

Wednesday 2nd March 2022

CENTRAL VICTORIA LIVESTOCK EXCHANGE (CVLX) BALLARAT 10:30am

CONTACI' US

NOTLES

www.langikalkalangus.vic.gov.au
langikalkalangus@justice.vic.gov.au

Farm Manager:
Kahn Jantzen 0418847637

CENTRAL VICTORIA LIVESTOCK EXCHANGE (CVLX) BALLARAT
139 Sunraysia Hwy, Miners Rest VIC 3352

NOTIES

\qquad

Dear Valued Customer,

Welcome to our annual bull sale, being held at Central Victoria Livestock Exchange (CVLX) Ballarat on Wednesday $2^{\text {nd }}$ March 2022 commencing at 10:30am with viewing prior to auction.

We have catalogued over 40 quality bulls for this years sale from a range of leading proven sires.
\qquad
\qquad \square
\qquad

- Marlon Brando \qquad
- Millah Murrah Klooney \qquad
- Baldridge Command
- Clunes Crossing Dusty
\qquad
- Te Mania Emperor
- Murdeduke Kicking
\qquad
- Landfall Keystone
- Millah Murrah Kingdom
- Innesdale Liberty
- Innesdale Monarch

Again, this year we are proud to announce the sale is interfaced on AuctionsPlus for those who are unable to attend on the day.

Please be advised bulls will be delivered within 250km free of charge following the sale or Thursday 3rd March 2022.

Prior arrangements can be made by contacting farm manager
Kahn Jantzen - 0418847367 \longrightarrow
\qquad

ABOU'I' US

Attention Buyer

Animal detalls included in this catalogue, including but not limited to pedigree, DNA information, Estimated Breeding Values (EBVS) and Index values, are based on information provided by the breeder or owner of the animal. Whilst all reasonable care has been taken to ensure that the information provided in this catalogue was correct at the time of publication, Angus Australia will assume no responsibility for the accuracy or completeness of the information, nor for the outcome (including consequential loss) of any action taken based on this information.

Parent Verification Suffixes

The animals listed within this catalogue including its pedigree, are displaying a Parent Verification Suffix which indicates the DNA parent verification status that has been conducted on the animal. The Parent Verification Suffixes that will appear at the end of each animal's name

The suffix displayed at the end of each animars The suffix displayed at the end of each animars
name indicates the DNA parentage verification name indicates the DNA parentage venification
that has been conducted by Angus Australia. PV : both parents have been verified by DNA. SV: the sire has been verified by DNA DV : the dam has been verified by DNA. \#: DNA verification has not been conducted. and/or dam may posssibly be incorrect, but this and/or dam may possibly be incorra,
cannot be confirmed conclusively.

Privacy Information

In order for Angus Australla to process the transfer of a registered animal in this catalogue, the vendor will need provide certain information to Angus Australia and the buyer consents to the collection and disclosure of that information by Angus Australia in certain circumstances. If the buyer does not wish for his or her information to be stored and disclosed by Angus Australla, the buyer must complete the form included below and forward it to Angus Australla. If the form is not completed, the buyer will be taken to have consented to the disclosure of such Information.

BUYERS OPTION TO OPT OUT OF DISCLOSING PERSONAL INFORMATION TO ANGUS AUSTRALIA
If you do not complete this form, you will be taken to have consented to Angus Australla using your name, address and phone number for the purposes of effecting a change of registration of the animal(s) that you have purchased, maintaining its database and disclosing that information to its members on its website.
I, the buyer of animals with the following idents.. \qquad
from member..
(name) do not consent to Angus
Australla using my name, address and phone number for the purposes of effecting a change of registration of the animals I have mentioned above that I have purchased, maintaining its database and disclosing that information to its members on its website.

Name: .. Slgnature:
Date:
\qquad

Please forward this completed consent form to Angus Australla, 86 Glen Innes Road, Armidale NSW 2350.

5

STRUCTURAL ASSESSMLENT EXPLAINED

The Structural Assessment System uses a 1-9 Scoring System.
Temperament Scores - Temperament scores range from 1-5. Docile (1) is ideal, Restless (3) is less ideal \& Aggressive (5) is less favourable. (Scores of 1 and 2 are preferred).

Sheath Scores - Sheaths are also scored from 1 to 5 with 2-3 being ideal for most bulls.
All other traits scored from 1-9: with 5 being considered ideal

TRAIT	KEY	SCORING RANGE	
Temperament	D	12345	1. Docile 3. Restless
Front Feet Claw Set Rear Feet Claw Set	FC RC		1. Open/Divergent 5. Good 9. Scissor Claw
Front Feet Angle Rear Feet Angle	FA		1. Stubbed Toe 5. Good 9. Shallow Heel
Rear Legs Side View	RS		1. Straight 5. Good 9. Sickle Hocked
Rear Legs Hind View	RH		1. Bow Legged 5. Good 9. Cow Hocked
Front Legs Front View	FF		1. Bow Legged 5. Good 9. Knocked Knee
Sheath \& Navel Score	SN	12345	1. Pendulous 3. Good 5. Clean/Tight

ADAPTION

The key to Northern success for Angus is that cattle introduced from the Southern regions of Australia be allowed to adapt to their new environment before commencing their working life. If possible, a break of 3 months is advisable before you set your bull to work.

Purchase in cooler months

Ensure your bulls are in good condition before they do commence their working life. The cooler months are an ideal time to purchase and introduce Angus cattle, allowing them plenty of time to acclimatise.

Change of feed source
When introducing Angus cattle into your herd consider their source of feed. Have you taken an animal which has been supplemented on grain straight to a dry pasture? Animals should be gradually changed over time to their new feed to ensure they do not lose condition. This may involve using supplements which could include dry lick/urea blocks.

Managing cattle ticks In areas where ticks are problematic, bulls should be vaccinated prior to transport.
another booster afterwards. Remember males are more susceptible to ticks than females.
Information is provided by the department of Primary Industries NSW

ARRIVAL CONTINUED..

