
SPRINCE BULL SALE 70 ANGUS BULLS AND 50 COMMERCIAL COWS AND CALVES

SEMEN TESTED | STRUCTURALLY ASSESSED | JBAS-7

VEDNESDAY 1ST SEPTEMBER 2021

HILLGROVE, BOOROWA NSW | 1PM AUCTION

Luke Whitty 0427 524 442 luke@kmiller.com.au

Josh Crosby 0490 813 260 josh@kmiller.com.au

Scan to view Sale videos

SALE BULL VIDEOS

Bulls were videoed on Tuesday 27th July 2021 and are available for viewing on our website – www.kennyscreek.com.au.

REBATES

A rebate of 2% will be paid to all agents nominating or accompanying buyers to the sale and settling within 7 days. Rebates will be paid directly by the vendor. Agents nominating buyers must do so in writing prior to the commencement of the sale and/or accompany buyers in person at the sale.

HILLGROVE AIRSTRIP

Located 4nm west of Boorowa township S 34 25.0 E 148 39.2

WEDNESDAY 1ST SEPTEMBER 2021

SPRING BULL SALE

HILLGROVE, BOOROWA NSW | 1PM AUCTION

interfaced with

W Auctions **Plus** Buy and Sell stock nationally

SAM BURTON TAYLOR 0403 180 804 sam@kennyscreek.com.au

NICK BURTON TAYLOR (02) 6385 3902 hillgrovepastoral@bigpond.com

DAVE HARDIE 0428 832 439 hillgrove@kennyscreek.com.au

TO SEE SALE PREVIEW AND BULL VIDEOS, VISIT WWW.KENNYSCREEK.COM.AU

INTRODUCTION

On Wednesday 1 September 2021 we are excited to offer 70 Q bulls to be sold from Hillgrove, Boorowa. In addition, we will also be offering 50 commercial P cows with calves at foot by Dunoon Prime Minister P758.

Whilst COVID restrictions continue to challenge communities and industries across Australia, we are positive about the very strong cattle market both domestically and globally.

In July, the Eastern Young Cattle Index (EYCI) broke through the 1,000 cent barrier and at the time of writing is sitting at a record level of 1,003.5 cents. Demand for feeder steers also continues to climb, driven by restocker demand and a strong seasonal outlook throughout the south east of the country. Experts expect the domestic cattle market to continue to strengthen through until November but longer term there seems to be strong global demand and affected supply from heavy hitters like Brazil and Argentina.

Interestingly, this time last year, we reported seeing Australian and US beef prices creeping towards parity. Fast forward 12 months and Australian beef is once again claiming the crown of most expensive in the world. US beef production has rapidly stepped up and met the demand that Australia has not been able to meet into China. Although we are challenged by two governments at logger heads we will continually be brought back to China as they are the worlds largest protein importer and we are an exporting nation. As Australian farmers we will either be selling products to them or we will be filling the gaps left by other selling to China.

We are now nearing the end of what has been an exceptionally cold and wet winter in Boorowa. As I heard someone prophesise this week – you need a winter to get a spring. A winter it has been and it should be one hell of a spring.

The Mount Feedlot at Forbes continues to operate in a challenging environment. The pendulum has swung heavily in the breeder's favour and feedlotters are being faced with heavy full priced cattle with gains also challenged by the wet conditions. The operational costs of feedlotting has increased dramatically in the last year where we have seen Angus feeder prices increase from \$1500 to \$2600. At current feeder prices the economics of Angus beef is not far behind that of Wagyu beef when you run Angus through a mid-fed program.

DUNOON PRIME MINISTER P758

In August last year we purchased 2020 top priced Angus bull, Dunoon Prime Minister P758, in a syndicate with Gilmandyke Angus and Ascot Angus. Dunoon Prime Minister weighed 1,020 kilograms as a two year old and ranks in the top 10 per cent or higher for all Angus indexes, carcase weight, gestation length, foot claw and scrotal size. He rates in the top 15 per cent or higher for eye muscle area, intramuscular fat and all growth traits.

We have since joined around 500 of our females to Prime Minister. At the time of writing, the first of his calves have just been born at Hillgrove. The first two arrived 18 days early, weighing in at 25 and 28 kilograms respectively.

50 commercial P cows with calves at foot by Dunoon Prime Minister will also be offered at this year's sale. We are planning for them to be offered as PTE cow with Dunoon Prime Minister calf at foot.

We are excited about the addition of Prime Minister's exceptional genetics to our stud and commercial programs.

NOW, TO THE CATTLE ...

This year we are offering 70 Q bulls which are two years old and are a uniformed line of bulls which have not been fed any hard feed. They have recently come onto crop but have enjoyed a good season on pasture. The bulls are in working condition with some being used in our Autumn joinings at Breakfast Creek and at Hillgrove.

Overall we are pleased with their EBV performance which we remained focused on to help us achieve a premium in our beef business.

During the year bulls have been used in our own stud and Breakfast Creek herd in both AI and natural joinings. Bulls used include lots 1 to 24 and you will see these marked in the catalogue.

We continue to focus on high performing cattle and this year's offering features:

- · 35 bulls below breed average for birth weight
- 42 bulls above breed average and 31 bulls in the top 20% for 400 day weight
- · 44 bulls above breed average for EMA
- 61 bulls above breed average and 33 bulls in the top 20% for IMF
- 64 bulls with a 600 day weight larger than the mature cow weight

If you would like to inspect the bulls before the sale please contact myself or David. The bulls were videoed on Tuesday 27 July, where they were in forward condition but still have some growing to do through the month. The short videos are available throughout website, along with links to the relevant information on the Angus Australia website.

Whilst we remain in very uncertain times with COVID restrictions, we do hope that we will be able to welcome you to join us for the sale in person. If not, the sale will be run through Auctions Plus and we will continue to do everything we can to make the virtual experience of purchasing a bull as informative and comprehensive as possible.

Sam Burton Taylor August, 2021

NOTICES

COVID SAFETY PLAN

We encourage you to read our full COVID Safety Plan - which is available on our website and will be displayed at the sale.

In line with current NSW Health guidelines, all visitors are required to:

- · sign in using our QR Code
- · wear a mask in line with NSW Health guidelines
- maintain social distancing of 1.5 metres from others at all times
- not attend if feeling unwell or have experienced fever, cough or other flu like symptoms in past 14 days.

We ask that all visitors complete the pre-registration at the bottom of the sale page on our website, or by emailing your name, purchasing entity, address and mobile number to info@kennyscreek.com.au. Virtual attendance via Auctions Plus is available, and encouraged where physical attendance is not possible.

HEALTH AND SAFETY OF VISITORS

Visitors enter the pens at their own risk. Children under 16 and people with reduced mobility or who require the use of aids are requested not to enter pens.

Under normal conditions all animals are considered to be docile in temperament, however on sale days conditions are different, and stress levels may be heightened, causing animals to behave unpredictably.

While we do not expect any issues it is important that visitors are aware of their surrounds, remain alert at all times, and acknowledge the risks associated with the sale.

SALE CATALOGUE

All reasonable care has been taken by the vendor to ensure that the information provided in this catalogue is correct at the time of publication. However, neither the vendor nor the selling agents make any other representations about the accuracy, reliability or completeness of any information provided in this catalogue and do not assume any responsibility for the use or interpretation of the information included in this catalogue. You are encouraged to seek independent verification of any information provided in this catalogue before relying on such information.

PARENTAGE

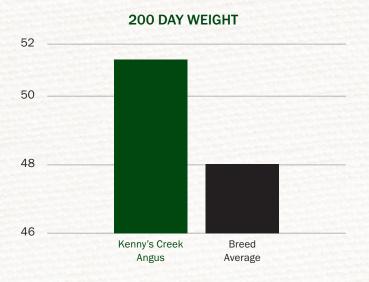
We have tested all bulls in the sale to the highest available parent verification standards offered by Angus Australia. All Q bulls have been successfully sire or parent verified by genomic testing.

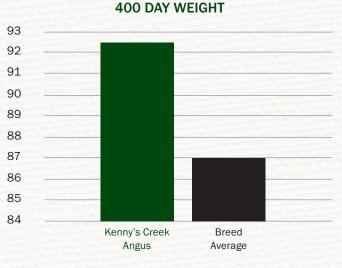
REGISTRATION AND PRIVACY INFORMATION

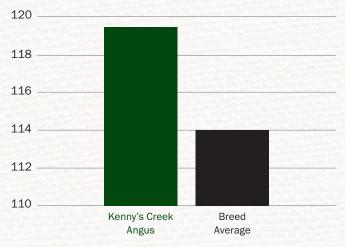
In order for Angus Australia to process the transfer of a registered animal in this catalogue, the vendor will need to provide certain information to Angus Australia and the buyer consents to the collection and disclosure of that information by the vendor and Angus Australia in certain circumstances. If the buyer does not wish for his or her information to be stored and disclosed by Angus Australia, the buyer must complete the form on their website and forward it to Angus Australia. If the form is not completed, the buyer will be taken to have consented to the storage and disclosure of such information.

SEMEN RIGHTS

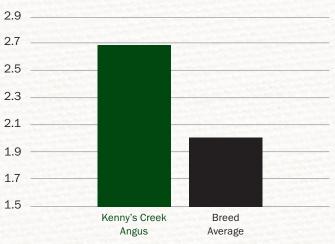
Kenny's Creek retains the right to collect semen for in-herd use from any bulls sold in the sale at our expense and at the convenience of the purchaser.



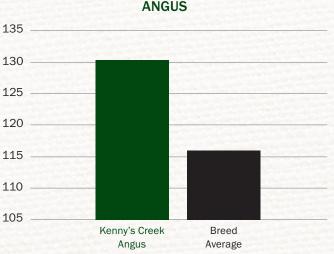




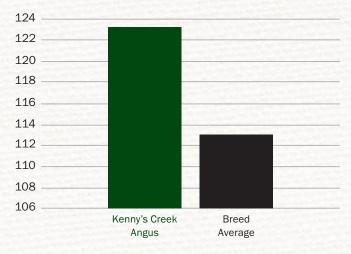
THE PERFORMANCE OF KENNY'S CREEK 2021 SALE BULLS

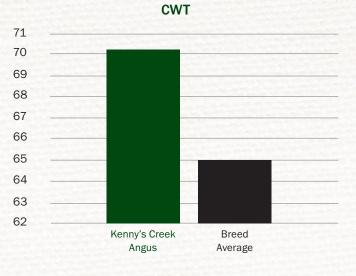


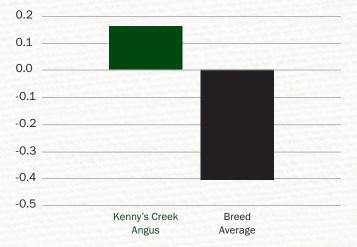



600 DAY WEIGHT

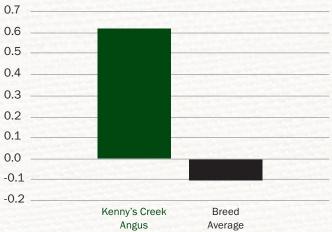
IMF






ANGUS

HEAVY GRASS



RUMP FAT

RIB FAT

Angus

			GROWTH	1		FERT.		(CARCAS	E			INDEX V	ALUES	
	BWT	200	400	600	MWT	SS	CWT	EMA	Rib	Rump	IMF	Angus Breeding	Domestic	Heavy Grain	Heavy Grass
KCA	4.3	51	92	119	104	2.1	70	6.6	0.6	0.2	2.7	130	117	144	123
BA	4.2	48	87	114	98	2	65	6	-0.1	-0.4	2	116	109	122	113

KCA = Kenny's Creek Angus; BA = Breed Average

THE KENNY'S CREEK CONNECTION

CONNECTION TO COMMERCIAL PRODUCTION VALUES

CONNECTION TO INTERNATIONAL MARKETS

CONNECTION TO OUR BULL CLIENTS

- We purchase Kenny's Creek female bloodlines from clients for joining.
- We run our own 1,000 cow commercial Angus herd which provides a benchmark on performance.
- We are our own bull client. Each year 30–40 of our bulls are used internally as back up to our fixed time Artificial Insemination (AI) program. Al is done using our own custom collect semen.
- We manage a commercial feedlot (The Mount, Forbes), allowing us to purchase clients' feeder steers and match data from feedlot performance to genetics and EBVs.
- We travel nationally and abroad to analyse the best genetics and new cattle technologies, giving us insight into world cattle and beef markets.
- KC Natural is a processor, exporter, wholesaler and retailer giving us unique insight into each level of the supply chain.
- We gather feedback on carcase performance to link to Kenny's Creek Angus genetic programs.

- Our deep understanding of the industry helps us to understand and tailor genetics to our clients' herds.
- We focus on the results of clients' breeding strategies by being an active participant in the marketing of livestock and purchasing through our buy back program.

PERFORMANCE AND ANIMAL HEALTH

HEALTH STATUS

BioCheck Biosecurity Plan: The Kenny's Creek Angus herd at Hillgrove, Boorowa has been assessed and tested under the BioCheck Biosecurity Plan and is rated as J-BAS 7.

Pestivirus: Pestivirus is an endemic viral disease in Australia. There is serological evidence of pestivirus in over 70% of beef herds in NSW. The Kenny's Creek pestivirus management plan involves exposing all weaner cattle to the virus. All exposed animals have a lifetime immunity. Refer to our website for further information. All bulls have been tested negative to pestivirus.

INDEPENDENT ASSESSMENT BY CHRIS SAUNDERS FROM PRECISION BREEDING

All of our bulls have independently evaluated for structural soundness and fertility, in particular:

- 1. Semen tested
- 2. Scrotal palpated
- 3. Structurally assessed

HEALTH MANAGEMENT

After you have purchased a low risk bull it is important to manage him correctly to ensure a long, effective working life. Ensure you vaccinate your bulls annually with 7 in 1 and vibrio vaccine. All Kenny's Creek Angus bulls have had their initial two vaccinations and now only require annual vaccination.

Monitor the body condition of your bulls and maintain a condition score of 3. Young bulls require good nutrition. Don't allow your bulls to become overly fat, as fat bulls have a greater risk of injury and also achieve poorer conception rates.

The variation in climatic conditions (temperature extremes) and grazing conditions in Central and Northern Queensland can have a large effect on the quality of semen the bull produces. It is recommended that after you purchase a new bull and relocate him to a new grazing environment that you have his semen examined prior to joining.

MONITORING NEW BULLS

Any new bulls being joined for their first time are at a greater risk of achieving poor conception rates due to injury or infection. It is therefore important to monitor new bulls closely.

What to look out for:

- Lameness.
- Swelling in the area of the penis or testicles.
- Penis unable to be exteriorised from the sheath.
- · Inflamed or reddened penis.
- Bulls attempting to mount but not serving.
- Any signs of systemic disease i.e. lethargic.
- Cows still in estrus towards the end of the joining period.

In well managed herds we expect 60–70% of conception to occur in the first 3 weeks. It is extremely important to monitor new bulls during this period. Cows joined to new bulls need to be inspected 2–3 times per week for the first 3 weeks then weekly thereafter.

It is important to remember that problems can develop during the joining period. Some of these problems cannot be prevented, so early detection is the only way to minimise their impact.

