.5  | -4.4  | -4.2  | -4.0  | -3.8  | -3.5  | -3.2  | -2.8  | -2.1  | -0.3  | Longer<br>Time to<br>Calving     |
| Ы                      | Fei               | SS       | Size<br>Scrotal<br>Larger        | +4.8  | +3.9    | +3.5  | +3.2  | +3.0  | +2.8  | +2.6  | +2.5  | +2.3  | +2.2  | +2.1  | +2.0  | +1.8  | +1.7  | +1.6  | +1.4  | +1.3  | +1.1  | +0.8  | +0.4  | -0.4  | Smaller<br>Scrotal<br>Size       |
|                        |                   | Milk     | Weight<br>Live<br>Uive<br>Weight | +28   | +25     | +23   | +22   | +21   | +20   | +19   | +19   | +18   | +18   | +17   | +16   | +16   | +15   | +15   | +14   | +13   | +12   | ŧ     | 6+    | 9+    | Weight<br>Live<br>Live<br>Veight |
|                        | 4                 | MCW      | Heavier<br>Mature                | +160  | +141    | +131  | +124  | +119  | +115  | +112  | +109  | +106  | +103  | +100  | +97   | +94   | +91   | +88   | +84   | +80   | +75   | +69   | +60   | +40   | Lighter<br>Lighter               |
|                        | Growth            | 600      | Meight<br>Live<br>Weight         | +162  | +148    | +140  | +136  | +132  | +129  | +126  | +124  | +121  | +119  | +117  | +115  | +112  | +110  | +107  | +105  | +101  | +98   | +93   | +85   | +70   | Lighter<br>Live<br>Ueight        |
|                        |                   | 400      | Heavier<br>Live<br>Meight        | +123  | +112    | +107  | +104  | +101  | 66+   | +97   | +95   | +93   | +92   | +90   | +88   | +87   | +85   | +83   | +81   | +79   | +76   | +73   | +68   | +56   | Lighter Live<br>Veight<br>Weight |
|                        |                   | 200      | Heavier<br>Live<br>Weight        | +70   | +64     | +60   | +58   | +57   | +55   | +54   | +53   | +52   | +51   | +50   | +49   | +48   | +47   | +46   | +44   | +43   | +41   | +39   | +36   | +28   | Live<br>Live<br>Meight           |
|                        | Birth             | BW       | Lighter<br>Birth<br>Weight       | -0.4  | +1.0    | +1.7  | +2.2  | +2.6  | +2.9  | +3.1  | +3.4  | +3.6  | +3.8  | +4.0  | +4.3  | +4.5  | +4.7  | +4.9  | +5.2  | +5.5  | +5.9  | +6.3  | +7.0  | +8.5  | Heavier<br>Birth<br>Weight       |
|                        |                   | t GL     | Cestation<br>Shorter             | -10.7 | -8<br>9 | -7.9  | -7.2  | -6.8  | -6.3  | -6.0  | -5.7  | -5.4  | -5.1  | -4.7  | -4.5  | -4.2  | -3.8  | -3.5  | -3.2  | -2.8  | -2.3  | -1.6  | -0.7  | +1.4  | Length<br>Length<br>Longer       |
|                        | Calving Ease      | r CEDtrs | Calving<br>Calving<br>Difficulty | +9.9  | +8.2    | +7.2  | +6.5  | +5.9  | +5.3  | +4.8  | +4.4  | +3.9  | +3.4  | +3.0  | +2.5  | +2.0  | +1.5  | +0.9  | +0.3  | -0.4  | -1.4  | -2.5  | -4.4  | -8.5  | Calving<br>Calving<br>Difficulty |
|                        |                   | CEDir    | Less<br>Calving<br>Difficulty    | +10.9 | +9.0    | +7.9  | +7.0  | +6.3  | +5.7  | +5.1  | +4.5  | +4.0  | +3.4  | +2.8  | +2.2  | +1.6  | +1.0  | +0.2  | -0.6  | -1.5  | -2.7  | -4.3  | -6.9  | -12.6 | More<br>Calving<br>Difficulty    |
|                        | 0/ Dand           | 76 Dano  |                                  | 1%    | 5%      | 10%   | 15%   | 20%   | 25%   | 30%   | 35%   | 40%   | 45%   | 50%   | 55%   | 60%   | 65%   | 70%   | 75%   | 80%   | 85%   | %06   | 95%   | %66   |                                  |

The percentile bands represent the distribution of EBVs across the 2021 drop Australian Angus and Angus-influenced seedstock animals analysed in the Mid August 2023 TransTasman Angus Cattle Evaluation