Plan to give follow - up vaccinations 4-6 weeks later. Leave the bulls in the yards for the next day or two on feed and water to allow them to settle down with other stock for company. A bull's behaviour will decide how quickly he can be moved out to paddocks.

MATING NEW YOUNG BULLS

Newly purchased young bulls should not be placed with older herd bulls for multiple - sire joining. The older, dominant bull will not allow the young bulls to work, and will knock them around while keeping them away from the cows.

Use new bulls in either single - sire groups or with young bulls their own age. If a number of young bulls are to be used together, run them together for a few weeks before joining starts. They sort out their pecking order quickly and have few problems later.
When the young bulls are working, inspect them regularly and closely
Older working bulls also need special care and attention before mating starts. They should be tested or checked every year for physical soundness, testicle tone, and serving capacity or ability.

All bulls to be used must be free - moving, active and in good condition. Working bulls may need supplementary feeding before the joining season to bring up condition.

DURING MATING

Check bulls at least twice each week for the first two months. Get up close to them and watch each bull walk; check for swellings around the sheath and for lameness
Have a spare bull or bulls available to replace any that break down. Replace any suspect bull immediately.

Rotate bulls in single - sire groups to make sure that any bull infertility is covered. Single - sire joining works well but it has risks. The bulls must be checked regularly and carefully, or the bulls should be rotated every one or two cycles.

Bulls are a large investment for breeding herds and they have a major effect on herd fertility.

NORTHERN AUSTRALIA

Although the Angus breed originated in a cooler climate, they can adapt to subtropical regions with many straight - bred and cross - bred producers finding success in Northern Australia. Some of the following information may also be helpful for new bulls located in more temperate climates.

STRUCTURAL SUMMARY

Lot	Bull ID	FC	RC	FA	RA	RS	RH	LM	TP	SN
1	VLKR361	6	5	6	6	5	5	C+	1	5
2	VLKR391	6	5	6	6	6	5	C+	2	4
3	VLKR380	5	5	5	6	5	6	C+	1	5
4	VLKR359	7	5	6	6	4	5	C+	1	5
5	VLKR332	6	5	5	5	5	5	C+	1	4
6	VLKR307	6	5	6	5	5	5	C+	2	4
7	VLKR351	6	5	5	6	5	5	B-	3	4
8	VLKR357	5	6	6	7	6	5	C+	1	5
9	VLKR377	5	5	5	6	5	5	C+	1	4
10	VLKR371	7	6	7	7	6	5	C+	1	5
11	VLKR373	6	6		7	6	5	C+	1	4
12	VLKR313	6	5	5	5	5	5	C+	1	4
13	VLKR355	6	5	6	6	5	5	C+	1	4
14	VLKR356	6	5	6	6	5	5	C+	1	5
15	VLKR352	7	6	6	6	5	5	C+	2	4
16	VLKR347	5	6	5	5	5	5	C+	1	3
17	VLKR338	6	5	6	6	4	5	C+	2	4
18	VLKR397	5	5	6	6	5	6	C+	1	4
19	VLKR341	5	5	6	6	5	5	C+	1	3
20	VLKR364	6	5	6	6	5	5	C+	1	4
21	VLKR372	5	5	6	6	5	5	C+	1	5
22	VLKR358	6	5	6	6	5	6	C+	1	4
23	VLKR317	5	5	6	6	5	6	C+	1	4
24	VLKR343	5	5	6	6	6	5	C+	1	4
25	VLKR291	6	5	5	5	5	5	B-	1	4
26	VLKR298	6	5	6	6	5	6	C+	1	4
27	VLKR396	6	5	6	5	6	6	C+	1	4
28	VLKR354	6	5	6	6	5	5	B-	2	4
29	VLKR327	6	6	6	6	6	6	C+	1	4
30	VLKR363	6	5	5	5	4	5	C+	1	4
31	VLKR375	6	6	6	6	4	5	C+	1	5
32	VLKR326	6	6	6	6	6	6	c	1	4
33	VLKR306	6	5	5	5	5	5	C+	1	4
34	VLKR311	6	5	6	6	6	5	c	1	4
35	VLKR346	5	5	6	5	5	5	C+	1	5
36	VLKR320	5	5	5	5	5	6	c	1	4
37	VLKR308	5	5	6	6	6	5	C+	1	5
38	VLKR345	6	5	5	5	5	5	C+	1	5
39	VLKR340	6	5	6	6	6	5	C+	1	5
40	VLKR349	6	6	7	6	5	5	C+	2	4
41	VLKR383	6	6	6	7	5	6	C+	1	5
42	VLKR382	6	6	7	7	5	6	C+	1	3
43	VLKR398	7	6	6	6	5	5	C+	1	5
44	VLKR293	6	5	5	5	5	5	C+	1	4

S'TRUC'TURAL ASSESSMEN'T

Structural problems in cattle have a substantial effect on both the reproductive and growth performance of a beef herd. It is widely recognised that structural problems in sires have detrimental effects on conception rates, calving patterns and thus profitability. Similarly, females with inadequate structural characteristics are more prone to weaning lighter calves or conceiving later in the breeding season than their more functional counterparts. These structural problems are filtered through the supply chain resulting in reduced income for the producer, feedlot and therefore reducing the overall productivity of the Australian Beef Industry.

Over the two decades, use of the Beef Class Structural Assessment System in the seedstock industry has produced a marked improvement in herds which have shown commitment to using the information appropriately. Through these dedicated breeders, there has been a flow on effect of structural improvement throughout all sectors of the beef cattle industry. This structural analysis has allowed the formation of structural EBV's which are gaining momentum within the industry.

Liam Cardile of BEEFXCEL structurally assesses many of the leading seedstock herds in Australia. BEEFXCEL is not involved in any genetic marketing or specific breeding advice and therefore has no conflict of interests to influence their stock appraisal. The integrity of the structural data provided by BEEFXCEL is recognised throughout the industry as Liam is a fully independent assessor.