FEET AND LEGS

Great attention is paid to both the feet and legs of animals as part of the Kenny's Creek breeding program to ensure their longevity and working lifespan. It is important to note that no feet are ever trimmed and any identified animals with structural issues are removed from the breeding herd.

TEMPERAMENT

Temperament has been assessed constantly across the whole herd over the last 20 years. All working bulls are selected in part for their libido and fertility attributes and as such require an understanding management approach to their handling.

THE KENNY'S CREEK PROGRAM

The selection and breeding program at Kenny's Creek is driven by a systems based approach that at its heart has a rigorous and non-emotional approach to genetic selection. Our key motivation is to produce trouble free performance bulls for our clients.

A brief summary of the key points of our approach is as follows:

SIRE SELECTION

Kenny's Creek is at the forefront of utilising structural information about our breeding herd, with each animal assessed rigorously. We have developed systems to analyse the data collected and rank the performance of sire and cow lines, enabling us to react early to structural issues inherited by sire lines.

Our sires are comprehensively examined, including progeny, dams, granddams, sisters and any other family members available. Through tightly

researched breeding principles and high accuracy parents, we aim for a low cull rate in bulls presented for sale - we believe this means more predictable progeny for our clients' herds.

Once sires have passed this assessment we then look at EBVs, either on Angus Breedplan or multibreed Breedplan, keeping in mind some of our clients sell steers to the domestic market and some look at the Long Fed index. We are not a "one-index" breeder.

INDEPENDENT ASSESSMENT

All our bulls have been independently evaluated for structural soundness and fertility. The detailed methodology for these assessments is set out under 'Performance and Animal Health'.

OUR GUARANTEE

To the best of our knowledge all bulls are in sound working condition at the time of the sale. If, during the next 12 months, a bull becomes infertile or breaks down, provided it is not caused by injury or disease contracted after leaving Kenny's Creek Angus, we will:

- · replace the bull with as close a match as possible; or
- grant a full credit (less any salvage value) for any purchase at Kenny's Creek Angus sales.

BUY BACK PROGRAM

Each year we buy back heifers, finished cattle and feeder steers from our Kenny's Creek Angus clients. Our objective with the buy back program is to provide premium prices to our bull clients. In the last financial year we have purchased 1,000 breeding heifers and 13,200 feeder cattle.

Kenny's Creek quality offering well received

A QUALITY line of well-presented Angus bulls was met by demand from both stud and commercial cattlemen during the Kenny's Creek Spring Bull Sale at Hillgrove, Boorowa last Thursday oorowa, last Thursday. Overall the Burton Taylor

family sold all but one of their

Tamily sold all but one of their 78 bulls for a top of \$22,000 and average of \$9206. Kenny's Creek L217 P4 fetched the \$22,000 high-price, selling to the Giallom-bardo family of LA Angus, Carrick prear Goulburg Carrick near Goulburn. Weighing 1010 kilograms

at 25 months, he was sired by chased by the Blyth family of Kenny's Creek Proceed L217 and out of the Kenny's Creek Jedda M605 female. Sam Burton Taylor of Ken-

ny's Creek said the bull pre-

Q423 for \$19,000. The 14-month-old daugh-ter of Rennylea Edmund E11 was out of Kenny's Creek

Jack Laurie from Knowla

sented well to buyers and he breed or above, with number of individual traits also in the was so athletic for the weight he was carrying. Boasting short gestation length and top 5pc including; 200-, 400-600-day weights. eve muscle area, carcase weight

short gestation length and high growth, all his indexes were in the top 10 per cent. Offering yearling bulls for the first time in 10 years proved to be a positive move for Kenny's Creek with all 20 wearling 0 draw hulls end to muscle area, carcase weight. Mr Burton Taylor said the yearling draft consisted of bulls that were the result of embryo transfer programs and offered buyers a lot of

yearling Q-drop bulls sold to a top of \$16,000 and an im-pressive average of \$10,700. Kenny's Creek Mojo Q43 was the \$16,000 top-mined working and account and onered buyers a lot of new genetics. "They were terrific figured bulls, with low birth weights up to high 200-, 400- and 600-day growth traits, and great carcase figures," he crited. priced yearling, and second high-seller of the sale, pursaid. Two bulls were picked

Iwo bulls were picked up by Yamba Angus stud at Orange, including Kenny's Creek Kodak P38 for \$15,000 and a yearling, Kenny's Creek Payweight Q477, for \$12,000. Dolocumbla, Adelong. Sired by Landfall Mojo M45 and out of Kenny's Creek Bara N81, all his indexes were in the top 5pc of the

A number of large volu A number of large volume buyers featured including JW Blacker Farms at Lake

Burton Taylor. Auctioneer Luke Whitty of selling agents Kevin Miller, Whitty, Lennon and Co stud stock, said the quality of the

"They were very consist-ent right through all the two-year-old bulls, and

JW blacker Farms at Lake Cargelligo, DJ and JK Cur-tis of The Wilgas, Trundle, James Henwood of Barkalap-ark, Wagga Wagga, and Peter Stewart, The Falls, Neville. Heifer bulls were well supported, according to Mr Burton Twiter.

bulls was outstanding.

two-year-old buils, and they displayed great carcase attributes, great muscling, with softness and figures to match," Mr Whitty said

Creek Angus, with the \$22,000 sale-topper purchased by LA Angus, Carrick. Photo: Hannah Powe

Q bulls really were a real stand out and sold like hot cakes. They were very near "In particular the yearling

yearlings again in the future." Mr Whitty shared auc-tioneering duties with fellow KMWL agent Liam Murphy. – HANNAH POWE cakes. They were very popu-lar and I think they will offer

Kenny's Creek heifer to \$19k

BY HANNAH POWE

ANGUS studs chasing maternal lines and figures drove prices to a \$19,000 top and allowed for a full clearance at the Kenny's Creek Angus Female Sale at Boorowa, last Thursday. Overall the Burton Taylor

family sold all 99 lots for a total sale average of \$6934, with their Q-drop heifers 20pc for another three traits Jack Laurie from Knowla and JRGV said they select-ed the Q423 heifer for her length, width and overall balance combined with a data set and cow family that demanding attention from

A syndicate of Angus breeders including Knowla Livestock and JRGV Angus both of Moppy, Aarden An-gus, Corowa, and Waitara speaks for its self. Greg White of Robrick Lodge Thoroughbreds Pty Angus, Trangie, joined forces

Was out of Kenny's Creek Bara L101, and presented a credible data set which had her in the top one per cent of the breed for all selection indexes, as well as top 5pc or higher for eight traits and top 20ce for another three traits

Kenny's Creek co-principal Sam Burton Taylor and daughter Billie, 7, with auctioneer Luke Whitty, KM er Luke Whitty, KMWL the \$19,000 high-priced fer Photo: Har

Parkville, paid the secn Kenny's Creek Ninah ond top price of \$16,000 for K309, at 14 months she sat top 10pc for all growth traits. Mr White purchased three Kenny's Creek Ninah O428. By HPCA Intensity and

lots for a \$14,333 average In the breakdown, 70 cows and calves topped at \$15,000 and averaged \$7028, while 29 yearling heifers topped at \$19,000 and averaged \$6706. Sam Burton Taylor of Ken Sam Burton Taylor of Ken-ny's Creek said they were re-ally pleased with the results, which saw females sold to some great studs throughout the eastern states.

The eastern states. "The Q yearling females sold really well," Mr Burton Taylor said. "They were a good representation of our breeding going forward." Sara Park Angus and Dud-ty Angus et Clarp Inneg paid

dy Angus at Glen Innes paid the top money of \$15,000 in the cow section for a donor

female in Kenny's Creek Bara L120. Sired by GAR Prophet out of Kenny's Creek Bara J246, she sold with a calf at foot by GAR Ashland.

Large volume buyers were IA and DM Flemming of pro anu DM Flemming of Wagga Wagga who bought 14 for a top of \$7000 top, twice, and average of \$5429.

First-time buyers Col Flanagan and Pat Ebert of Prime Angus, Benalla, Vic pur chased 10 females through Ryan Morris of Glasser Total Sales Management for a top of \$12,000, to average \$7400. Kevin Miller, Whitty, Len-

non and Co were agents with auctioneers Luke Whitty and Liam Murphy

THE CHECKLIST

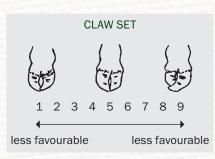
BLOOD TESTED NEGATIVE FOR PESTI VIRUS. ANNUAL PESTIGUARD VACCINATED (ANNUAL VACCINATION RECOMMENDED)

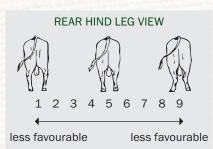
7-IN-1 VACCINATION

VIBRIOSIS VACCINATION (2 INITIAL + 1 PRE SALE) AND SOLD WITH A LIFETIME ANIMAL HEALTH RECORD

ALL BULLS HAVE THREE FORMS OF IDENTIFICATION – TAG, NLIS AND FREEZE BRAND

KENNY'S CREEK GUARANTEE



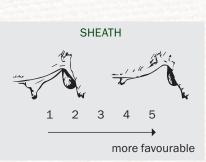

SOCIETY TRANSFER IF REQUESTED

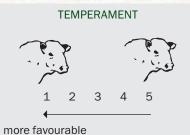
STRUCTURAL ASSESSMENT

KENNY'S CREEK STRUCTURAL PROGRAM

The 2021 Kenny's Creek Spring sale bulls have been independently structurally assessed to maximise the quality of stock on offer. Any animals deemed inadequate have been removed from the sale draft. The Kenny's Creek sale bulls were assessed by Chris Saunders of Precision Breeding on 2nd July 2021.

FRONT AND REAR FOOT ANGLE


less favourable less favourable




less favourable less fa

less favourable

SEE SALE VIDEOS AT WWW.KENNYSCREEK.COM.AU

DUNOON PRIME MINISTER P758

Mid April 2021 TransTasman Angus Cattle Evaluation

		CALVIN	IG EASE				GROWTH			FERT	LITY
	Calv. Ease Dir	Calv. Ease Dtrs	Gest Lgth	Birth Wt.	200 Day Grwth	400 Day Wt.	600 Day Wt.	Mat Cow	Milk	Days to Calving	Scrotal Size
EBV	+3.0	+4.7	-9.7	+5.0	+54	+99	+132	+122	+21	-6.0	+4.0
Perc	47	33	2	69	21	16	14	14	18	27	2
			CA	RCASE				SELEC	TION INDEX		
	Carc. Wt.	EMA	Rib Fat	Rump Fat	RBY	IMF	Angus Breeding Index	Domestic Index	Heavy Grain Index	Heavy Grass Index	
EBV	+82	+8.8	-0.7	-1.2	+1.0	+3.4	\$156	\$132	\$185	\$142	
Perc	6	12	68	71	28	9	3	5	3	4	

Top 20%

Traits Observed: BWT, 200WT, 400WT, SC, Scan (EMA ,Rib, Rump, IMF), DOC, Genomics

Dunoon Prime Minister P758 in hot demand with over 1000 doses sold

19 Jul 2021, 8 a.m.

When a "rare find" walks into the sale ring at any auction in any breed, buyers can't help but dream and want in on the action.

Creating a whirlwind of excitement at last year's Dunoon Spring Angus Bull Sale in August was a bull that did just that, make people think of the future.

Beef News

Dunoon Prime Minister P758 is a bull that turned heads offering a unique package of phenotype, type and figures, a combination of traits that sparked interest and had him named the \$140,000 top-priced Angus bull and toppriced bull sold in New South Wales in 2020.

The elite sire in the making purchased by Jim and Jackie Wedge, Ascot Cattle, Warwick, Qld, the Bateman family, Gilmandyke Angus, Orange and the Burton Taylor family at Kenny's Creek Angus, Boorowa, set the season high as several stud buyers went toe-to-toe before the syndicate laid the final blow to ABS Australia who was the underbidder.

www.dunoonprimeminister.com.au

COMMERCIAL COWS AND CALVES TO BE SOLD

50 THREE YEAR OLD COMMERCIAL COWS AND CALVES

- Three year old P cows with calves at foot from our commercial herd at Breakfast Creek Station
- All calves are sired by Dunoon Prime Minister P758 and they are the first commercial calves to be offered for sale
- To be sold as five lots with bidding on site or on Auctions Plus. Assessment to be completed mid August
- To be sold at 1pm on 1 September prior to Lot 1 of the bulls
- · Sires of the P cows (AI) include:
- NDIL123
- NDIL463
- NDIH16
- NDIJ62

NDIL123

P COW REFERENCE SIRES

NDI	116		KENN	'S CR	EEK B	ERKLE	Y H16	^{₽V} (HBI	R)									
DOB 2	29/2/12		SIRE: V	TMB1 x	NDIF66					100								1
TACE	BIRTH		G	ROWTH			FERTILITY			CAR	CASE			OTHER		INDEX	VALUES	
200	DIR	BWT	200	400	600	MWT	SS	CWT	EMA	Rib	Rump	RBY	IMF	DOC	ABI	DOM	HGRN	HGRS
EBV	5.2	4.9	46	87	108	104	1.5	68	8.2	1.8	1.9	-1.5	2.9	-2	\$132	\$116	\$147	\$123

NDIJ	62		KENN	'S CR	EEK W	/ESTW/	ARD Je	6 2 ^{sv} (H	IBR)									
DOB 1	15/3/13		SIRE: US	SA1573	8589 x	CCVE15	58										-	
TACE	BIRTH		G	ROWTH			FERTILITY			CAR	CASE			OTHER		INDEX	VALUES	
200	DIR	BWT	200	400	600	MWT	SS	CWT	EMA	Rib	Rump	RBY	IMF	DOC	ABI	DOM	HGRN	HGRS
EBV	-5.1	6.6	56	104	150	138	0.1	73	-2.6	0.3	0.4	-1.7	1	-7	\$97	\$85	\$94	\$101

NDIL	.123		KENN	'S CR	EEK IN	ITENSI	TY L12	23 ^{sv} (H	IBR)									
DOB 2	20/7/15		SIRE: US	SA1736	6506 x	NDIJ26	5											
TACE	BIRTH		G	ROWTH			FERTILITY			CAR	CASE			OTHER		INDEX V	VALUES	
200	DIR	BWT	200	400	600	MWT	SS	CWT	EMA	Rib	Rump	RBY	IMF	DOC	ABI	DOM	HGRN	HGRS
EBV	0.6	5.7	67	119	150	115	1.2	91	8.5	8.5	8.5	8.5	8.5	2	\$166	\$141	\$188	\$154

NDIL	_463		KENN	′'S CR	EEK E	DMUNI	D L463	^{в рv} (НЕ	BR)									
DOB 2	22/7/15		SIRE: N	ORE11	x NDID	62												
TACE	BIRTH		G	ROWTH			FERTILITY			CAR	CASE			OTHER		INDEX	VALUES	
200	DIR	BWT	200	400	600	MWT	SS	CWT	EMA	Rib	Rump	RBY	IMF	DOC	ABI	DOM	HGRN	HGRS
EBV	7.4	3.1	41	73	102	73	2.6	58	5.3	3.9	3	-1.7	2.9	-	\$130	\$107	\$141	\$121