Annual Bull Sale Thursday 14th September 2023 - 1pm

TransTasman Angus Cattle Evaluation - Mid August 2023 Reference Tables



| svs                | SD-L SGN-L SGS-L SPRO ST | +293 +405 +380 +145 +181 |
|--------------------|--------------------------|--------------------------|
| BREED AVERAGE EBVS | \$GN \$GS \$A-L          | +259 +181 +339           |
|                    | \$A \$D                  | +197 +163                |
|                    |                          | Brd Avg                  |


\* Breed average represents the average EBV of all 2021 drop Australian Angus and Angus-influenced seedstock animals analysed in the Mid August 2023 TransTasman Angus Cattle Evaluation .

|        |                          |                          |                          | PERCENT                  | PERCENTILE BANDS TABLE   | TABLE                    |                          |                          |                            |                          |
|--------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|----------------------------|--------------------------|
| % Band | ŝA                       | \$D                      | SGN                      | \$GS                     | SA-L                     | \$D-L                    | \$GN-L                   | \$6S-L                   | \$PRO                      | ŝT                       |
|        | Greater<br>Profitability   | Greater<br>Profitability |
| 1%     | +273                     | +230                     | +363                     | +261                     | +449                     | +391                     | +539                     | +512                     | +228                       | +235                     |
| 5%     | +253                     | +211                     | +335                     | +239                     | +419                     | +364                     | +503                     | +475                     | +205                       | +221                     |
| 10%    | +241                     | +201                     | +319                     | +227                     | +403                     | +350                     | +484                     | +455                     | +193                       | +213                     |
| 15%    | +234                     | +194                     | +309                     | +219                     | +392                     | +340                     | +470                     | +443                     | +185                       | +207                     |
| 20%    | +228                     | +189                     | +300                     | +212                     | +383                     | +332                     | +459                     | +432                     | +178                       | +203                     |
| 25%    | +222                     | +184                     | +293                     | +207                     | +376                     | +325                     | +450                     | +423                     | +172                       | +199                     |
| 30%    | +218                     | +180                     | +286                     | +202                     | +369                     | +319                     | +442                     | +415                     | +167                       | +195                     |
| 35%    | +213                     | +176                     | +280                     | +197                     | +363                     | +314                     | +434                     | +407                     | +162                       | +192                     |
| 40%    | +209                     | +173                     | +274                     | +192                     | +357                     | +308                     | +426                     | +400                     | +157                       | +189                     |
| 45%    | +204                     | +169                     | +268                     | +188                     | +350                     | +303                     | +418                     | +393                     | +153                       | +186                     |
| 50%    | +200                     | +165                     | +262                     | +183                     | +344                     | +297                     | +411                     | +386                     | +148                       | +183                     |
| 55%    | +195                     | +161                     | +256                     | +179                     | +338                     | +292                     | +403                     | +378                     | +143                       | +180                     |
| 60%    | +191                     | +157                     | +250                     | +174                     | +331                     | +286                     | +395                     | +371                     | +138                       | +176                     |
| 65%    | +186                     | +153                     | +244                     | +169                     | +324                     | +280                     | +386                     | +362                     | +133                       | +173                     |
| 70%    | +181                     | +149                     | +236                     | +164                     | +316                     | +273                     | +377                     | +353                     | +127                       | +169                     |
| 75%    | +175                     | +144                     | +228                     | +158                     | +308                     | +265                     | +366                     | +343                     | +121                       | +165                     |
| 80%    | +167                     | +138                     | +219                     | +151                     | +297                     | +256                     | +353                     | +332                     | +114                       | +160                     |
| 85%    | +159                     | +130                     | +208                     | +142                     | +285                     | +245                     | +337                     | +317                     | +105                       | +154                     |
| 80%    | +147                     | +121                     | +193                     | +131                     | +267                     | +230                     | +316                     | +297                     | +92                        | +145                     |
| 95%    | +129                     | +106                     | +171                     | +113                     | +239                     | +206                     | +283                     | +264                     | +73                        | +133                     |
| 866    | +95                      | +77                      | +129                     | +81                      | +186                     | +160                     | +223                     | +200                     | +38                        | +110                     |
|        | Profitability            | Lower<br>Profitability   | Рголтарііцу<br>Рголтарііцу | Lower<br>Profitability   |



















Harden Showground Cattle Shed





 $\begin{array}{c} \text{M}_{\text{WHERE}} \begin{array}{c} Cows \text{ that } \textbf{LAST} \\ \text{Breed} \begin{array}{c} \mathcal{Bulls} \text{ that } \textbf{LAST} \end{array} \end{array}$