LANGI KAL KAL STRUCTURAL PROGRAM:

The Langi Kal Kal Sale Bulls have been independently structurally assessed to maximise the quality of stock on offer. Any animals deemed inadequate have been removed from the sale draft. The Langi Kal Kal sale bulls were assessed by Liam Cardile of BEEFXCEL. Langi Kal Kal are additionally structurally assessing
the female herd to help maintain and optimise the structural soundness of the herd.
Please contact Liam Cardile 0409572570 directly if you wish to discuss the assessment system or hear an independent appraisal of the Langi Kal Kal herd.

If you use a professional carrier:

- Make sure the carrier knows which bulls can be mixed together.
- Discuss resting procedures for long trips, expected delivery time, truck condition and quiet handling with the carrier.
- Give ear tag and brand numbers to the carrier and make sure you have the carrier's phone number.
- If buying bulls from interstate, organise any necessary health tests before leaving and work out if any other requirements must be met before the cattle can come into another state.
- When buying bulls from far away, you may often have to fit in with other delivery arrangements to reduce cost. You should make it clear how you want your bulls handled.

ARRIVAL

When the bull/s arrive home, unload them at the yards into a group of house cows,
steers or herd cows. Never jump them from the back of a truck directly into a paddock; it may be the last time you see them. Bulls from different origins should be put into separate yards with other cattle for company.
Provide hay and water, then leave them alone until the next morning
The next day, bulls should receive routine health treatments. If they have not been treated before, all bulls should be vaccinated with:

$$
\cdot 5 \text { - in - } 1 \text { vaccine }
$$

- Vibriosis vaccine
- Leptospirosis vaccine (if in areas like the Hunter where leptospirosis exists)
- Three - day sickness vaccine (if in areas where this sickness can cause problems).

Give particular attention to preventing new bulls bringing vibriosis into a herd. Vibriosis, a sexually transmitted disease, causes infertility and abortions and is most commonly introduced to a clean herd by an infected bull. These bulls show no signs of the illness. Vaccinated bulls are free from vibriosis, so vaccinating bulls against the disease should be a routine practice.

Vaccination involves two inject ions, 4-6 weeks apart, at the time of introduction, and then a booster shot every year. Complete the vaccinations 4 weeks before joining Consult with your veterinarian and draw up a policy for treating bulls on arrival and then annually. Bulls should be drenched to prevent introducing worms, and, if necessary, should be treated for lice.

BUYING A BULL

When purchasing a bull, care and handling after the sale can be as important as the purchase itself. Looking after your bull well during the initial stages of his working life may ensure longevity and success within your breeding herd.

PURCHASE

Temperament is an important characteristic when selecting a bull. Selecting a bull that may be flighty or aggressive will make life difficult for you each time he is handled. Note which bulls continually push to the centre of a mob, run around, or are unreasonably nervous, aggressive or excited.

At the sale, note any changes in temperament by individual bulls. Some bulls that are quiet in the yard or paddock may not like the pressure and noise of the auction and become excited Others that were excited beforehand get much worse in the sale ring and can really perform. Use the yard or paddock behaviour as a guide, rather than the temperament shown in the ring.

DELIVERY

When transporting your new bull, insurance against loss in transit, accidental loss of use, or infertility, is sometimes provided by vendors. Where it is not, it is worth considering. Tips to keep in mind are:

- When purchasing, ask which health treatments he has received
- Treat and handle him quietly at all times - no dogs, no buzzers. Talk to him and give him time and room to make up his mind
- With more than one bull from different origins, you must be able to separate them on the truck
- Make sure that the truck floor is covered to prevent bulls from slipping. Sand, sawdust or a floor grid will prevent bulls from being damaged by going down in transit.
- If you can arrange it, put a few quiet cows or steers on the truck with the bull. Let them down into a yard with the bulls for a while before loading and after unloading.
- Unload and reload during the trip as little as possible. If necessary, rest with water and feed.
- Treat bulls kindly, your impatience or nervousness is easily transmitted to an animal unfamiliar to you and unsure of his environment.

EBV EXPPAINEI)

Estimated Breeding Values (EBV) are predictions of an animals genetic merit, based on available performance data on the individual and its relatives.

EBVs are expressed in the units of measurement for each particular trait. They are shown as a positive (+) or negative (-) differences from the breed base. As the breed base is set to a historical benchmark, the average EBVs of animals in each year drop has changed over time as a result of genetic change within the breed. The current breed averages are shown below. These provide a useful benchmark for comparing EBVs for animals.

January 2022 Trans Tasman Angus Cattle Evaluation
200W 400W 600W MAT MLK SCRT OTC CAR EI

SINDEX			
FA	FA-L		

	$\$ 236$

Calving Ease Traits

Calving Ease (DIR):
Estimate of genetic differences among animals in the ability of their calves from 2 year old heifers to be
born unassisted.
Higher, more
positive (+), Calving Ease (DIR) EBVs are more favourable

Calving Ease (DTRS): Estimate of genetic differences among animals in the ability of their calves from 2 year old daughters to calve without assistance. Higher, more positive (+), Calving Ease (DTRS) EBVs are more favourable

Gestation Length

 (GEST):Estimate of genetic differences among animals in the number of days from the date of conception until the calf birth date. Lower, or more negative (-), Gestation Length EBVs are more favourable.

DIR	DTRS	GEST	BW
-0.1	+0.0	-3.5	+4.3

Birth Weight (BW):

 Estimate of genetic differences between animals in kg of calf birth weight. Calf birth weight is the biggest contributing factor causing calving difficulty in heifers. While low Birth Wt. EBV's are favoured for calving ease, they are often associated with lower growth potential. Small, or moderate, Birth Wt EBVs are more favourable.
Growth Traits

REFERENCE SIRES

200 Day Weight (200) Estimate of genetic differences among 200 days of age. This is a measure of an animal's early growth to weaning. It is an important trait for breeders turning off animals as vealers o weaners.

400 Day Weight (400): Estimate of genetic differences among animals in weight at animals in weight
400 days of age This is an important trait for breeders turning off animals as yearlings. \qquad
\qquad

600 Day Weight (600):

 Estimate of genetic differences among animals in live-weight at 600 days of age. This is an important trait for breeder targeting the production of animals suited for heavy weight grass finished or grain fed market generally more favourableMature Cow Weight (MAT) Weight (MAT): genetic genetic
differences difference animals in cow weigh at 5 years of age.