BREED AVERAGE EBVS

s	GRS	+114
INDEXE	GRN	+124
SELECTION INDEXES	DOM	+110
SE	ABI	+118
TURE	Claw	+0.85
STRUCTURE	Angle	+0.98
ER	DOC	9+
OTHER	NFI-F	+0.17
	IMF	+2.0
	RBY	+0.5
ARCASE	P8	-0.4
CAR	RIB	-0.1
	EMA	+6.0
	CWT	+65
ERTILITY	DTC	4.6
FERT	SS	+2.0
	Milk	+17
_	MCW	+98
GROWTH	600	+114
	400	+87
	200	+48
BIRTH	BW	+4.2
BIR	GL	4.5
GEASE	CEDtrs	+2.6
CALVING EASE	CEDir	+1.9
		Brd Avg

* Breed average represents the average EBV of all 2019 drop Australian Angus -influenced seedstock animals analysed in the Mid July 2021 TransTasman Angus Cattle Evaluation

PERCENTILE BANDS TABLE

	GRS	Greater Profitability	+151	+141	+135	+132	+129	+127	+124	+122	+120	+119	+117	+115	+113	+110	+108	+105	+102	+98	+93	+83	0+	Lower Profitability
INDEXE	GRN	Greater Profitability	+192	+174	+164	+157	+152	+147	+143	+139	+135	+131	+127	+123	+120	+115	+111	+106	66+	+92	+82	+66	0+	Profitability
ELECTION INDEXE	DOM	Greater Profitability	+140	+132	+128	+125	+122	+120	+119	+117	+115	+114	+112	+111	+109	+107	+105	+103	+100	+97	+93	+85	0+	Profitability
SE	ABI	Greater Profitability	+164	+152	+145	+140	+137	+133	+131	+128	+125	+123	+120	+118	+115	+112	+109	+106	+101	96+	+89	+77	0+	Lower Profitability
TURE	Claw	More Sound	+0.42	+0.54	+0.62	+0.66	+0.70	+0.72	+0.74	+0.78	+0.80	+0.82	+0.84	+0.86	+0.88	+0.92	+0.94	+0.96	+1.00	+1.04	+1.10	+1.16	+1.32	punoS ssəJ
STRUCTURE	Angle	More Sound	+0.60	+0.72	+0.76	+0.80	+0.84	+0.86	+0.88	+0.92	+0.94	+0.96	+0.98	+1.00	+1.02	+1.04	+1.06	+1.08	+1.12	+1.14	+1.20	+1.26	+1.42	punoS ssəJ
OTHER	DOC	More Docile	+33	+25	+20	+18	+16	+14	+12	+11	6+	8+	9+	ی +	+4	+2	0+	Ņ	'n	φ	ၐ	-13	-21	Less Docile
OTH	NFI-F	Greater Feed Efficiency	-0.56	-0.33	-0.22	-0.14	-0.08	-0.03	+0.01	+0.05	+0.09	+0.13	+0.17	+0.21	+0.24	+0.28	+0.33	+0.37	+0.43	+0.49	+0.57	+0.70	+0.95	Lower Feed Efficiency
	IMF	More IMF	+4.5	+3.8	+3.4	+3.1	+2.9	+2.7	+2.5	+2.3	+2.2	+2.1	+1.9	+1.8	+1.7	+1.6	+1.5	+1.3	+1.2	+1.0	+0.8	+0.5	-0.1	AMI 2291
	RBY	Higher Yield	+2.8	+2.1	+1.7	+1.5	+1.3	+1.1	+1.0	+0.9	+0.8	+0.6	+0.5	+0.4	+0.3	+0.2	+0.1	-0.1	-0.2	-0.4	-0.7	-1.1	-2.0	Lower Yield
CARCASE	P8	More Fat	+3.3	+2.0	+1.4	+1.1	+0.8	+0.5	+0.3	+0.1	-0.1	-0.2	-0.4	-0.6	-0.8	-1.0	-1.2	-1.4	-1.6	-1.9	-2.3	-2.9	-4.1	tess Fat
CAR	RIB	More Fat	+3.3	+2.1	+1.6	+1.2	+1.0	+0.7	+0.6	+0.4	+0.2	+0.1	-0.1	-0.2	-0.4	-0.6	-0.7	-0.9	-1.1	-1.4	-1.7	-2.2	-3.2	Less Fat
	EMA	AM3 זאפפר	+12.5	+10.3	+9.2	+8.4	+7.9	+7.4	+7.0	+6.7	+6.4	+6.1	+5.8	+5.5	+5.3	+5.0	+4.7	+4.3	+4.0	+3.5	+3.0	+2.1	+0.4	AM3 19llsm2
	CWT	Heavier Carcase Weight	+91	+83	+78	+76	+74	+72	+70	+69	+68	+66	+65	+64	+63	+61	+60	+58	+57	+54	+52	+47	+37	Lighter Carcase JngieW
FERTILITY	DTC	Shorter Time to Calving	-9.7	-8.2	-7.4	6.9	-6.5	-6.1	-5.8	-5.5	-5.2	-4.9	4.7	4.4	4.1	-3.9	-3.6		-2.9	-2.5	-1.9	-0.9	+1.3	Longer Time to Calving
FER'	SS	Larger Scrotal Size	+4.3	+3.5	+3.1	+2.9	+2.7	+2.5	+2.4	+2.3	+2.2	+2.1	+2.0	+1.8	+1.7	+1.6	+1.5	+1.4	+1.3	+1.1	+0.9	+0.5	-0.2	Smaller Scrotal Size
	Milk	Heavier Live Weight	+28	+24	+23	+22	+21	+20	+19	+19	+18	+17	+17	+16	+16	+15	+15	+14	+13	+12	+11	+10	7+7	Lighter Live Meight
-	MCW	Heavier Mature Weight	+154	+135	+126	+120	+116	+112	+109	+106	+103	+101	+98	96+	+93	-90	+88	+85	+81	+77	+72	+63	+45	Lighter Mature Meight
GROWTH	600	Heavier Live Weight	+156	+142	+136	+131	+128	+125	+122	+120	+118	+116	+114	+112	+110	+108	+105	+103	+100	+97	+93	+85	69+	Lighter Live Weight
	400	Heavier Live Weight	+117	+107	+102	66+	+97	+95	+93	+91	06+	+89	+87	+86	+84	+83	+81	+80	+78	+75	+72	+67	+56	Lighter Live Weight
	200	Heavier Live Weight	+66	+61	+58	+56	+54	+53	+52	+51	+50	+49	+48	+48	+47	+46	+45	+44	+43	+41	+39	+36	+29	Lighter Live Weight
BIRTH	BW	Lighter Birth Weight	+0.2	+1.5	+2.2	+2.6	+2.9	+3.1	+3.4	+3.6	+3.8	+4.0	+4.2	+4.4	+4.6	+4.8	+5.0	+5.3	+5.6	+5.9	+6.3	+7.0	+8.3	Heavier Birth Meight
BIF	GL	Shorter Gestation Length	-10.5	-8.6	-7.6	-7.0	-6.5	-6.1	-5.7	-5.4	-5.1	-4.8	4.5	-4.2	-3.9	-3.6	-3.3	-3.0	-2.6	-2.1	-1.6	-0.6	+1.3	noitsteað regrod dtgned
EASE	CEDtrs	Less Calving Difficulty	+10.9	+9.0	+7.8	+7.0	+6.3	+5.6	+5.0	+4.5	+4.0	+3.4	+2.9	+2.4	+1.8	+1.2	+0.6	-0.1	-0.9	-1.8	-3.1	-5.1	-9.5	More Calving Difficulty
CALVING EAS	CEDir	Less Calving Difficulty	+12.2	+9.8	+8.4	+7.4	+6.6	+5.8	+5.1	+4.5	+3.8	+3.2	+2.5	+1.8	+1.1	+0.4	-0.5	-1.4	-2.4	-3.6	-5.2	-7.8	-13.4	More Calving Difficulty
			1%	5%	10%	15%	20%	25%	30%	35%	40%	45%	50%	55%	60%	65%	70%	75%	80%	85%	80%	95%	89%	

MID JULY 2021 ANGUS BREEDPLAN REFERENCE TABLES

UNDERSTANDING THE TRANS TASMAN ANGUS CATTLE EVALUATION

TACE (TransTasman Angus Cattle Evaluation) is the genetic evaluation program adopted by Angus Australia for Angus and Angus infused beef cattle. TACE uses Best Linear Unbiased Prediction (BLUP) technology to produce Estimated Breeding Values (EBVs) of recorded cattle for a range of important production traits (e.g. weight, carcase, fertility).

TACE includes pedigree, performance and genomic information from the Angus Australia and New Zealand Angus Association databases to evaluate the genetics of animals across Australia and New Zealand. TACE analyses are conducted by the Agricultural Business Research Institute (ABRI), using software developed by the Animal Genetics and Breeding Unit (AGBU), a joint institute of NSW Agriculture and the University of New England. Ongoing TACE research and development is supported by Meat and Livestock Australia.

WHAT IS AN EBV?

An animal's breeding value can be defined as its genetic merit for each trait. While it is not possible to determine an animal's true breeding value, it is possible to estimate it. These estimates of an animal's true breeding value are called EBVs (Estimated Breeding Values).

USING EBVS TO COMPARE THE GENETICS OF TWO ANIMALS

Angus BREEDPLAN EBVs can be used to estimate the expected difference in the genetics of two animals, with the expected difference equating to half the difference in the EBVs of the animals, all other things being equal (e.g. they are joined to the same animal/s).

USING EBVS TO BENCHMARK AN ANIMAL'S GENETICS WITH THE BREED

EBVs can also be used to benchmark an animal's genetics relative to the genetics of other Angus or Angus infused animals in Australia and New Zealand.

To benchmark an animal's genetics relative to other Angus animals, an animal's EBV can be compared to:

- the breed average EBV
- · the percentile table

The current breed average EBV and percentile table is provided in these explanatory notes.

CONSIDERING ACCURACY

An accuracy value is published in association with each EBV, which is usually displayed as a percentage value immediately below the EBV. The accuracy value provides an indication of the reliability of the EBV in estimating the animal's genetics (or true breeding value), and is an indication of the amount of information that has been used in the calculation of the EBV.

DESCRIPTION OF ANGUS BREEDPLAN EBVS

EBVs are calculated for a range of traits within the TransTasman Angus Cattle Evaluation, covering calving ease, growth, fertility, maternal performance, carcase merit, feed efficiency and structural soundness. A description of each EBV included in this sale catalogue is provided below.

BIRTH

Calving Ease Direct (%): Genetic differences in the ability of a sire's calves to be born unassisted from 2 year old heifers. Higher EBVs indicate fewer calving difficulties in 2 year old heifers.

Calving Ease Daughters (%): Genetic differences in the ability of a sire's daughters to calve unassisted at 2 years of age. Higher EBVs indicate fewer calving difficulties in 2 year old heifers.

Gestation Length (days): Genetic differences between animals in the length of time from the date of conception to the birth of the calf. Lower EBVs indicate shorter gestation length.

Birth Weight (kg): Genetic differences between animals in calf weight at birth. Lower EBVs indicate lighter birth weight.

GROWTH

200 Day Growth (kg): Genetic differences between animals in live weight at 200 days of age due to genetics for growth. Higher EBVs indicate heavier live weight.

400 Day Weight (kg): Genetic differences between animals in live weight at 400 days of age. Higher EBVs indicate heavier live weight.

600 Day Weight (kg): Genetic differences between animals in live weight at 600 days of age. Higher EBVs indicate heavier live weight.

Mature Cow Weight (kg): Genetic differences between animals in live weight of cows at 5 years of age. Higher EBVs indicate heavier mature weight.

Milk (kg): Genetic differences between animals in live weight at 200 days of age due to the maternal contribution of its dam. Higher EBVs indicate heavier live weight.

FERTILITY

Days to Calving (kg): Genetic differences between animals in the time from the start of the joining period (i.e. when the female is introduced to a bull) until subsequent calving. Lower EBVs indicate shorter time to calving.

Scrotal Size (cm): Genetic differences between animals in scrotal circumference at 400 days of age. Higher EBVs indicate larger scrotal circumference.

RECESSIVE GENETIC CONDITIONS

The genetic status of an animal is subject to change and will be re-analysed and adjusted each week as DNA test results of relatives are received. For information on recessive genes visit www.angusaustralia.com.au.

18

REFERENCE SIRES

USA1	796072	22	BALDR	IDGE B	EAST I	MODE	3074 ^{pv}	' HBR						L	ots - 19,	22, 32,	33, 34
DOB 07	7/02/20)14	SIRE: US	A16295	688 G A	R PROF	PHET ^{sv} x	DAM: U	SA1714	9410 BA		E ISABE	L Y69 #				
TACE	BIRTH GROWTH FERTILITY														CASE		
\sim	DIR	DTRS	GL	BWT	200	400	600	MWT	Milk	SS	DC	CWT	EMA	Rib	Rump	RBY	IMF
EBV	+6.8	+4.4	-3.7	+3.3	+74	+123	+152	+126	+19	+2.4	-6.1	+78	+5.5	-1.1	-2.1	+0.9	+2.5
Acc	89%	69%	99%	99%	98%	98%	98%	91%	86%	98%	57%	87%	89%	88%	85%	83%	87%
Mid Jul	y 2021 T	ransTas	man Angus	Cattle Ev	aluation									TF	AITS OBS	ERVED G	enomics

G A R DRIVE PV HBR Lots - 10, 28, 36, 50, 62 USA18301470 DOB 04/01/2015 SIRE: USA17354145 G A R MOMENTUM PV X DAM: USA17670660 MAPLECREST BLACKCAP 3007 * BIRTH GROWTH FERTILITY CARCASE TACE DIR IMF BWT 200 MWT Milk CWT EMA RBY GL 400 DTRS 600 SS DC Rib Rump EBV +1.4 -1.3 -2.7 +2.6 +53 +94 +121 +106 +22 +1.4 +2.4 +69 +14.3 -0.3 -1.1 +1.7 +3.1 Acc 79% 61% 98% 98% 96% 97% 95% 86% 80% 95% 53% 85% 87% 87% 84% 82% 85% **TRAITS OBSERVED** Genomics Mid July 2021 TransTasman Angus Cattle Evaluation

Lots - 27, 35, 47, 61, 70 USA17366506 **HPCAINTENSITY # HBR** DOB 26/01/2012 SIRE: USA16497066 G A R INGENUITY * X DAM: USA16078549 G A R PREDESTINED 287L * BIRTH GROWTH FERTILITY CARCASE TACE DIR GL BWT 200 400 600 MWT Milk DC CWT EMA Rib RBY IMF DTRS SS Rump EBV -12.3 +64+112+147+127+25+0.6-5.4 +88+10.4-1.1 -3.6 +7.1-0.1 -1.1 +0.8+3.698% 80% 96% 95% Acc 95% 87% 99% 99% 98% 98% 98% 98% 98% 96% 95% 94% 95% TRAITS OBSERVED Genomics

Mid July 2021 TransTasman Angus Cattle Evaluation

DGJG	10		ALLOUI	RA GET	CRAC	KING G	i 10 ^{sv} ł	IBR								Lots -	17, 24
DOB 14	4/08/20)11 ;	SIRE: VT	MB1 TE	MANIA B	BERKLEY	′ В1 ^р х	DAM: DO	JZ15 A	LOURA	JEDDA 2	215 #					
TACE		BIRTH				GRO	WTH			FERT	ILITY			CAR	CASE		
	DIR	DTRS	GL	BWT	200	400	600	MWT	Milk	SS	DC	CWT	EMA	Rib	Rump	RBY	IMF
EBV	+11.0	+9.7	-3.6	+2.4	+43	+78	+86	+79	+15	-0.3	-9.3	+56	+13.8	+1.6	+0.4	-1.0	+5.1
Acc	88%	76%	99%	98%	98%	98%	97%	96%	93%	96%	67%	93%	90%	92%	90%	86%	89%
Mid Ju	ly 2021 T	ransTasm	nan Angus	Cattle Ev	aluation		TF	RAITS OBS	SERVED G	L,CE,BW	T,200WT,	400WT,6	00WT,SC,	Scan(EM	A,Rib,Run	ıp,IMF),G	enomics

WWEI	L3		ESSLE	MONT L	OTTO	L3 ^{₽V} H	BR									Lots -	14, 40
DOB 03	3/01/20	015	SIRE: HIG	G18 AY	RVALE (GENERA	L G18 PV	x DAM: ۱	WWEJ8	ESSLEM	IONT JEN	NY J8 P	/				
TACE		BIRTH				GRO	WTH			FERT	TILITY			CAR	CASE		
	DIR	DTRS	GL	BWT	200	400	600	MWT	Milk	SS	DC	CWT	EMA	Rib	Rump	RBY	IMF
EBV	-4.1	-5.3	-6.0	+4.4	+59	+106	+138	+134	+26	+3.5	-10.5	+87	+11.4	+0.2	+0.2	+1.5	+4.1
Acc	92%	82%	99%	99%	98%	98%	98%	97%	95%	98%	68%	94%	93%	93%	92%	91%	92%

Mid July 2021 TransTasman Angus Cattle Evaluation

TRAITS OBSERVED GL, BWT, 200WT, 400WT, DOC, Genomics

NOR	〈 522	ĺ	RENNY	LEA KC)DAK K	522 ^{sv}	HBR									Lots -	18, 21
DOB 1	1/08/20	014	SIRE: NO	RE11 R	ENNYLE	A EDMU	ND E11	PV X DAM	: NORF8	10 REN	NYLEA E	ISA ERI	CA F810) #			
TACE		BIRTH				GRO	WTH			FERT	ILITY			CAR	CASE		
\sim	DIR	DTRS	GL	BWT	200	400	600	MWT	Milk	SS	DC	CWT	EMA	Rib	Rump	RBY	IMF
EBV	+12.0	+12.1	-6.5	+1.6	+49	+89	+121	+123	+12	+4.7	-7.4	+67	+3.2	+3.3	+1.2	-1.2	+3.9
Acc	88%	76%	99%	98%	97%	98%	97%	95%	91%	97%	67%	91%	90%	91%	89%	88%	88%
Mid Ju	ly 2021 T	ransTasm	nan Angus	Cattle Ev	aluation		TRA	ITS OBSE	RVED GL	,BWT,200)WT,400V	VT,600W1	r,SC,Scar	(EMA,Rib	,Rump,IM	F),DOC,G	enomics

TFAM	45		LANDF	ALL MC	JO M4	5 ^{sv} HE	BR									Lo	ts - 64
DOB 15	5/07/20	16	SIRE: HI	OE7 AYR	VALE BA	RTEL E7	Y PV X DA	M: TFAK	696 LAN	IDFALL E	ELSA K6	96 #					
TACE		BIRTH				GRO	WTH			FERT	ILITY			CAR	CASE		
	DIR	DTRS	GL	BWT	200	400	600	MWT	Milk	SS	DC	CWT	EMA	Rib	Rump	RBY	IMF
EBV	-3.9	+8.6	-6.6	+6.3	+62	+112	+145	+118	+17	+2.3	-7.7	+84	+9.4	+0.5	-0.4	+1.0	+2.8
Acc	85%	70%	98%	97%	95%	96%	96%	86%	85%	92%	58%	83%	82%	84%	82%	79%	81%
		_												-			

Mid July 2021 TransTasman Angus Cattle Evaluation

TRAITS OBSERVED GL,CE,BWT,200WT,400WT,600WT,SC,Scan(EMA,Rib,Rump,IMF),Genomics

SALE LOT INDEX

ID	Animal Name	Lot No.
	KENNY'S CREEK	5
NDIQ11	MOJO Q11	
NDIQ27	KENNY'S CREEK MOJO Q27	55
NDIQ34	KENNY'S CREEK BEAST MODE Q34	6
NDIQ36	KENNY'S CREEK MOJO Q36	12
NDIQ37	KENNY'S CREEK MOJO Q37	53
NDIQ45	KENNY'S CREEK MOMENTUM Q45	59
NDIQ46	KENNY'S CREEK MOJO Q46	65
NDIQ47	KENNY'S CREEK CAPITALIST Q47	67
NDIQ51	KENNY'S CREEK MARBLES Q51	23
NDIQ52	KENNY'S CREEK M155 Q52	13
NDIQ53	KENNY'S CREEK BEAST MODE Q53	22
NDIQ60	KENNY'S CREEK M155 Q60	54
NDIQ62	KENNY'S CREEK N200 Q62	1
NDIQ66	KENNY'S CREEK M1 Q66	30
NDIQ75	KENNY'S CREEK L463 Q75	70
NDIQ78	KENNY'S CREEK DRIVE Q78	63
NDIQ84	KENNY'S CREEK REGENT H147 Q84	56
NDIQ93	KENNY'S CREEK COMPASS Q93	11
NDIQ94	KENNY'S CREEK DRIVE Q94	52
NDIQ95	KENNY'S CREEK H147 Q95	51
NDIQ103	KENNY'S CREEK DRIVE Q130 Q103	29
NDIQ104	KENNY'S CREEK MOMENTUM Q104	46
NDIQ108	KENNY'S CREEK CHISUM Q108	2
NDIQ110	KENNY'S CREEK INTENSITY L123 Q110	31

ID	Animal Name	Lot No.
NDIQ116	KENNY'S CREEK DRIVE Q116	10
NDIQ117	KENNY'S CREEK EDMUND Q117	38
NDIQ118	KENNY'S CREEK LOTTO Q118	43
NDIQ119	KENNY'S CREEK LOTTO Q119	14
NDIQ125	KENNY'S CREEK DRIVE Q125	37
NDIQ127	KENNY'S CREEK MOJO Q127	7
NDIQ128	KENNY'S CREEK Q128	8
NDIQ131	KENNY'S CREEK MOMENTUM Q131	48
NDIQ141	KENNY'S CREEK Q141	25
NDIQ147	KENNY'S CREEK Q147	47
NDIQ158	KENNY'S CREEK Q158	44
NDIQ161	KENNY'S CREEK Q161	4
NDIQ167	KENNY'S CREEK Q167	60
NDIQ168	KENNY'S CREEK Q168	3
NDIQ171	KENNY'S CREEK Q171	45
NDIQ176	KENNY'S CREEK Q176	68
NDIQ185	KENNY'S CREEK Q185	15
NDIQ409	KENNY'S CREEK INTENSITY L123 Q409	26
NDIQ413	KENNY'S CREEK INTENSITY L123 Q413	27
NDIQ422	KENNY'S CREEK EDMUND Q422	16
NDIQ449	KENNY'S CREEK INTENSITY L123 Q449	32
NDIQ455	KENNY'S CREEK INTENSITY Q455	36
NDIQ458	KENNY'S CREEK REGENT H147 Q458	39
NDIQ467	KENNY'S CREEK REGENT H147 Q467	40

ID	Animal Name	Lot No.
NDIQ485	KENNY'S CREEK GET CRACKING Q485	24
NDIQ500	KENNY'S CREEK INTENSITY Q500	62
NDIQ504	KENNY'S CREEK INTENSITY Q504	70A
NDIQ519	KENNY'S CREEK INTENSITY Q519	49
NDIQ537	KENNY'S CREEK PAYWEIGHT Q537	61
NDIQ544	KENNY'S CREEK INTENSITY Q544	28
NDIQ550	KENNY'S CREEK PAYWEIGHT Q550	58
NDIQ554	KENNY'S CREEK INTENSITY L123 Q554	42
NDIQ578	KENNY'S CREEK INTENSITY L123 Q578	41
NDIQ582	KENNY'S CREEK KODAK Q582	21
NDIQ585	KENNY'S CREEK CAPITALIST Q585	20
NDIQ601	KENNY'S CREEK GET CRACKING Q601	17
NDIQ614	KENNY'S CREEK BEAST MODE Q614	35
NDIQ626	KENNY'S CREEK BEAST MODE Q626	19
NDIQ628	KENNY'S CREEK BEAST MODE Q628	34
NDIQ632	KENNY'S CREEK KODAK Q632	18
NDIQ634	KENNY'S CREEK CAPITALIST Q634	69
NDIQ638	KENNY'S CREEK PAYWEIGHT Q638	66
NDIQ639	KENNY'S CREEK BEAST MODE Q639	33
NDIQ808	KENNY'S CREEK Q808	9
NDIQ809	KENNY'S CREEK Q809	57
NDIQ811	KENNY'S CREEK Q811	50
NDIQ819	KENNY'S CREEK Q819	64

	Heavy Grass	\$154	\$113	\$116	\$124	\$162	\$138	\$120	\$126	\$129	\$108	\$129	\$138	\$135	\$128	\$116	\$130	\$132	\$136	\$125	\$149	\$114	\$117	\$103	\$138	\$128	\$148	\$146	\$123	\$112	\$105	\$133	\$140	\$129	\$128	\$128	\$127	+114
ES																																						
SELECTION INDEXES	Heavy Grain	\$180	\$94	\$144	\$165	\$193	\$167	\$143	\$148	\$167	\$116	\$147	\$167	\$136	\$151	\$145	\$176	\$188	\$170	\$131	\$171	\$148	\$126	\$106	\$179	\$149	\$171	\$181	\$139	\$118	\$125	\$149	\$164	\$136	\$141	\$140	\$168	+124
SELECTIC	Domestic	\$134	\$112	\$113	\$116	\$149	\$133	\$117	\$119	\$124	\$109	\$120	\$131	\$111	\$118	\$114	\$123	\$127	\$121	\$120	\$138	\$115	\$121	\$105	\$136	\$115	\$136	\$138	\$114	\$107	\$103	\$126	\$127	\$119	\$121	\$123	\$117	+110
	Angus Breeding	\$163	\$108	\$124	\$139	\$174	\$148	\$127	\$135	\$140	\$109	\$134	\$148	\$135	\$137	\$126	\$147	\$152	\$148	\$128	\$157	\$127	\$120	\$105	\$154	\$135	\$156	\$158	\$129	\$114	\$112	\$138	\$148	\$131	\$133	\$132	\$141	+118
	cs	0.64	1.02	0.76	0.56	0.76	0.7	0.78	1.12	0.94	1.02	0.66	1.08	0.38	0.98	0.7	0.74	0.68	0.68	0.7	0.88	0.56	0.86	0.54	0.92	0.94	0.86	0.94	0.72	1.04	0.58	0.92	0.68	0.5	0.84	0.56	0.78	,
	FA	0.88	0.86	0.86	0.78	0.84	0.62	0.82	0.98	-	0.74	0.88	1.02	0.9	1.08	1.08	1.14	-	0.84	0.6	0.9	0.94	0.74	1.06	1.16	1.08	0.84	0.9	0.86	1	0.8	1.04	0.72	0.5	0.72	0.72	0.92	,
OTHER	DOC				•		•	•								1			•	•					1	1					ı	1	1			•		9+
0	NFI-F	+0.58	+0.64	+0.29	+1.05	+0.47	+0.67	+0.09	+0.77	+0.40	+0.09	+0.27	+0.32	+0.04	+0.26	+0.57	+0.83	+0.75	+0.34	+0.42	-0.08	+1.00	+0.03	-0.02	+0.83	-0.27	+0.73	+0.54	+0.24	+0.47	+0.65	+0.57	+0.46	+0.54	+0.67	-0.06	+0.32	+0.17
	IMF	+2.0	+0.8	+3.1	+3.4	+2.9	+3.2	+2.2	+2.6	+3.9	+2.4	+2.6	+2.6	+0.5	+3.0	+3.8	+3.9	+4.8	+2.8	+1.5	+1.4	+3.9	+2.6	+2.1	+3.6	+2.2	+2.9	+3.1	+2.2	+2.8	+2.6	+2.7	+2.7	+2.3	+2.0	+1.4	+3.5	+2.0
	RBY	+1.0	+0.9	+1.3	+1.3	+0.7	+0.4	+0.9	+0.9	-0.8	+2.1	-0.2	+2.3	+0.5	-0.4	-1.7	-0.6	-1.2	-0.8	-0.2	+1.9	-1.0	-0.2	+0.0	+0.3	-0.3	-0.8	+0.8	+0.1	+0.4	-0.2	-0.2	-0.5	-1.1	-0.4	+1.1	-1.0	+0.5
	P8	+0.6	+2.0	-2.2	+0.1	+1.4	-0.7	-2.9	$^{+1.1}$	-1.3	-2.3	-0.7	-1.6	+1.1	+3.2	+1.9	+0.4	+0.5	+1.1	+0.7	-1.5	+1.5	-0.5	+0.1	-0.3	+0.9	+1.0	-0.6	+0.6	+2.4	-0.2	+0.2	+1.3	+1.3	+0.5	-2.3	-0.1	-0.4
CARCASE	Rib	-0.7	+1.8	-0.7	+0.4	+1.3	-1.1	-1.8	-0.1	-0.6	-1.8	-0.8	-0.3	+0.5	+2.3	+1.9	+1.4	+0.4	+2.5	+2.7	+0.1	+2.0	+0.1	+1.7	+1.3	-0.6	+1.2	+0.4	+1.0	+1.2	-0.1	+0.5	+2.1	+2.5	+2.8	-0.4	+0.8	-0.1
C	EMA	+8.5	+8.4	+7.6	+11.1	+12.3	+7.2	+6.0	+8.3	+3.3	+11.4	+3.1	+14.1	+3.7	+6.4	+1.5	+5.4	+6.2	+5.2	+5.4	+8.1	+4.5	+7.0	+5.8	+11.5	+1.5	+6.4	+9.5	+6.8	+10.7	+6.6	+7.9	+7.4	+4.4	+5.4	+5.2	+2.0	+6.0
	CWT	+88	+58	+63	+62	+80	+68	+83	+61	+70	+52	475	+71	+83	+70	+55	+78	+61	+73	+67	+85	+52	+59	+54	+63	+91	+89	+92	+76	+49	+65	+80	+93	+66	+66	+70	+78	+65
	DTC	-7.6	-5.3	-3.2	-6.8	-8.2	-5.6	-4.5	-8.4	-3.1	-1.1	-3.8	-6.2	-6.6	-8.0	-5.4	-9.6	-8.5	-7.9	-6.7	-6.3	-7.6	4.8	-6.2	-10.3	-7.3	-6.8	-5.9	-5.4	-2.4	-4.7	-5.2	-7.0	-5.5	-7.6	-5.5	-7.1	-4.6
FERTILITY	SS	+3.1	+1.5	+1.5	+3.2	+2.1	+1.5	+2.1	+4.5	+1.5	+1.3	+2.7	+1.4	+4.0	+3.1	+1.6	+2.9	+2.5	+3.0	+1.6	+4.1	+3.9	+0.9	+1.4	+1.8	+3.3	+1.4	+2.6	+2.2	+2.3	+1.4	+1.6	+2.9	+1.7	+3.6	+1.5	+1.9	+2.0
H	Milk	+18	+20	+17	+17	+28	+21	+20	+18	+19	+17	+26	+22	+27	+20	+15	+17	+22	+11	+15	+12	+14	+17	+20	+17	+21	+23	+21	+17	+18	9+	+26	+25	+22	+17	+19	+18	+17
	MCW	+119	+55	+101	+113	+95	+106	+127	+83	+116	+89	66+	+104	+138	+84	+80	+105	+102	+141	+108	+135	+91	+84	+58	+93	+132	+96	+131	+128	+81	+127	+85	+125	+91	+110	+121	+137	+98
HT	600	+140	+91	+110	+105	+136	+124	+135	+108	+128	+105	+136	+121	+154 .	+110	+107	+110	+107	+135	+122	+143 .	+88	+103	+91	+103	+144	+138	+144	+139	+104	+106	+124	+143	+126	+124	+136	+143	+114
GROWTH	400	66+	+76	+81	+ 97+	+109	66+	+106 +	+83	- 66+	+81	+102 +	+94	+104 +	+85	+87	+84	+86	66+	66+	+108	+73	68+	+76	+87	+107 +	+110 +	+115 +	+107 +	+81	+81	- 66+	+111 +	+ 70+	66+	+105 +	+109	+87
	200	+55	+43	+47	+42	+ 69+	+56	+56 +	+49	+49	+50	+55	+53	+58	+47	+44	+48	+42	+54	+53	+ 59 +	+37	+51	+41	+51	+61 +	+ 09+	+ 65 +	+ 09+	+48	+47	+54	+63 +	+55	+54	+ 69+	+ 59	+48
т	BWT	+4.0	+3.0	+4.7	+4.4	+3.8	+2.1	+6.0	+3.5	+2.1	+3.9	+4.1	+4.5	+5.9	+3.7	+4.4	+4.1	+1.7	+5.3	+4.3	+4.7	+0.2	+1.4	+3.3	+2.6	+6.0	+3.9	+6.2	+6.3	+4.7	+5.4	+3.4	+6.2	+2.8	+3.2	+4.7	+6.7	+4.2
BIRTH	GL	-11.6	-4.4	-0.2	-7.4	-7.3	-6.2	-4.2	-3.7	-9.0	-2.8	-1.4	-6.1	-10.0	-4.9	-0.8	-9.6	-5.8	-4.0	-5.4	-9.4	-6.8	+0.5	-3.7	-4.6	-2.6	-7.9	-8.2	-1.8	-4.2	-10.4	-5.0	-7.8	-5.4	-5.4	-5.4	-7.2	-4.5
EASE	CEDtrs	+6.6 -	+4.7	+2.4	-1.0	+9.2	+7.8	-0.1	+1.3	+10.6	-0.7	+3.7	+3.5	+2.1 -	-0.2	+5.0	+4.3	+10.2	+1.9	+1.7	+4.9	+8.2	+8.4	-4.3	+8.7	-3.0	+5.1	-0.4	+0.6	+1.7	+1.1 -	+5.5	+0.2	+5.0	+1.1	+1.5	-0.2	+2.6
CALVING EASE	CEDir CI	+4.8 +	+3.4	+1.3	+0.5	+3.7 +	+8.3	-3.1	-3.1	+11.7 +	-2.5	+3.1 +	-2.1	-1.1	+0.2	+1.8	+ 8.6+	+10.5 +	+3.1	+3.8	+7.2 +	+11.9 +	+8.3	+1.9	+10.1 +	-3.4	+7.2	- 6.0+	-8.0	-4.6 -	+1.0 +	+3.7 +	+0.7 +	+ 7.7 +	+3.8 +	+1.9	-4.9	+1.9
G																																						+
	Animal ID	NDIQ62	NDIQ108	NDIQ168	NDIQ161	NDIQ11	NDIQ34	NDIQ127	NDIQ128	NDIQ808	NDIQ116	NDIQ93	NDIQ36	NDIQ52	NDIQ119	NDIQ185	NDIQ422	NDIQ601	NDIQ632	NDIQ626	NDIQ585	NDIQ582	NDIQ53	NDIQ51	NDIQ485	NDIQ141	NDIQ409	NDIQ413	NDIQ544	NDIQ103	NDIQ66	NDIQ110	NDIQ449	NDIQ639	NDIQ628	NDIQ614	NDIQ455	
	Lot	⊣	0	m	4	പ	9	~	∞	6	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	