Fertility Traits

Milk (MILK):
Estimate of genetic differences among animals in milk production potential, expressed through variation in calf growth performance. Larger, more positive (+), or moderate, Milk (MILK) EBVs can be more favourable, depending on the environment

Scrotal Size (SCRT)

 Estimate of genetic differences among animals in scrotal circumference at 400 days of age, increased scrotal size is associated with increased semen production in bulls, and earlier age at puberty of bull and heifer progeny. Larger, or more positive (+), Scrotal Size EBVs are more favourable| MILK | SCRT | DTC |
| :---: | :---: | :---: |
| +14 | +1.6 | -3.6 |

Days to Calving (DTC): Estimate of genetic differences among animals in female fertility, expressed as the number of days from the start of the joining period until subsequent calving. Females with shorter DC EBV's tend to commence cycling earlier after calving and conceive earlier in the joining period. They also tend to attain puberty at a younger age as heifers. Lower, or more negative (), Days to Calving EBVs are more favourable.

Carcase Traits

Carcase
(CAR):
Estimate of
genetic
differences
among
animals in hot standard
carcase
weight at
750 days of
age. Larger,
more
positive (+),
Carcase
Weight EBVs
are more
favourable.

Eye Muscle Area (EMA): Estimate of genetic differences among animals in eye muscle area (cm2) at the $12 / 13^{\text {th }}$ rib site on a 400 kg carcass. Larger, more positive (+), EMA EBV's generally more favourable.

Rib Fat (RIB):

 Estimate of genetic differences among animals in fat depth (mm) at the 12/13 rib site, measured on a 400 kg carcass. More positive (+), or more negative (). Rib Fat EBV's may be more favourable depending on your breeding goals.Rump Fat (RUMP): Estimate of genetic differences between animals in fat depth at the P8 rump site on a standard 400 kg carcase. More positive (+), or mor negative (-), Rib Fat EBVs may be more favourable depending on your breeding goals.

\section*{| CAR | EMA | RIB | RUMP | RBY\% | IMP\% |
| :---: | :---: | :---: | :---: | :---: | :---: |}

+54	+4.3	RIB	RUM	RBY\%	IMP\%

Retail Beef Yield \%

 (RBY\%) Estimate of genetic differences between animals in the percentage of beef present in a 400 kg carcase.
ntra-muscular Fat

 \% (IMP\%): Estimate of genetic differences among animals in percentage intramuscular fat (marbling) in a 400kg carcase
BALDRIDGE COMMAND C036 pv

CLUNES CROSSING DUSTY M13 pV

ID	QMUM13
Birth Date	$7 / 08 / 2016$
Register	HBR
Sire	G A R PROPHETSV
Dam	CLUNES CROSSING GLORIOUS
G1SV	

TE MANIA EMPEROR E343 PV

ID	VTME343
Birth Date	$9 / 08 / 2009$
Register	HBR

TE MANIA BERKLEY B1PV
TE MANIA LOWAN Z74PV
AMF,CAF,DDF,NHF,MAF,OSF,RGF

REFERENCE SIRES

MURDEDUKE KICKING K428 PV

Genetics Status:

CSWK428
13/09/2014
HBR
TE MANIA EMPEROR E343PV
MURDEDUKE E175PV
AMF,CAF,DDF,NHF,DWF,MAF,MHF

Efficiency and Temperament Traits

Net Feed Intake (NFI):
Estimate of genetic differences between animals in efficiency. NFI is measured either post weaning (NFI-P), in young bulls and heifers, fed at aroud 30 days of age, or in steers fed at around 560 days of age (NFI-F) Lower, more negative (-) NFI EBVs are more favourable.

Docility (DOC):
Estimate of genetic differences between animals in temperament. Docility EBVs are expressed as differences in the percentage of progeny that will be scored with acceptable temperament (i.e. either "docile" or "restless"). Higher Docility EBVs are more favourable.

NFI-P	NFI-F	DOC
+4.3	+0.0	-0.1

\$ Breeding Indexes

Angus Breeding Index

The Angus Breeding Index ($\$ \mathrm{~A}$) and Angus Breeding Low Cost Feed Cost Index (\$A-L) estimate the genetic differences between animals in net profitability per cow joined in a typical commercial self replacing herd using Angus bulls.
MILLAH MURRAH MARLON BRANDO M304 PV

ID
Birth Date
Register
Sire
Dam
Genetics Status:

NMMM304
23/08/2016
HBR MILLAH MURRAH KLOONEY K42PV MILLAH MURRAH FLOWER G41PV AMF, CAF DDF NHF DWF MAF MHF, OHF, OSF, RGF

MILLAH MURRAY KLOONEY K42 pv

ID
Birth Date
Register
Sire
Dam
Genetics Status:

NMMK42

30/01/2014
HBR
BOOROOMOOKA THEO T030SV
MILLAH MURRAH PRUE H4SV
AMF, CAF, DDF, NHF, MAF, OHF OSF, RGF

These selection indexes are not specific to a particular market end-point, but identify animals that improve overall net profitability in the majority of commercial, self replacing, grass and grain finishing beef production systems

Daughters are retained for breeding and therefore female traits are of importance

The two indexes are similar, with the difference being the production system on which they are modelled.

Angus Breeding Low Feed Cost Index (\$A): The \$A index caters for production systems where pasture is fully utilised for the majority of the yea his ind mature cow weight.

Angus Breeding Low Feed Cost Index (\$A-L): The \$A-L index caters for systems where feed is surplus to requirements for the majority of the year, or the cost of supplying additional feed requirements increase, via increased pasture production and/or supplementary feeding is low.
This index aims to maintain mature cow weight

\$ Indexes	
$\$ A$	$\$ A-L$
$+\$ 102$	$+\$ 101$

Traits Observed

Indicates the traits that have been recorded for a have been recorded for a
particular animal and are particular animal and are
contributing to the EBVs that have been
calculated. These will appear directly below the appear directly below
table displaying the animal's EBVs.