EBV QUICK REFERENCE FOR KENNY'S CREEK BULL SALE

XES	vy Heavy in Grass	34 \$117	24 \$120	56 \$123	22 \$109	52 \$124	L8 \$107	31 \$141	2 \$96	17 \$120	20 \$93	\$2 \$140	32 \$110	36 \$148	34 \$98	52 \$130	11 \$101	44 \$126	t0 \$129	73 \$139	34 \$142	29 \$109	L9 \$112	45 \$111	34 \$117	4 \$110	33 \$113	ł2 \$126	26 \$106	35 \$148	32 \$96	25 \$107	32 \$83		31 \$121	
SELECTION INDEXES	tic Heavy Grain	\$134	\$124	\$156	\$122	\$152	\$118	\$181	\$92	\$147	\$120	\$162	\$132	\$186	\$104	\$152	\$111	\$144	\$140	\$173	\$184	\$129	\$119	\$145	\$134	\$94	\$133	\$142	\$126	\$185	\$102	\$125	\$102		\$131	
SELECT	Domestic	\$114	\$109	\$115	\$108	\$119	\$102	\$121	\$100	\$113	\$98	\$133	\$114	\$141	06\$	\$119	\$102	\$121	\$116	\$128	\$126	\$101	\$113	\$108	\$113	\$108	\$102	\$124	66\$	\$135	\$98	\$105	\$87	4	ATT&	\$104 \$104
	Angus Breeding	\$122	\$122	\$135	\$115	\$135	\$112	\$154	\$95	\$130	\$101	\$147	\$117	\$161	\$99	\$137	\$105	\$132	\$134	\$152	\$157	\$116	\$114	\$122	\$124	\$103	\$119	\$130	\$113	\$160	\$96	\$114	\$90	\$124	+	\$124
	cs	0.84	0.54	0.9	0.78	0.98	0.96	0.88	0.6	1.04	0.58	1.02	0.64	0.8	1.12	0.86	1.06	0.7	0.58	0.68	0.9	0.84	0.66	0.98	0.96	1	0.76	0.94		0.84	1.1	1.02	0.86	0.84	5	0.7
	FA	1.02	0.8	0.88	0.8	0.96	0.94	0.76	0.68	1.26	0.66	0.74	0.66	0.64	1.1	0.58	0.76	0.84	1.02	0.88	0.94	0.8	0.68	0.88	1	1.06	0.88	0.96		0.86	0.92	1.08	0.96	88.0	000	0.7
OTHER	DOC										•	•									,															•
0	NFI-F	+0.78	+0.09	+0.81	+0.49	+0.94	+0.80	-0.01	+0.02	+0.66	+0.70	+0.32	+1.14	+0.34	+0.78	+0.15	+0.83	+0.42	+0.33	+0.64	+0.46	+0.20	+0.36	+0.51	+0.07	+0.35	+0.09	+0.55	+0.18	+0.16	+0.07	-0.04	-0.01	+0.11		+0.49
	IMF	+2.9	+1.3	+2.7	+2.2	+3.4	+3.4	+2.2	+1.7	+2.9	+4.7	+3.1	+3.6	+2.9	+2.8	+1.8	+3.4	+2.6	+1.7	+3.0	+2.7	+2.4	+2.6	+3.7	+3.1	+2.0	+2.7	+2.7	+2.8	+2.5	+2.1	+2.0	+3.1	+1.8		+3.0
	RBY	+0.5	+0.3	+1.5	-0.6	-0.6	-2.7	+2.1	+0.3	-1.1	-2.1	-0.8	+0.1	+1.5	-1.3	+1.6	-0.5	+0.0	+0.2	+0.5	+0.8	-0.2	-0.9	+2.2	-0.9	-1.4	-0.3	+2.1	+0.0+	+1.7	+0.4	-0.2	-0.6	+1.3		-1.5
	P8	-0.6	+0.6	-0.6	+1.8	+0.6	+3.6	-2.1	+0.4	+1.1	+0.0+	+1.7	-0.3	-3.1	+2.9	-0.7	+1.6	+0.0+	+1.0	+1.2	-0.3	+0.3	+1.1	-2.5	+2.7	+2.5	+1.0	-1.0	+0.3	-2.5	-2.7	-1.5	-0.8	-2.2		+1.7
CARCASE	Rib	-0.4	+1.4	+0.0	+0.8	+1.8	+3.5	-1.3	+0.1	+0.9	+0.4	+1.2	+1.0	-0.3	+1.1	-0.8	+2.7	+1.2	+1.4	+0.8	+0.6	-1.3	+2.1	-1.1	+1.0	+3.0	+1.6	+0.2	+0.1	-2.0	-1.1	-0.8	-0.8	-0.1		+3.3
0	EMA	+9.3	+7.0	+10.6	+3.6	+6.4	+4.6	+9.1	+6.9	-0.2	+3.7	+7.5	+7.9	+11.3	+2.9	+7.4	+9.6	+6.7	+4.1	+8.7	+7.5	+1.9	+4.6	+14.2	+8.5	+4.3	+5.9	+13.7	+6.1	+6.6	+4.3	-0.7	+2.1	+7.0		+6.0
	CWT	+64	+74	+64	+63	+66	+59	+104	+49	+65	+60	+78	+59	06+	+61	+80	+53	+66	+68	+68	+82	+81	+67	+71	69+	+70	+83	69+	+58	+96	+78	+47	+48	+76		+66
	DTC	-2.2	-6.9	-6.5	-8.0	-8.2	-6.6	-6.2	-4.9	-8.0	-1.1	-5.7	-2.0	-6.8	-3.8	-4.9	-3.4	-5.2	-7.6	-9.0	-7.6	-6.2	-4.8	-2.4	-6.8	-1.2	-4.1	-0.5	-5.5	-4.9	-1.5	-7.3	-4.4	-3.5		-6.8
FERTILITY	SS	+1.3	+2.8	+0.6	+1.0	+2.2	-0.2	+4.1	+0.7	+3.2	-0.1	+1.1	+1.6	+0.8	+2.5	+2.4	+1.6	+0.9	+3.8	+2.6	+4.0	+3.8	+1.5	+1.5	+1.6	+0.8	+2.8	+1.7	+2.3	+3.0	+0.7	+0.5	+1.5	+1.6		+2.2
Ē	Milk	+22	+17	80 +	+13	+21	+19	+19	+14	+16	+15	+17	+20	+25	+19	+17	+22	+13	+21	+14	+12	+18	+18	+24	+24	+23	+16	+18	+18	+20	+12	+15	84	+11		6+
	MCW	+103	+111	+113	+93	+81	+68	+172	+69	+95	+95	+94	+78	+118	+83	+133	+62	+81	+101	+101	+148	+128	+84	+102	+93	+71	+147	+94	+89	+135	+117	+108	+98	+107		+94
ΛTH	600	+111	+119	+102	+100	+100	+86	+168	+80	+113	+98	+127	+104	+142	+112	+139	+82	+111	+119	+126	+139	+140	+106	+125	+100	+112	+152	+118	+106	+162	+132	+103	+94	+115		+107
GROWTH	400	+85	+86	+71	+82	+79	+68	+117	+67	+86	+79	+105	+87	+113	+83	+102	99+	+88	+85	+98	66+	+106	+89	+96	+82	+92	+115	+95	+78	+121	+105	+76	+72	+89		+75
	200	+45	+52	+42	+44	+45	+37	+65	+36	+46	+46	+57	+45	+64	+46	+54	+36	+45	+47	+56	+53	+60	+49	+55	+45	+51	+65	+49	+42	+65	+61	+41	+43	+51		+46
BIRTH	BWT	+2.1	+5.1	+5.7	+4.7	+1.5	+0.1	+7.1	+3.0	+5.3	+3.6	+4.4	+4.0	+6.2	+5.9	+6.8	-0.1	+3.7	+2.1	+6.0	+4.9	+7.4	+3.9	+6.5	+1.8	+2.6	+7.5	+3.9	+5.2	+7.8	+6.8	+2.2	+5.2	+3.9		+5.4
BIF	GL	-4.2	-4.4	-9.1	-5.4	-8.7	-9.6	-5.5	-3.4	-2.4	-5.1	-2.5	-2.8	-2.5	-3.5	-9.0	4.1	-5.2	-10.6	-5.9	-5.5	-1.9	-0.7	-3.2	-4.1	-1.4	-3.3	-5.1	-3.1	-6.1	-2.3	-9.9	+0.3	-6.6		-8.1
G EASE	CEDtrs	+1.4	-2.5	+5.9	-3.0	+7.7	+11.0	-8.1	+1.5	+7.4	+3.8	+4.3	-0.9	+5.2	-5.2	-6.6	-3.2	+4.9	+5.5	-2.2	+3.9	-2.6	+5.7	-8.7	-0.4	+5.5	-1.4	+2.2	-2.7	+3.5	+3.2	+10.9	-4.5	+6.0		+4.6
CALVING EASE	CEDir	+6.3	+5.1	+2.1	+1.6	+9.7	+12.8	-10.1	+3.4	+2.8	+1.0	+4.0	-0.3	+0.6	-8.5	-2.3	+9.6	+3.3	+6.6	-4.1	-0.2	-13.5	+1.8	-15.1	+4.9	+3.6	-16.8	-3.9	-4.7	-5.5	-13.1	+8.5	-5.4	+6.8		+3.0
	Animal ID	NDIQ125	NDIQ117	NDIQ458	NDIQ467	NDIQ578	NDIQ554	NDIQ118	NDIQ158	NDIQ171	NDIQ104	NDIQ147	NDIQ131	NDIQ519	NDIQ811	NDIQ95	NDIQ94	NDIQ37	NDIQ60	NDIQ27	NDIQ84	NDIQ809	NDIQ550	NDIQ45	NDIQ167	NDIQ537	NDIQ500	NDIQ78	NDIQ819	NDIQ46	NDIQ638	NDIQ47	NDIQ176	NDIQ634		NDIQ75
	Lot An	37 N	38 N	39 N	40 N	41 N	42 N	43 N	44 N	45 NI	46 NI	47 NI	48 NI	49 NI	50 NI	51 N	52 N	53 N	54 N	55 N	56 N	57 NI	58 NI	59 N	60 NI	61 NI	62 NI	63 N	64 NI	65 N	66 NI	67 N	68 NI	69 NI		70 N

LOT 1.

KENNY'S CREEK N200 Q62 PV (HBR)	ANIMAL ID NDIQ62

DOB 31	L/7/19	GENET	IC STATI	JS AMFL	J,CAFU,D	DFU,NH	FU										
TACE		BIRTH				GRO	WTH			FERT	ILITY			CAR	CASE		
\mathbb{N}	DIR	DTRS	GL	BWT	200	400	600	MWT	Milk	SS	DC	CWT	EMA	Rib	Rump	RBY	IMF
EBV	4.8	6.6	-11.6	4	55	99	140	119	18	3.1	-7.6	88	8.5	-0.7	0.6	1	2
Acc	54%	49%	66%	69%	68%	67%	68%	66%	61%	62%	38%	64%	61%	67%	63%	65%	62%
Mid Jul	v 2021 1	FransTasr	nan Angi	us Cattle	Evaluatio	n					TF	AITS OB	SERVED	CE.BWT.	200WT.4	00WT.Ge	enomics

INDEX VALUES STRUCTURAL ASSESSMENTS Heavy Heavy Angus FӇ 14 R₩ Domestic F∐ R∐ SN 1-5 Muscle Temp RC Breeding Grain Grass \$134 \$163 \$180 \$154 6 6 6 6 5 5 5 C+ 2

WWEL3 ESSLEMONT LOTTO L3 PV

NDIN5 KENNY'S CREEK LOTTO N5 SV

NDIN234 KENNY'S CREEK BARA N234 sv

PURCHASER

PRICE

Lot 1 - Q62

LOT	2. KE	ENNY'S (REEK	CHISL	M Q10	8 ^{pv} (I	HBR)								ANIM	AL ID N	DIQ108
DOB 7/	8/19	GENETIC	STATUS	S AMFU,	CAFU,DD	FU,NH	FU										
TACE		BIRTH				GR	OWTH			FER1	TILITY			CAR	CASE		
\mathbb{N}	DIR	DTRS	GL	BWT	200	400	600	MWT	Milk	SS	DC	CWT	EMA	Rib	Rump	RBY	IMF
EBV	3.4	4.7	-4.4	3	43	76	91	55	20	1.5	-5.3	58	8.4	1.8	2	0.9	0.8
Acc	58%	51%	71%	74%	72%	71%	72%	69%	65%	68%	43%	67%	64%	69%	65%	65%	64%
Mid Jul	y 2021	TransTasm	nan Angu	s Cattle	Evaluation	n		_			TF	RAITS OB	SERVED	CE,BWT,	200WT,4	100WT,G	enomics
		INDEX	VALUES	;						STR	UCTURA	L ASSES	SMENTS	;			
Angu Breed		Domestic	Hea Gra	-	Heavy Grass		F	RӇ	F∠J	R	4	K	141	SN 1	-5 M	uscle	Temp
\$10	8	\$112	\$9	4	\$113		6	6	6		6	5	5	4		C+	2
USA17	29848	1 S CHISU	M 255 ^{si}	V								M 6175 SOM 027					
NDIH64	42 KEN	NY'S CRE	EK BARA	A H642 ^r	PV.							A REGEN EK BARA		V			
PURCH	ASER								PRICE								

LOT 3. KENNY'S CREEK 0168 PV (HBR)

LOT	3. KE	ENNY'S C	REEK	Q168	PV (HBR	!)									ANIM	AL ID N	DIQ168
DOB 2	9/8/19	GENETI	C STAT	US AMF	U,CAFU,D	DFU,	NHFU										
TACE		BIRTH				G	ROWTH			FER1	TILITY			CAR	CASE		
\mathbb{N}	DIR	DTRS	GL	BWT	200	400	0 600	MWT	Milk	SS	DC	CWT	EMA	Rib	Rump	RBY	IMF
EBV	1.3	2.4	-0.2	4.7	47	81	110	101	17	1.5	-3.2	63	7.6	-0.7	-2.2	1.3	3.1
Acc	54%	48%	69%	70%	67%	679	% 68%	66%	60%	61%	38%	63%	59%	65%	61%	61%	59%
Mid Ju	ly 2021	TransTasm	ian Angi	us Cattle	Evaluation	n					TF	RAITS OB	SERVED	CE,BWT	,200WT,4	400WT,G	enomics
	INDEX VALUES STRUCTURAL ASSESSMENTS																
Ang Bree		Domestic	Hea Gra	2	Heavy Grass		F	RӇ	F∐	R	4	K	1A/	SN 1	5 M	uscle	Temp
\$1	24	\$113	\$1	44	\$116		6	6	6		6	5	5	5		C+	2
NDIM45 KENNY'S CREEK JUSTICE M45 ^{SV} NDIK100 KENNY'S CREEK CROSS K100 #																	
NDIL2	44 KEN	NY'S CREE	EK ROSE	EBUD L2	244 ^{sv}							INTENSIT EK HING		2 sv			

PURCHASER

PRICE

SEE SALE VIDEOS AT WWW.KENNYSCREEK.COM.AU

	7/8/19		CSIAIL	JS AIVIF	J,CAFU,D	,				FEDT				040	0405		
	DIR	DTRS	GL	BWT	200	400	WTH 600	MWT	Milk	SS	DC	CWT	EMA	Rib	CASE Rump	RBY	IMF
EBV	0.5	-1	-7.4	4.4	<u> </u>	76	105	113	17	3.2	-6.8	62	11.1	0.4	0.1	1.3	3.4
Acc	55%	50%	67%	71%	68%	68%	69%	67%	61%	62%	41%	64%	60%	66%	62%	62%	60%
Mid Jul	ly 2021	TransTasn	nan Angu	ıs Cattle	Evaluatio	n					TF	AITS OB	SERVED	CE,BWT,	200WT,4	00WT,G	enomi
		INDEX	VALUES	5						STR	UCTURA	L ASSES	SMENTS	;			
Ang Breed		Domestic	Hea Gra	-	Heavy Grass		F↓	RӇ	F∐	R	<u>_</u>	K	1A/	SN 1	5 Mu	iscle	Temp
\$13	39	\$116	\$16	65	\$124		6	6	6	(6	4	6	5		С	2
NDIM4	5 KENN	NY'S CREE	K JUSTIC	CE M45	SV				NDIK10	0 KENN	Y'S CRE		S K100				
NDIL42	11 KEN	NY'S CREI	EK SATU	RN L41	1 ^{sv}								R A241 PV RN C715				
PURCH	ASER								PRICE								

					~	(
DOB 17	/7/19	GENETI	C STATU	IS AMFU	,CAFU,D	DC,NHFI	J										
TACE		BIRTH				GRO	WTH			FERT	ILITY			CAR	CASE		
	DIR	DTRS	GL	BWT	200	400	600	MWT	Milk	SS	DC	CWT	EMA	Rib	Rump	RBY	IMF
EBV	3.7	9.2	-7.3	3.8	59	109	136	95	28	2.1	-8.2	80	12.3	1.3	1.4	0.7	2.9
Acc	61%	54%	71%	73%	72%	72%	73%	69%	65%	68%	43%	67%	65%	70%	66%	67%	65%
Mid Jul	y 2021 ⁻	TransTasn	nan Angı	is Cattle	Evaluatio	n						TR	AITS OBS	SERVED	CE,BWT,2	00WT,G	enomics

	INDEX V	ALUES					STRUCTU	RAL ASSE	SSMENTS			
Angus Breeding	Domestic	Heavy Grain	Heavy Grass	F	R↓	F∠J	R∐	K	TAI	SN 1-5	Muscle	Temp
\$174	\$149	\$193	\$162	7	6	7	7	5	5	5	B-	2

TFAM45 LANDFALL MOJO M45 sv

NDIN34 KENNY'S CREEK BARA N34 PV

HIOE7 AYRVALE BARTEL E7 PV TFAK696 LANDFALL ELSA K696 # WWEL3 ESSLEMONT LOTTO L3 PV NDIL258 KENNY'S CREEK BARA L258 ^{SV}

PURCHASER	
PRIOF	
PRICE	

Lot 5 - Q11

	, ,		AIUS AM	FU,CAFU,DI	- /	-										
TACE	B	IRTH			GRC	OWTH			FERT	TILITY			CAR	CASE		
	DIR D	TRS GI	. BWT	200	400	600	MWT	Milk	SS	DC	CWT	EMA	Rib	Rump	RBY	IMF
EBV	8.3	7.8 -6.	2 2.1	56	99	124	106	21	1.5	-5.6	68	7.2	-1.1	-0.7	0.4	3.2
Acc	62% 5	53% 71	% 73%	72%	72%	73%	70%	66%	69%	44%	68%	66%	70%	67%	67%	66%
Mid Ju	ly 2021 Trai	nsTasman A	ngus Catt	e Evaluatior	۱					TF	RAITS OB	SERVED	CE,BWT,	200WT,4	00WT,G	enomics
		INDEX VAL	UES						STR	UCTURA	L ASSES	SMENTS	;			
0	LION	nestic	-	Heavy Grass		F↓	R₩	F∐	R	4	K	TAI	SN 1	-5 Mu	iscle	Temp
	18 \$:	133	\$167	\$138		6	5	5		5	5	5	4	(C+	2
Breeding Domestic Grain Grass FG RG F2 R2 M SN 1-5 Muscle Temp																
	960722 BA	ALDRIDGE I	BEAST MC	DE B074 PV				USA1/:	149410	BALDRID	DGE ISAB	EL Y69 "				

PURCHASER

PRICE

Top 20%

24

LOI DOB 11		NNY'S C			ULZ7 F	`	,								ANIM	I AL ID N	DIQ127
TACE	1/0/19	BIRTH	C STAT	US AIVIFU	J,CAFU,D	,	ROWTH		-	FFRT	ILITY			CAR	CASE		
	DIR	DTRS	GL	BWT	200	400		MWT	Milk	SS	DC	CWT	EMA	Rib	Rump	RBY	IMF
EBV	-3.1	-0.1	-4.2	6	56	106	135	127	20	2.1	-4.5	83	6	-1.8	-2.9	0.9	2.2
Acc	58%	49%	72%	72%	70%	70%	71%	68%	63%	65%	39%	64%	62%	67%	63%	63%	62%
Mid Jul	ly 2021	TransTasm	nan Angu	is Cattle	Evaluatior	ı						TRAITS	OBSERV	ED BWT,	,200WT,4	400WT,G	enomics
		INDEX	VALUES	5						STR	UCTURA	L ASSES	SMENTS	;			
Ang Breec		Domestic	Hea Gra	2	Heavy Grass		F₩	RӇ	F∐	R	4	K	14/	SN 1	5 M	uscle	Temp
\$12	27	\$117	\$14	43	\$120		6	5	6		6	5	5	5		C+	2
	-	FALL MOJ			L139 ^{sv}				TFAK69 USA164	6 LAND 165881	LT DRIVI	. E7 ^{pv} SA K696 EN 9087 EK CHAM	#	247 #			
PURCH	ASER								PRICE								

LOT	8. KI	ENNY'S C	REEK	Q128	PV (HBF	?)									ANIM	AL ID N	DIQ128
DOB 1:	1/8/19	GENET	IC STAT	US AMF	U,CAFU,D	DFU,N	HFU										
TACE		BIRTH				GR	OWTH			FER1	TILITY			CAR	CASE		
\mathbb{N}	DIR	DTRS	GL	BWT	200	400	600	MWT	Milk	SS	DC	CWT	EMA	Rib	Rump	RBY	IMF
EBV	-3.1	1.3	-3.7	3.5	49	83	108	83	18	4.5	-8.4	61	8.3	-0.1	1.1	0.9	2.6
Acc	54%	49%	65%	68%	67%	66%	68%	66%	61%	61%	40%	64%	61%	66%	62%	64%	61%
Mid Ju	ly 2021	L TransTasm	nan Angu	ıs Cattle	Evaluatio	n					TF	RAITS OB	SERVED	CE,BWT,	,200WT,4	100WT,G	enomics
		INDEX	VALUES	5						STF	UCTURA	L ASSES	SMENTS	5			
Ang Breed		Domestic	Hea Gra	2	Heavy Grass		F	R↓	F∠J	R	4	K	1A/	SN 1	5 M	uscle	Temp
\$13	35	\$119	\$14	48	\$126		7	6	6		6	5	5	5		C+	2
		Y'S CREEK							NDIL43	7 KENN	MONT LO Y'S CREE SYDGEN	EK SATUF	RN L437	SV			
NDIN1	89 KEI	NNY'S CRE	EK PAIR	101 N18	39 50						Y'S CREE			PV			
PURCH	IASER								PRICE								

LOT	9. KE	NNY'S (CREEK	Q808	^{PV} (APF	R)									ANIMA	AL ID NC	01Q808
DOB 5/	/8/19	GENETIC	STATU	S AMFU,	CAFU,DD	FU,NHF	U										
TACE		BIRTH				GRO	WTH			FERT	ILITY			CAR	CASE		
2∞	DIR	DTRS	GL	BWT	200	400	600	MWT	Milk	SS	DC	CWT	EMA	Rib	Rump	RBY	IMF
EBV	11.7	10.6	-9	2.1	49	99	128	116	19	1.5	-3.1	70	3.3	-0.6	-1.3	-0.8	3.9
Acc	53%	48%	69%	69%	66%	66%	67%	65%	59%	62%	40%	62%	58%	64%	60%	61%	59%
Mid Ju	ly 2021	TransTasr	nan Angı	us Cattle	Evaluatio	n					TR	AITS OB	SERVED	CE,BWT,	200WT,4	00WT,G	enomics
		INDEX	VALUES	6						STR	UCTURA	L ASSES	SMENTS	5			

IN	DEX VALUES					STRUCT	JRAL ASSE	SSMENTS			
Angus Breeding Dome	stic Heavy Grain	Heavy Grass	F	R₩	F∐	R_J	K	141	SN 1-5	Muscle	Temp
\$140 \$12	4 \$167	\$129	6	6	6	7	5	6	4	C+	2

NDIL217 KENNY'S CREEK PROCEED L217 sv

ATCK340 DOUGHBOY K340 sv

USA16956101 H P C A PROCEED PV NDIH645 KENNY'S CREEK BARA H645 * NZE14647008839 MATAURI REALITY 839 *

NORG269 RENNYLEA G269 #

PURCHASER

PRICE

Kenny's Creek L217 P4 was the top selling bull in 2020 and was sired by Kenny's Creek L217 as are Lots 50 and 57

SEE SALE VIDEOS AT WWW.KENNYSCREEK.COM.AU

	0/8/19		CSIAI	JS AIVIF	J,CAFU,D	,											
TACE	DIR	DTRS	GL	BWT	200	400	000 000 000 000 000 000 000 000 000 00	MWT	Milk	FERT SS	DC		EMA		CASE		IMF
EBV	-2.5	-0.7	-2.8	3.9	<u></u> 50	400 81	105	89	17	 1.3	-1.1	CWT 52	11.4	Rib -1.8	Rump -2.3	RBY 2.1	2.4
Acc	58%	50%	70%	73%	71%	71%	72%	68%	63%	67%	42%	66%	64%	68%	64%	65%	64%
		TransTasm					1270	0070	0070	0170		RAITS OB					
inia sa	19 2021				Evaluatio										200111,	100111,0	
		INDEX	VALUES			_				STR	UCTURA	L ASSES	SMENTS	5			
Ang Breed		Domestic	Hea Gra	2	Heavy Grass		F₩	R	F∠J	R	L)	K	1H/	SN 1	-5 Mi	uscle	Temp
\$10)9	\$109	\$1:	16	\$108		6	6	6	-	7	5	6	5		C+	2
110110	201470) G A R DF							USA173	354145	GARM	OMENTU	M PV				
USAIO	501470	JGARDH										REST BL		3007 #			
NDIH7	52 KEN	NY'S CREI	EK BARA	A H752	SV							RICA A21					
	02.12.1								NDID45	9 KENN	Y'S CRE	EK BARA	D459 50				
PURCH	ASER								PRICE								
		ENNY'S															