Understanding Accuracies

The accuracy associated with an EBV gives the indication of its reliability, and the likely extent of its possible change as more information becomes available. As more data becomes available on animals (or its progeny, or relatives) then the accuracy of its EBVs for particularly traits will increase. Accuracies are influenced by the heritability of traits and the genetic assormation is required theen. For lowly heritable traits, more heritable traits.
Accuracies are expressed as percentages. The higher the percentage, the greater the chance that the EBV is a close estimate of the animal's true genetic merit, and the less likelihood that the EBV will change as more information becomes available.

EBV REFERENCE

February 2022 Trans Tasman Angus Cattle Evaluation

Lot	ID	DIR	DTRS	GEST	BW	200W	400W	600W	MAT	MILK
1	VLKR361	-3.1	+1.2	-5.8	+6.7	+59	+96	+122	+100	+15
2	VLKR391	+0.9	+1.7	-5.8	+5.4	+47	+90	+119	+118	+13
3	VLKR380	+4.9	+1.1	-4.4	+4.2	+38	+74	+93	+76	+20
4	VLKR359	+5.9	+3.6	-6.2	+2.4	+38	+77	+98	+80	+20
5	VLKR332	+8.5	+3.3	-4.6	+1.5	+40	+76	+97	+82	+20
6	VLKR307	+7.5	+1.7	-5.3	+2.7	+41	+79	+104	+92	+20
7	VLKR351	+1.6	+4.7	-5.1	+5.0	+50	+96	+121	+99	+18
8	VLKR357	-0.3	+0.2	-4.3	+6.9	+48	+91	+119	+103	+19
9	VLKR377	+8.7	+7.5	-6.2	+1.8	+41	+82	+113	+98	+23
10	VLKR371	+7.2	+1.9	-5.7	+3.2	+40	+78	+101	+94	+17
11	VLKR373	+9.0	+2.4	-5.2	+1.6	+34	+71	+92	+80	+20
12	VLKR313	+5.3	+0.7	-4.0	+4.1	+43	+77	+103	+93	+18
13	VLKR355	+4.9	+3.0	-4.5	+2.4	+36	+69	+91	+78	+17
14	VLKR356	+1.7	-1.8	-2.1	+4.6	+38	+73	+94	+83	+12
15	VLKR352	*	*	*	*	*	*	*	*	*
16	VLKR347	*	*	*	*	*	*	*	*	*
17	VLKR338	+2.4	+1.1	-3.3	+4.0	+42	+77	+100	+96	+14
18	VLKR397	+1.9	+5.1	-6.2	+3.5	+50	+91	+122	+106	+18
19	VLKR341	+7.2	+5.4	-5.7	+3.8	+43	+83	+107	+86	+18
20	VLKR364	+6.0	-0.9	-3.7	+3.4	+37	+73	+93	+83	+16
21	VLKR372	+3.1	+3.5	-5.7	+4.1	+44	+82	+104	+98	+12
22	VLKR358	+1.9	-0.1	-4.8	+5.0	+49	+85	+110	+98	+15
23	VLKR317	+6.7	+1.3	-3.6	+3.1	+39	+74	+98	+86	+20
24	VLKR343	+0.1	+0.0	-3.6	+4.5	+41	+76	+104	+96	+15
25	VLKR291	*	*	*	*	*	*	*	*	*
26	VLKR298	*	*	*	*	*	*	*	*	*
27	VLKR396	+0.9	+5.0	-6.0	+4.4	+56	+102	+141	+125	+18
28	VLKR354	+9.1	+0.6	-4.7	+1.8	+33	+66	+90	+80	+23
29	VLKR327	-3.2	-7.2	-5.1	+6.0	+40	+79	+105	+98	+16
30	VLKR363	+6.3	+3.7	-5.8	+2.5	+39	+77	+101	+82	+21
31	VLKR375	+4.7	+2.7	-4.1	+2.9	+35	+70	+91	+84	+14
32	VLKR326	-4.0	-5.1	-2.8	+6.5	+42	+80	+107	+103	+8
33	VLKR306	*	*	*	*	*	*	*	*	*
34	VLKR311	*	*	*	*	*	*	*	*	*
35	VLKR346	+1.1	-1.5	-4.1	+5.2	+46	+85	+118	+111	+19
36	VLKR320	+5.0	+0.3	-3.6	+4.2	+46	+88	+120	+108	+18
37	VLKR308	+10.1	+3.5	-5.3	+1.2	+36	+75	+97	+82	+22
38	VLKR345	+4.0	-3.9	-3.1	+4.2	+38	+73	+95	+89	+21
39	VLKR340	+0.9	-0.3	-4.0	+5.2	+45	+85	+116	+108	+16
40	VLKR349	+4.0	-2.4	-3.3	+4.0	+38	+72	+95	+88	+18
41	VLKR383	+7.9	+5.2	-5.7	+3.1	+37	+71	+90	+71	+17
42	VLKR382	+8.4	-1.5	-3.3	+2.9	+35	+75	+98	+85	+23
43	VLKR398	+2.0	+3.1	-5.6	+4.4	+50	+91	+120	+99	+24
44	VLKR293	+5.1	-2.3	-3.5	+3.4	+36	+70	+94	+85	+18
* EBV Value to be provide on date of sale										

REFERENCE SIRE EBV

SALE LOTS

February 2022 Trans Tasman Angus Cattle Evaluation

SCRT	DTC	CAR	EMA	RIB	RUMP	RBY\%	IMF\%	NFI-F	DOC	\$A	\$A-L
+1.9	-7.0	+76	+10.2	-0.6	-1.5	+2.1	+1.7	+0.44	0	236	372
+1.5	-5.4	+66	+2.4	+0.9	-0.8	+0.3	+1.0	+0.10	0	145	297
+2.1	-5.0	+51	+4.3	+0.5	-0.4	+0.6	+1.0	+0.23	0	147	264
+0.9	-3.2	+59	+5.3	+0.4	-0.3	+0.3	+1.1	+0.16	0	154	277
+0.9	-3.5	+55	+5.9	+0.1	+0.3	+0.2	+1.2	-0.17	0	163	292
+1.5	-4.9	+68	+5.4	-0.3	-0.4	+1.0	+0.9	+0.03	0	162	300
+1.3	-4.2	+66	+9.0	+0.7	-1.1	+1.0	+2.0	+0.25	0	202	347
+1.3	-5.0	+65	+5.5	-0.5	-1.4	+0.9	+1.0	-0.11	0	157	292
+2.7	-5.1	+61	+1.1	+1.0	-0.9	+0.2	+1.3	+0.10	0	160	311
+1.6	-5.2	+51	+4.8	+1.6	+0.2	+0.1	+1.3	+0.03	0	153	293
+1.0	-4.2	+50	+4.8	+1.1	+0.6	+0.1	+1.1	+0.08	0	139	264
+0.9	-5.0	+57	+5.4	+1.1	+0.3	+0.1	+1.7	+0.02	0	169	301
+1.5	-2.5	+49	+3.5	+0.7	+0.1	+0.4	+0.6	+0.02	0	131	244
+2.0	-3.3	+49	+2.9	+0.4	-0.1	+0.4	+0.7	+0.1	0	118	227
*	*	*	-	*		*	\%	*	*	*	*
*	*	*	*	*	*	*	*	*	*	*	*
+1.9	-3.9	+51	+3.3	-0.1	-0.5	+0.1	+1.2	-0.08	0	135	262
+1.0	-4.0	+78	+6.5	+1.4	-0.3	+0.2	+1.5	+0.30	0	185	332
+1.3	-5.2	+61	+9.1	+1.4	+0.4	+0.3	+2.2	+0.23	0	195	339
+1.4	-2.7	+54	+6.4	-0.2	-0.2	+1.1	+0.7	-0.02	0	137	254
+2.0	-6.2	+59	+4.6	+1.0	-0.2	+0.2	+1.8	+0.28	0	170	312
+0.7	-1.7	+61	+6.8	-0.7	-0.9	+1.5	+1.0	+0.12	0	171	297
+1.4	-4.7	+63	+6.0	-0.1	-0.2	+0.7	+1.6	-0.01	0	164	293
+1.8	-3.4	+54	+2.3	+1.3	+0.3	+0.1	+0.4	-0.08	0	115	233
	*		*	*	*	*	*	*	*	*	*
*	*	*	*	*	*	*	*	*	*	*	*
+1.1	-4.6	+87	+6.6	+0.5	-0.9	+0.4	+1.6	+0.25	0	205	372
+0.5	-2.7	+50	+4.7	+0.0	-0.3	+0.6	+0.6	-0.13	0	120	233
+1.1	-2.0	+57	+4.2	-0.2	-0.9	+1.0	+0.2	-0.08	0	95	200
+1.1	-2.1	+57	+4.5	+0.4	-0.3	+0.3	+1.0	+0.18	0	146	268
+0.9	-3.2	+49	+3.7	+0.4	-0.7	+0.7	+0.6	+0.06	0	120	238
+1.9	-2.6	+56	+3.5	+0.7	+0.0	+0.7	+0.4	+0.08	0	99	212
*	\%	*	\%	*	-	-	\%	-	*	*	
*	*	*	*	*	*	*	*	*	*	*	*
+2.2	-4.5	+73	+5.5	-1.2	-1.2	+1.6	+0.9	-0.06	0	154	293
+2.4	-4.2	+66	+5.0	+0.7	+0.0	+0.5	+1.2	+0.16	0	165	313
+1.3	-4.6	+55	+5.7	+1.4	+0.8	+0.2	+1.1	+0.11	0	157	288
+2.2	-3.7	+55	+5.7	-0.3	+0.1	+1.0	+0.9	-0.05	0	131	248
+2.1	-3.3	+61	+3.1	+0.6	-0.4	+0.6	+0.4	-0.06	0	129	264
+2.0	-3.7	+53	+6.3	+0.4	+0.8	+0.8	+1.1	-0.07	0	139	257
+0.5	-4.1	+49	+9.1	+0.7	-0.7	+1.3	+0.9	+0.11	0	164	284
+1.7	-4.0	+54	+5.1	+0.2	+0.5	+0.8	+0.6	-0.11	0	132	257
+1.7	-5.1	+76	+7.4	-0.1	-0.3	+0.4	+2.4	+0.20	0	209	352
+1.2	-3.4	+51	+5.0	+0.6	+0.3	+0.5	+0.7	+0.07	0	127	242
* EBV Value to be provide on date of sale											

SALE LOTS

Langi Kal Kal VLKR361 sv APR
712 Kgs
Lot Number 1

\section*{| DOB: | 110912020 |
| :---: | :---: |
| GARPROPHET
 SIRE CLUNES CROSSING DUSTY M13 | | cuunes crossing dusty m13 clunes crossing glopious g}

Senetio Staus AMFU, CAFU. DDFU, NHFU
DAM ARDROSSAN EQUATOR A241 LANGI KAL KAL L167 LANGI KAL KAL KD41

Langi Kal Kal VLKR391 sv APR
734 Kgs
Lot Number
2

\section*{DOB} | DOB | 2210812020 |
| :---: | :---: |
| SIRE | $\begin{array}{c}\text { TE MANIA EEEKKLEY } 11 \\ \text { TE MANAI EMMPROR E343 } \\ \text { TE MANIALOWAN Z74 }\end{array}$ |

686 Kgs
Genesio Stauss AMFU, CAFU. DD1\%, NHFU

INNESDALE CHAPMAN C54
LANGI KAL KAL G115 $\underset{\text { LANGI KAL KAL KE67 }}{\text { LANG }}$ LAH MURRAH KLOONEY K42 MLLAHMURRAH PRUE H4