IACE		DININ				GRU	VV I II			FERI				UAR	CASE					
\mathbb{N}	DIR	DTRS	GL	BWT	200	400	600	MWT	Milk	SS	DC	CWT	EMA	Rib	Rump	RBY	IMF			
EBV	3.1	3.7	-1.4	4.1	55	102	136	99	26	2.7	-3.8	75	3.1	-0.8	-0.7	-0.2	2.6			
Acc	57%	48%	70%	73%	71%	71%	71%	68%	64%	66%	38%	66%	63%	68%	65%	64%	63%			
Mid Jul	y 2021 ⁻	TransTasr	nan Angı	is Cattle	Evaluatio	n		Acc 57% 48% 70% 73% 71% 71% 71% 68% 64% 66% 38% Mid July 2021 TransTasman Angus Cattle Evaluation												

IN	DEX VALUES					STRUCTL	RAL ASSE	SSMENTS			
Angus Breeding Dome	stic Heavy Grain	Heavy Grass	F	R↓	F∠J	R∐	K	141	SN 1-5	Muscle	Temp
\$134 \$12	0 \$147	\$129	6	5	5	6	5	5	5	B-	1


USA18229488 BALDRIDGE COMPASS CO41 $^{\rm sv}$

NDIL301 KENNY'S CREEK FINKS MISS L301 PV

PURCHASER

PRICE

 $\it EF$ Complement 8088 - sire of lot 15 and great-grand-sire of lot 11 $\,$

	\geq
-	
	1

LOT 12. KENNY'S CREEK MOJO Q36 PV (HBR)

DOB 21	L/7/19	GENET	IC STATI	US AMFL	J,CAFU,D	DFU,NH	FU										
TACE		BIRTH				GRO	WTH			FERT	ILITY			CAR	CASE		
TACE	DIR	DTRS	GL	BWT	200	400	600	MWT	Milk	DC	CWT	EMA	Rib	Rump	RBY	IMF	
EBV	-2.1	3.5	-6.1	4.5	53	94	121	104	22	1.4	-6.2	71	14.1	-0.3	-1.6	2.3	2.6
Acc	62%	53%	71%	73%	72%	72%	73%	70%	65%	68%	42%	67%	65%	70%	66%	67%	65%
Mid Jul	y 2021 ⁻	TransTasr	nan Angı	us Cattle	Evaluatio	n					TF	AITS OB	SERVED	CE,BWT,	200WT,4	00WT,G	enomics

	INDEX V	ALUES					STRUCTU	RAL ASSE	SSMENTS			
Angus Breeding	Domestic	Heavy Grain	Heavy Grass	F₩	R↓	F∠J	R∠J	K	TH	SN 1-5	Muscle	Temp
\$148	\$131	\$167	\$138	7	6	7	6	5	5	4	C+	2
TFAM45 LAN	DFALL MOJO	M45 ^{sv}					RVALE BART		5 [#]			
NDIN37 KEN	NNY'S CREEK	BARA N37 ^s	V				SSLEMONT KENNY'S CI					

PURCHASER

PRICE

26

LOT	13. K	(ENNY'S	CREE	۲M15	5 Q52 P	۲ (HBF	R)								ANI	MAL ID I	NDIQ52
DOB 2	7/7/19	GENETI	C STATU	S AMFL	I,CAFU,DD	FU,NH	FU										
TACE		BIRTH				GRO	WTH			FERT	ILITY			CAR	CASE		
	DIR	DTRS	GL	BWT	200	400	600	MWT	Milk	SS	DC	CWT	EMA	Rib	Rump	RBY	IMF
EBV	-1.1	2.1	-10	5.9	58	104	154	138	27	4	-6.6	83	3.7	0.5	1.1	0.5	0.5
Acc	54%	50%	68%	69%	67%	67%	68%	66%	61%	61%	42%	63%	59%	65%	61%	62%	60%
Mid Ju	ly 2021	TransTasm	nan Angu	s Cattle	Evaluation							TR	AITS OBS	SERVED (CE,BWT,	200WT,G	enomics
		INDEX	VALUES							STR	UCTURA	L ASSES	SMENTS	;			
Ang Bree	•	Domestic	Hea Grai	~	Heavy Grass		F↓	R₩	F∐	R	L)	K	1A/	SN 1	-5 M	uscle	Temp
\$13	35	\$111	\$13	6	\$135		6	6	6	(6	5	5	5		C+	2
NDIM1	L55 KEN	NY'S CRE	EK BLAC	KPEARI	M155 PV						SYDGEN Y'S CREI						
NDIL4	13 KEN	NY'S CREE	EK KIWI I	_413 PV							ROSSAN I Y'S CREI						

PURCHASER

PRICE

LOT	14.	KENNY'S	CREE	K LOT	TO Q119	9 ^{pv}	(HBR)								ANIM	AL ID N	DIQ119
DOB 1	0/8/19	9 GENETI	C STATL	JS AMF	U,CAFU,D	DFU,	NHFU										
TACE		BIRTH				G	ROWTH			FER1	FILITY			CAR	CASE		
2 N	DIR	DTRS	GL	BWT	200	40	0 600	MWT	Milk	SS	DC	CWT	EMA	Rib	Rump	RBY	IMF
EBV	0.2	-0.2	-4.9	3.7	47	85	5 110	84	20	3.1	-8	70	6.4	2.3	3.2	-0.4	3
Acc	60%	55%	73%	73%	71%	71	% 72%	71%	66%	67%	44%	68%	66%	70%	67%	68%	66%
Mid Ju	ly 202	1 TransTasm	ian Angu	s Cattle	e Evaluatio	n					TF	AITS OB	SERVED	CE,BWT	,200WT,4	loowt,g	enomics
		INDEX	VALUES	;						STF	RUCTURA	L ASSES	SMENTS	5			
Ang Bree		Domestic	Hea Gra	~	Heavy Grass		F↓	RӇ	F∠J	R	4	k	1A/	SN 1	5 Mu	uscle	Temp
\$13	37	\$118	\$15	51	\$128		7	6	6		6	5	6	4		C+	2
WWEL	3 ESSL	EMONT LO	TTO L3 P	v							LE GENER						
NDIM2	201 KE	NNY'S CRE	EK MITT	AGONO	G M201 ^{sv}						Y'S CREE Y'S CREE						
PURCH	ASER								PRICE								

DOB 11		ENNY'S genet		US AMFL	•	,	FU										
TACE	, ,	BIRTH				GRO	WTH			FERT	ILITY			CAR	CASE		
\mathbb{N}	DIR	DTRS	GL	BWT	200	400	600	MWT	Milk	SS	DC	CWT	EMA	Rib	Rump	RBY	IMF
EBV	1.8	5	-0.8	4.4	44	87	107	80	15	1.6	-5.4	55	1.5	1.9	1.9	-1.7	3.8
Acc	53%	48%	64%	69%	67%	66%	67%	66%	60%	60%	39%	62%	58%	65%	61%	61%	59%
Mid Jul	y 2021 ⁻	TransTasr	nan Angı	is Cattle	Evaluatio	n					TR	AITS OB	SERVED	CE,BWT,	200WT,4	00WT,G	enomics
										CTD	UCTURA		CRAENTO				

	INDEX \	ALUES					STRUCTU	RAL ASSE	SSMENTS			
Angus	Domestic	Heavy	Heavy	Ell	D	F∠J	R/I	F	941	SN 1-5	Muscle	Temp
Breeding	Domestic	Grain	Grass	F	R	'8	R_J	RC	A R	3N 1-3	Wuscie	Temp
\$126	\$114	\$145	\$116	6	6	7	6	6	6	4	С	2
	ENNY'S CREEI		ENT N422 ^{pv} WER H689 ^{sv}			NDIG579 NDID393	8796 EF CC KENNY'S C KENNY'S C KENNY'S C	REEK WILC REEK DIGO	COOLA G5 GER D393	79 ^{sv} _{Pv}		

PURCHASER

PRICE

Lot 15 - Q185

SEE SALE VIDEOS AT WWW.KENNYSCREEK.COM.AU

DOB 1	3/7/19	GENETI	C STATU		J,CAFU,DI		IFU										
TACE	0/ 1/ 10	BIRTH	001/110		0,0/11 0,01	,	WTH			FERT	ILITY			CAR	CASE		
\sim	DIR	DTRS	GL	BWT	200	400	600	MWT	Milk	SS	DC	CWT	EMA	Rib	Rump	RBY	IMF
EBV	9.8	4.3	-9.6	4.1	48	84	110	105	17	2.9	-9.6	78	5.4	1.4	0.4	-0.6	3.9
Acc	64%	61%	71%	73%	73%	73%	73%	71%	68%	68%	54%	70%	67%	72%	69%	70%	68%
Mid Ju	ıly 2021	TransTasm	nan Angu	s Cattle	Evaluation	ı						TRAITS	OBSERV	ED BWT,	200WT,4	00WT,G	enomics
		INDEX	VALUES	;						STR	UCTURA	L ASSES	SMENTS				
Ang Bree	-	Domestic	Hea Grai	-	Heavy Grass		F↓	R↓	F∠J	R	<u>_</u>	k	TAV	SN 1	-5 Mu	iscle	Temp
\$14	47	\$123	\$17	76	\$130		6	6	6	(6	5	6	4	(C+	2
NORE	11 RENM	NYLEA EDN	/UND E1	L1 PV								OKA UND 7 VIII Y5 ^s		NY145 P	/		
		INY'S CRE		W K33	g sv					6 KENNY 08 KENN		K BERKL					

PRICE

PURCHASER

LOT	17. K	(ENNY'S	CREE	(GET (CRACKI	NG	Q601 ^{PV} (HBR)							ANIN	IAL ID N	DIQ601
DOB 5,	/8/19	GENETIC	STATUS	S AMFU,	CAFU,DD	FU,N	HFU										
TACE	DIR DTRS GL BWT 200 400 600 MWT Milk SS DC CWT EMA Rib Rump RBY EBV 10.5 10.2 -5.8 1.7 42 86 107 102 22 2.5 -8.5 61 6.2 0.4 0.5 -1.2 Acc 60% 52% 70% 74% 72% 73% 70% 67% 68% 43% 68% 65% 70% 66% 66% Mid July 2021 TransTasman Angus Cattle Evaluation TRAITS OBSERVED BWT,200WT,400WT,Gen																
2N	DIR	DTRS	GL	BWT	200	40	0 600	MWT	Milk	SS	DC	CWT	EMA	Rib	Rump	RBY	IMF
EBV	10.5	10.2	-5.8	1.7	42	86	6 1 07	102	22	2.5	-8.5	61	6.2	0.4	0.5	-1.2	4.8
Acc	60%	52%	70%	74%	72%	72	% 73%	70%	67%	68%	43%	68%	65%	70%	66%	66%	65%
Mid Ju	ly 2021	L TransTasm	nan Angu	s Cattle	Evaluatior	۱					TRAITS	OBSERV	ED BWT	,200WT	,400WT,6	enomics	
		INDEX	VALUES	;						STF	UCTURA	L ASSES	SMENTS	;			
Ang Breed		Domestic	Hea Gra	-	Heavy Grass		F	RӇ	F∠J	R	4	K	1A/	SN 1	5 N	luscle	Temp
\$15	52	\$127	\$18	38	\$132		6	6	7		6	4	6	5		С	2
		URA GET (-						DGJZ15 NDIH20	5 ALLOU 08 KENN	RA JEDD. IY'S CRE	EK ELVIS	H208 sv				
PURCH	IASER								PRICE	<u> </u>	T S CREE	EK BARA	1297				

LOT	18. KI	ENNY'S	CREE	K KOD	4K Q63	32 ^{pv} (H	IBR)								ANIM	AL ID NC	01Q632
DOB 11	1/8/19	GENET	IC STAT	US AMFL	J,CAFU,E	DFU,NH	FU										
TACE		BIRTH				GRO	WTH			FERT	ILITY			CAR	CASE		
200	DIR	DTRS	GL	BWT	200	400	600	MWT	Milk	SS	DC	CWT	EMA	Rib	Rump	RBY	IMF
EBV	3.1	1.9	-4	5.3	54	99	135	141	11	3	-7.9	73	5.2	2.5	1.1	-0.8	2.8
Acc	62%	57%	71%	73%	73%	72%	73%	71%	67%	69%	49%	70%	68%	72%	68%	70%	67%
Mid Jul	y 2021 1	TransTasr	nan Angı	us Cattle	Evaluatio	n		-			TR	AITS OB	SERVED	BWT,200)WT(x2),4	00WT,G	enomics

	INDEX \	ALUES					STRUCTU	RAL ASSE	SSMENTS			
Angus Breeding	Domestic	Heavy Grain	Heavy Grass	F	R↓	F∠J	R∠J	K	TAV	SN 1-5	Muscle	Temp
\$148	\$121	\$170	\$136	6	6	6	6	5	5	5	C+	2

NORK522 RENNYLEA KODAK K522 $^{\rm sv}$

NDIL451 KENNY'S CREEK MITTAGONG L451 sv

PURCHASER

PRICE

(L) Rennylea Kodak K522 - sire of lots 18 and 21 (R) Kenny's Creek Mittagong E122, grand dam of lot 18

NORE11 RENNYLEA EDMUND E11^{PV} NORF810 RENNYLEA EISA ERICA F810 [#] BNAD145 TUWHARETOA REGENT D145 ^{PV} NDIE122 KENNY'S CREEK MITTAGONG E122 ^{PV}

LOT	19. K	ENNY'S	CREE	K BEAS	ST MOD	E Q62	26 ^{₽V} (H	BR)							ANIM	AL ID N	DIQ626
DOB 10	0/8/19	GENETI	C STATI	JS AMFL	J,CAFU,DE	FU,NF	IFU										
TACE		BIRTH				GRC	OWTH			FERT	TILITY			CAR	CASE		
\mathbb{N}	DIR	DTRS	GL	BWT	200	400	600	MWT	Milk	SS	DC	CWT	EMA	Rib	Rump	RBY	IMF
EBV	3.8	1.7	-5.4	4.3	53	99	122	108	15	1.6	-6.7	67	5.4	2.7	0.7	-0.2	1.5
Acc	61%	52%	73%	74%	73%	72%	73%	70%	66%	69%	43%	68%	66%	70%	66%	67%	66%
Mid Jul	ly 2021	TransTasm	nan Angu	is Cattle	Evaluation							TRAITS	OBSERV	ED BWT,	200WT,4	400WT,G	ienomics
		INDEX	VALUES	6						STR	UCTURA	L ASSES	SMENTS	;			
Ang Breec		Domestic	Hea Gra	2	Heavy Grass		F↓	RӇ	F∠J	R	4	K	1A/	SN 1	-5 M	uscle	Temp
\$12	28	\$120	\$13	31	\$125		6	6	6		6	6	6	4		B-	2
		2 BALDRIE NY'S CREE			E B074 ^{PV} L199 ^{SV}				USA172 NZE146	149410 647010	BALDRIE F031 MA	Rophet ^s dge Isab Itauri Ol ek Fede	EL Y69 # JTLIER F	031 ^{sv}			
PURCH									PRICE								