SALE LOTS

Langi Kal Kal VLKR349 sv APR
606 Kgs

Lot Number
40

Genetio Staus AMFU, CAFU. DDFU, NHFU

 EBY $+4.0-2.4-3.3+4.0+38+72+95+88+18 ~+2.0 ~-3.7 ~+53 ~+6.3+0.4+0.8+0.8+1.1-0.07 ~ 0.00$

Purchaser Sale Price \qquad

 | SINDEX |
| :--- | :--- |
| \$A |
| SA-L |

Langi Kal Kal VLKR383 sv APR

578 Kgs

Purchaser
Sale Price

SINDEX

Langi Kal Kal VLKR382 sv APR
616 Kgs

Lot Number	DOB:	
$\boldsymbol{4 2}$	SIRE	$\begin{array}{c}\text { PARFINGA, JUDD J5 } \\ \text { LANGI KAL KAL M328 } \\ \text { LANGI KAL KAL H116 }\end{array}$

Purchaser

Sale Price

Purchaser
Sale Price

\$INDEX

SALE LOTS

Langi Kal Kal VLKR308 sv APR
616 Kgs

January 2022 Trans Tasman Angus Cattle Evaluation
 $46+55+5.7+1.4+0.8+0.2+1.1+0.110 .00$ Acc $51 \% \quad 43 \% \quad 48 \% \quad 70 \% \quad 59 \% \quad 58 \% \quad 58 \% \quad 56 \% \quad 50 \% \quad 50 \% \quad 36 \% \quad 52 \% \quad 48 \% \quad 52 \% \quad 50 \% \quad 50 \% \quad 48 \% \quad 42 \% \quad 0 \%$
Purchaser
Sale Price

Langi Kal Kal VLKR345 sv APR
596 Kgs

Langi Kal Kal VLKR340 sv APR

610 Kgs

Lot Number 39 14/0912020

Genetic Status AMFU, CAFU, DDFU. NHFU
 LANGI KAL KAL G154 LANGI KAL KAL G115

January 2022 Trans Tasman Angus Cattle Evaluation

TACE DIR DTRS GEST EW 200W 400W 600W MAT MLK SCRT OTC CAR EMA RIE RUMP REYK IMF\% NFI-F DOC

Purchaser
 \qquad

SALE LOTS

Langi Kal Kal VLKR359 sv APR

738 Kgs

Purchaser
Sale Price

Langi Kal Kal VLKR332 sv APR

692 Kgs

TACE DIR DTRS GEST EW 200W 400 W 600W MAT MLK SCRT DTC CAR EMA RIE RUMP RET\% IMF\% NFL-F DOC
 Traits Obser EwT STRUCTURAL SCORES SINDEX
Purchaser
Sale Price

STRUCTURAL SCORES								
FC	RC	FA	RA	R	R	LM	TP	SN
6	5	5	5	5	5	c.	1	4

Langi Kal Kal VLKR307 sv APR

688 Kgs

SALE LOTS

Langi Kal Kal VLKR351 sv APR

Lot Number
7

DOB:	6i09I2020
SIRE	MILLAH MUPRAH KLOONE K42 MARLON BRANDO M304 MLLAHMURRRAHLOWER G41

Genetic Status AM4\%, CAFU, DD2\%, NHFU

DAM	DEER VALLEYALL IN 2138
LANGI KAL KAL M202	

January 2022 Trans Tasman Angus Cattle Evaluation

TACE DIR DTRs GEST BW 200W 400W 600W MAT MLLK SCRT DTC CAR EMA RIE RUMP REY: IMF\% NFLF DOC

Purchaser

680 Kgs
Langi Kal Kal VLKR357 sv APR

Lot Number
8

Genesic Status AMFU, CAFU. DD1\%, NHFU
 LANGI KAL KAL M159 $\underset{\text { LANGI KAL KAL J222 }}{2}$

Langi Kal Kal VLKR377 sv APR
678 Kgs

SALE LOTS

Langi Kal Kal VLKR311 **

Lot Number	DOB:	2810912020	Genetic Status *	
34	SIRE	INNESDALE EXCEL H8́6 LANGI KAL KAL N360 LANGI KAL KAL J210	DAM	INNESDALE DEVON D4s LANGI KAL KAL KH96 LANGI KAL KAL KX37

Purchaser

SINDEX

FC	RC	FA	RA	RS	RH	LM	TP	SN
6	5	6	6	6	5	C	1	4

\$
Langi Kal Kal VLKR346 sv APR
610 Kgs

Langi Kal Kal VLKR320 sv APR
636 Kgs

Lot Number	DOB:	24/0912020	Genetic Status AM2\%,CA2\%,DD2\%,NH2\%	
36	SIRE	TE MANIA EMPEROR E343 LANGI KAL KAL M269 LANGI KAL KAL G115	DAM	PARIINGA. JUDD J5 LANGI KAL KAL M116 LANGI KAL KAL K157

January 2022 Trans Tasman Angus Cattle Evaluation																			
TACE		DTRs G	GEst	BW	200w	400W	600 W	mat	MLK	SCRT	отс	CAR		RiE		REY:	$1 \mathrm{mF} \mathrm{\%}$	NF1-F	Doc
	+5.0	+0.3	-3.6	+4.2	+46	+88	+120	+108	+18	+2.4	-4.2	+66	+5.0	+0.7	+0.0	+0.5		+0.16	0.00
	50\%	42%	46\%	71\%	58\%	56%	58\%	56\%	49\%	49\%	35\%	50\%	47\%	51\%	49\%	49\%	47\%	41\%	0%
							Traits Obser BwT												
								STRUCTURAL SCORES										\$ INDEX	
Purchaser								FC	RC	FA	RA	Rs	RH	LM	TP	SN		: A	\$A-L
Sale Price								5	5	5	5	5	6	c	1	4		\$165	${ }_{5} 513$

SALE LOTS

Langi Kal Kal VLKR355 sv APR
652 Kgs
 January 2022 Trans Tasman Angus Cattle Evaluation

 Acc $50 \% \quad 40 \% \quad 41 \% \quad 71 \% \quad 58 \% \quad 57 \% \quad 59 \% \quad 56 \% \quad 50 \% \quad 48 \% \quad 34 \% \quad 48 \% \quad 44 \% \quad 48 \% \quad 47 \% \quad 46 \% \quad 44 \% \quad 36 \% \quad 0 \%$

Purchaser
Sale Price

SINDEX

Langi Kal Kal VLKR356 sv APR
678 Kgs

Langi Kal Kal VLKR352 \#*

666 Kgs

 Sale Price

Langi Kal Kal VLKR354 sv APR

Lot Number	DOB:	310912020	Genetic Status AMFU, CAFU, DDFU, NHFU	
28	SIRE	LANGI KAL KAL M328 LANGI KAL KAL H116	DAM	INNE SDALE CARBINE F55 LANGI KAL KAL K104 LANGI KAL KAL H10s

Purchaser
Sale Price

Langi Kal Kal VLKR327 sv APR
646 Kgs

Lot Number	DOB:	2110912020
29	SIRE	Pafilnga judd .5 LANGI KAL KAL M296 LANGI KAL KAL K114

Genetio Stavs \triangle AMFU, CAFU. DDFU, NHFU	INNESDALE BULLSEYE E50
DAM	
LANGI KAL KAL K155	LANGIKAL KAL KET3

Purchaser
 Sale Price

Langi Kal Kal VLKR363 sv APR
646 Kgs

TACE DIR OTRS GEST BW 200W 400W 600W MAT MLK SCRT DTC CAR EMA RIE RUMP REY: IMF\% NFI-F DOC

Purchaser + Traits Obser EwT \qquad

| FC | RC | FA | RARUCTURAL SCORES | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 6 | 5 | 5 | 5 | 4 | RH | LM | TP | SN |

\$INDEX
Sale Price \qquad

SALE LOTS

SALE LOTS

LangiKal Kal VLKR347,**
646 Kgs

 Acc $50 \% \quad 43 \% \quad 47 \% \quad 71 \% \quad 58 \% \quad 56 \% \quad 58 \% \quad 55 \% \quad 49 \% \quad 49 \% \quad 36 \% \quad 50 \% \quad 47 \% \quad 51 \% \quad 49 \% \quad 49 \% \quad 47 \% \quad 41 \% \quad 0 \%$
Purchaser
Sale Price

	Obse								\$ INDEX	
STRUCTURAL SCORES										
FC	RC	FA	RA	Rs	R ${ }^{\text {H }}$	LM	TP	SN	\$ ${ }_{\text {a }}$	sa.L
6	5	6	6	4	5	c.	2	4	\$135	± 262

Langi Kal Kal VLKR397 sv APR
658 Kgs

SALE LOTS

\section*{Langi Kal Kal VLKR341 sv APR
 648 Kgs

 JTRS GEST January 2022 Trans Tasman Angus Cattle Evaluation
 TACE DIR OTRS GEST BW 200W 400 W 600W MAT MLK SCRT DTC CAR EMA RIE RUMP REY\% IMF\% NFLFF DOC

 Purchaser Sale Price

 Langi Kal Kal VLKR364 sv APR
 648 Kgs
 \begin{tabular}{|c|c|c|c|c|}
\hline Lot Number \& DOB: \& 31082020 \& \multicolumn{2}{|l|}{Genetic Status AMFU, CAFU, DD1\%, NHFU}

\hline \[
20

\] \& SIRE \& | PARINGA JUDD 15 |
| :--- |
| LANGI KAL KAL M328 |
| LANGI KAL KAL H116 | \& DAM \& IfRELANDS DIANNA 216 LANGI KAL KAL K117 LANGI KAL KAL KD19

\hline
\end{tabular}
 TACE DIR DTRS GEST \quad EW 200 W 400W 600W MAT MLK

 Purchaser
 Sale Price

 Langi Kal Kal VLKR372 sv APR
 686 Kgs
 \begin{tabular}{|c|c|c|c|c|}
\hline Lot Number \& DOB: \& 2910812020 \& \multicolumn{2}{|l|}{Genetic Status AMFU, CAFU, DDFU, NHFU}

\hline \[
21

\] \& SIRE \& TE MANIA BERKLEY B1 TE MANIA EMPEROR E343 TE MANAA LOWAN ZT4 \& DAM \& | ARDROSSAN EQUATOR A241 |
| :--- |
| LANGI KAL KAL K121 |
| LANGI KAL KAL KFT8 |

\hline
\end{tabular}

TACE January 2022 Trans Tasman Angus Cattle Evaluation

 Purchaser

SALE LO'TS

Langi Kal Kal VLKR358 sv APR

Lot Number	DOB:	210912020	Genetic Status AM2\%,CA2\%,DD2\%,NH2\%	
22	SIRE	EF COMMANDO 1366 BALDRIDGE COMMAND C036 BALDRIDGE ELACKEIRD A030	DAM	INNESDALE STOCKMAN 265 LANGI KAL KAL KE99 LANGI KAL KAL 106A

TACE DIR DTRS GEST EW 200W 400W 600W MAT MLK SCRT DTC CAR EMA RIE RUMP REY\% IMF\% NFLF DOC $\begin{array}{llllllllllllllllllll}\text { EBY } & +1.9 & -0.1 & -4.8 & +5.0 & +49 & +85 & +110 & +98 & +15 & +0.7 & -1.7 & +61 & +6.8 & -0.7 & -0.9 & +1.5 & +1.0 & +0.12 & 0.00\end{array}$

Purchaser
Sale Price

| SINDEX |
| :--- | :--- |
| FA-l |

Langi Kal Kal VLKR317 sv APR

674 Kgs

Lot Number	DOB:	2610912020	Genetic Status AM7\%,CAFU,DD1\%,NHFU	
23	SIRE	PABRINGA. JUDD.$J 5$ LANGI KAL KAL M328 LANGI KAL KAL H116	DAM	ARDROSSAN EQUATOR A241 LANGI KAL KAL K129 LaNGI Kal Kal Kz72

Purchaser
Sale Price

Langi Kal Kal VLKR343 sv APR
682 Kgs

TACE DIR DTRS GEST EW 200 W 400W 600W MAT MLK SCRT DTC CAR EMA RIE RUMP RET\% IMF\% NFF-F DOC
TACE DIR DTRS GEST \quad EW 200W 400 W 600W MAT MLK SCRT OTC CAR EMA RIE RUMP REY\% IMFY NFLF DOC

Purchaser
Sale Price