PURCHASER

PRICE

LOT	20. K	(ENNY'S	CREE	K CAPI	TALIST	Q58	85 ^{pv} (HBI	R)							ANIM	AL ID NI	DIQ585
DOB 4	/8/19	GENETIC	STATU	S AMFU,	CAFU,DD	FU,N	HFU										
TACE		BIRTH				G	ROWTH			FERT	ILITY			CAR	CASE		
2 N	DIR	DTRS	GL	BWT	200	400	0 600	MWT	Milk	SS	DC	CWT	EMA	Rib	Rump	RBY	IMF
EBV	7.2	4.9	-9.4	4.7	59	108	3 143	135	12	4.1	-6.3	85	8.1	0.1	-1.5	1.9	1.4
Acc	58%	51%	70%	73%	71%	71%	6 72%	69%	66%	67%	42%	67%	64%	69%	65%	66%	64%
Mid Ju	ly 2021	TransTasn	nan Angu	is Cattle	Evaluatio	n					TR	AITS OBS	SERVED	BWT,200)WT(x2),4	00WT,G	enomics
		INDEX	VALUES	5						STR	UCTURA	L ASSES	SMENTS	;			
Ang Bree		Domestic	Hea Gra	2	Heavy Grass		F	RӇ	F∠J	R	<u>_</u>	K	14/	SN 1	5 Mu	uscle	Temp
\$1	57	\$138	\$1	71	\$149		7	6	6		7	5	6	5	(C+	2
USA16	675226	2 CONNEA	LY CAPI	TALIST 0	28 #				USA162	204878	PRIDES	NSWER (PITA OF (CONANG		#		
NDIK2	69 KEN	INY'S CRE	EK PRIN	CESS K2	269 ^{sv}							K REGEN EK H369					
PURCH	ASER								PRICE								

LOT	21. 1	(ENNY'S	CREE	K KOD	AK Q58	2 ^{PV}	(HBR)								ANIM	AL ID NI	DIQ582
DOB 4/	BIRTH GROWTH FERTILITY CARCASE DIR DTRS GL BWT 200 400 600 MWT Milk SS DC CWT EMA Rib Rump RBY IMF 11.9 8.2 -6.8 0.2 37 73 88 91 14 3.9 -7.6 52 4.5 2 1.5 -1 3.9 60% 53% 73% 72% 72% 73% 71% 67% 68% 44% 69% 66% 70% 67% 68% 66% I July 2021 TransTasman Angus Cattle Evaluation TRAITS OBSERVED BWT,200WT,400WT,Genomics																
TACE	ACE BIRTH GROWTH FERTILITY CARCASE DIR DTRS GL BWT 200 400 600 MWT Milk SS DC CWT EMA Rib Rump RBY IMF BV 11.9 8.2 -6.8 0.2 37 73 88 91 14 3.9 -7.6 52 4.5 2 1.5 -1 3.9 cc 60% 53% 73% 72% 73% 71% 67% 68% 44% 69% 66% 70% 67% 68% 66%																
\mathbb{N}	DIR	DTRS	GL	BWT	200	400	600	MWT	Milk	SS	DC	CWT	EMA	Rib	Rump	RBY	IMF
EBV	11.9	8.2	-6.8	0.2	37	73	88	91	14	3.9	-7.6	52	4.5	2	1.5	-1	3.9
Acc	60%	53%	73%	73%	72%	72%	6 73%	71%	67%	68%	44%	69%	66%	70%	67%	68%	66%
Mid Jul	id July 2021 TransTasman Angus Cattle Evaluation TRAITS OBSERVED BWT,200WT,400WT,Genomics																
	INDEX VALUES STRUCTURAL ASSESSMENTS																
Ang Breed		Domestic	Hea Gra	2	Heavy Grass		F₩	RӇ	F∠J	R	4	K	141	SN 1	-5 Mu	uscle	Temp
\$12	27	\$115	\$14	18	\$114		6	6	6		6	5	6	5		С	2
NORK5	22 REI	NNYLEA KC	DAK K5	522 ^{sv}								MUND E1 SA ERICA					
NDIL22	27 KEN	INY'S CREE	K BARA	L227 sv								ALY MEN EK H512	FOR 7374	1 ^{sv}			

PURCHASER

PRICE

Kenny's Creek Bara L227 - dam of lot 21

28

Used in the Kenny's Creek herd

SEE SALE VIDEOS AT WWW.KENNYSCREEK.COM.AU

DOB 2	9/7/19	GENETI	C STATU	J S AMFL	J,CAFU,DI	DC,NHF	Ū										
TACE		BIRTH				GRO	OWTH			FER1	TILITY			CAR	CASE		
NN:	DIR	DTRS	GL	BWT	200	400	600	MWT	Milk	SS	DC	CWT	EMA	Rib	Rump	RBY	IMF
EBV	8.3	8.4	0.5	1.4	51	89	103	84	17	0.9	-4.8	59	7	0.1	-0.5	-0.2	2.6
Acc	61%	52%	72%	73%	73%	72%	73%	70%	66%	69%	43%	68%	66%	70%	66%	67%	66%
Mid Ju	ly 2021	1 TransTasm	nan Angu	s Cattle	Evaluation	ı					TF	RAITS OB	SERVED	CE,BWT,	200WT,4	OOWT,G	Genomics
		INDEX	VALUES	;						STF	UCTURA	L ASSES	SMENTS				
Ang Bree		Domestic	Hea Gra		Heavy Grass		F₩	R↓	F∐	R	4	K	TAV	SN 1	-5 Mu	uscle	Temp
\$1	20	\$121	\$12	26	\$117		6	6	5		7	6	6	4		C+	2
	96072	22 BALDRIC	GE BEA	ST MOD	E B074 PV	1						ROPHET ^S					
00/(1)			EK BARA		PV .							KEN BOV					

PURCHASER

LOT 23. KENNY'S CREEK MARBLES Q51 PV (HBR) ANIMAL ID NDIQ51 GENETIC STATUS AMFU,CAFU,DDFU,NHFU **DOB** 26/7/19 BIRTH GROWTH FERTILITY CARCASE TACE DIR GL BWT 200 400 600 MWT Milk CWT EMA Rib RBY IMF DTRS SS DC Rump EBV 1.9 -4.3 -3.7 3.3 41 76 91 58 20 1.4 -6.2 54 5.8 1.7 0.1 0 2.1 59% 52% 70% 72% 71% 70% 71% 68% 63% 65% 44% 68% 65% 69% 66% 66% 65% Acc Mid July 2021 TransTasman Angus Cattle Evaluation TRAITS OBSERVED CE, BWT, 200WT, 400WT, Genomics STRUCTURAL ASSESSMENTS INDEX VALUES Angus Heavy Heavy 141 F₩ R₩ F∐ Domestic R Ac SN 1-5 Muscle Temp Breeding Grain Grass \$105 \$105 \$106 \$103 7 6 7 6 5 5 C+ 2 6 NORE11 RENNYLEA EDMUND E11 PV GTNM3 CHILTERN PARK MARBLES M3 PV GTNJ4 CHILTERN PARK J4 SV USA18019663 LT DRIFTER 4073 PV NDIN452 KENNY'S CREEK WILCOOLA N452 PV NDIJ228 KENNY'S CREEK WILCOOLA J228 SV

PRICE

PRICE

PURCHASER

LOT	24. KI	ENNY'S	CREE	K GET	CRACK	ING Q4	185 ^{pv} ((HBR)							ANIMA	AL ID NC	01Q485
DOB 17	7/7/19	GENET	IC STATU	IS AMFU	,CAFU,D	DFU,NHI	FU										
TACE		BIRTH				GRO	WTH			FER1	TILITY			CAR	CASE		
\mathbb{N}	DIR	DTRS	GL	BWT	200	400	600	MWT	Milk	SS	DC	CWT	EMA	Rib	Rump	RBY	IMF
EBV	10.1	8.7	-4.6	2.6	51	87	103	93	17	1.8	-10.3	63	11.5	1.3	-0.3	0.3	3.6
Acc	64%	58%	75%	76%	75%	75%	76%	74%	70%	71%	50%	72%	70%	74%	71%	71%	70%
Mid Ju	ly 2021 1	TransTasr	nan Angu	is Cattle	Evaluatio	n						TRAITS	OBSERV	ED BWT,	200WT,4	00WT,Ge	enomics
		INDE>	(VALUES	6						STF	UCTURA	L ASSES	SMENTS	;			

	INDEAN	ALUES					SIRUCIU	JRAL ASSE	SOMENTS			
Angus	Domestic	Heavy	Heavy	E	R	E/I	R/I	F	9A/	SN 1-5	Muscle	Temp
Breeding	Domestic	Grain	Grass	'B	"Đ	'8	"B	NG	N N		WIUSCIC	Temp
\$154	\$136	\$179	\$138	6	6	6	6	5	5	4	C+	2
			O SV			VTMB1	ΓΕ ΜΑΝΙΑ ΒΕ	RKLEY B1	PV			

DGJZ15 ALLOURA JEDDA Z15 USA16295688 G A R PROPHET SV

NDIF603 KENNY'S CREEK SATURN F603 SV

DGJG10 ALLOURA GET CRACKING G10 SV

NDIJ265 KENNY'S CREEK SATURN J265 PV

PURCHASER

PRICE

Lot 24 - Q485

Used in the Kenny's Creek herd Top 20%

LOT	25. I	KENNY'S	CREE	K Q14:	1 ^{pv} (HB	R)									ANIM	AL ID N	DIQ141
DOB 1	7/8/19	GENETI	C STATL	JS AMFL	J,CAFU,DI	DFU,NH	IFU										
TACE		BIRTH				GRO	OWTH			FERT	ILITY			CAR	CASE		
\sim	DIR	DTRS	GL	BWT	200	400	600	MWT	Milk	SS	DC	CWT	EMA	Rib	Rump	RBY	IMF
EBV	-3.4	-3	-2.6	6	61	107	144	132	21	3.3	-7.3	91	1.5	-0.6	0.9	-0.3	2.2
Acc	53%	49%	65%	69%	67%	67%	68%	66%	62%	62%	40%	63%	60%	66%	62%	63%	61%
Mid Ju	ly 2021	L TransTasm	ian Angu	is Cattle	Evaluatior	۱					TF	RAITS OB	SERVED	CE,BWT,	200WT,4	00WT,G	enomics
		INDEX	VALUES	5						STR	UCTURA	L ASSES	SMENTS	5			
Ang Breed		Domestic	Hea Gra	2	Heavy Grass		F₩	RӇ	F∐	R	<u>_</u>	K	1A/	SN 1	-5 Mu	uscle	Temp
\$13	35	\$115	\$14	49	\$128		6	6	6		7	5	5	5		B-	2
		INY'S CREE							NDIE12 USA166	2 KENN 87737	Y'S CREI S A V HA	A REGEN EK MITTA ARVESTOI EK BARA	GONG E: R 0338 #	122 ^{pv}			
DUDOL									DDIOF								

PURCHASER

PRICE

							3 Q409 P	′ (HBR)							ANIM	AL ID N	DIQ409
DOB 1:	1/7/19		C STATI	JS AMFL	J,CAFU,D												
TACE		BIRTH					ROWTH			FERT					CASE		
\sim	DIR	DTRS	GL	BWT	200	400	0 600	MWT	Milk	SS	DC	CWT	EMA	Rib	Rump	RBY	IMF
EBV	7.2	5.1	-7.9	3.9	60	110) 138	96	23	1.4	-6.8	89	6.4	1.2	1	-0.8	2.9
Acc	60%	55%	74%	75%	74%	74%	% 75%	71%	66%	69%	44%	69%	66%	71%	67%	68%	66%
Mid Ju	ly 2021	TransTasm	nan Angu	is Cattle	Evaluatio	n							TRAITS (OBSERV	ED BWT,4	100WT,G	enomics
		INDEX	VALUES	5						STR	UCTURA	L ASSES	SMENTS	5			
Ang Breed		Domestic	Hea Gra	2	Heavy Grass		F	RӇ	F∠J	R	Į)	K	TAV	SN 1	-5 Mu	uscle	Temp
\$15	56	\$136	\$1	71	\$148		7	6	6	7	7	5	6	5		C+	2
		NY'S CREE			23 ^{sv}				NDIJ26	5 KENN	'S CREE		ry# RN J265 VARD 35				
NDIJ24	19 KEN	NY'S CREE	K BARA	J249 ³⁴								EK BARA					
PURCH	IASER								PRICE								

LOT 27. KENNY'S CREEK INTENSITY L123 Q413 PV (HBR) ANIMAL ID NDIQ413 DOB 12/7/19 GENETIC STATUS AMFU, CAFU, DDFU, NHFU BIRTH GROWTH FERTILITY CARCASE TACE DIR DTRS GL BWT 200 400 600 MWT Milk SS DC CWT EMA Rib Rump RBY IMF EBV 21 92 0.9 -8.2 65 115 144 131 2.6 9.5 3.1 -0.4 6.2 -5.9 0.4 -0.6 0.8 71% 63% 72% 69% 64% 66% 58% 53% 71% 73% 71% 67% 44% 63% 68% 65% 65% Acc Mid July 2021 TransTasman Angus Cattle Evaluation TRAITS OBSERVED BWT,200WT,400WT,Genomics STRUCTURAL ASSESSMENTS INDEX VALUES Angus Heavy Heavy 14 F₩ R₩ F∐ R∐ SN 1-5 Temp Domestic Muscle RC Breeding Grain Grass \$138 \$181 7 6 7 7 5 C+ 2 \$158 \$146 6 6 USA17366506 H P C A INTENSITY# NDIL123 KENNY'S CREEK INTENSITY L123 SV NDIJ265 KENNY'S CREEK SATURN J265 PV BNAD145 TUWHARETOA REGENT D145 PV NDIZ291 KENNY'S CREEK BARA Z291 SV NDIH642 KENNY'S CREEK BARA H642 PV

PURCHASER

LOT	28. KI	ENNY'S	CREE	K INTE	NSITY	Q544 °	^v (HBR)							ANIMA	AL ID ND	IQ544
DOB 23	3/7/19	GENET	IC STATI	JS AMFU	,CAFU,D	DFU,NHI	FU										
TACE	ACE BIRTH GROWTH FERTILITY CARCASE																
	DIR	DTRS	GL	BWT	200	400	600	MWT	Milk	SS	DC	CWT	EMA	Rib	Rump	RBY	IMF
EBV	-8	0.6	-1.8	6.3	60	107	139	128	17	2.2	-5.4	76	6.8	1	0.6	0.1	2.2
Acc	63%	58%	73%	74%	73%	73%	73%	72%	69%	69%	52%	70%	67%	71%	68%	69%	67%
Mid Ju	ly 2021 1	FransTasr	nan Angu	is Cattle	Evaluatio	n						TRAITS	OBSERV	ED BWT,	200WT,4	00WT,Ge	enomics

	INDEX V	ALUES					STRUCTU	RAL ASSE	SSMENTS			
Angus Breeding	Domestic	Heavy Grain	Heavy Grass	FH	R↓	F	R∠J	K	TAI	SN 1-5	Muscle	Temp
\$129	\$114	\$139	\$123	6	6	5	6	5	5	4	B-	2

USA17366506 H P C A INTENSITY #

NDIK309 KENNY'S CREEK NINAH K309 sv

USA16497066 G A R INGENUITY# USA16078549 G A R PREDESTINED 287L # NZE14647010F031 MATAURI OUTLIER F031 ^{SV} NDIG82 KENNY'S CREEK NINAH G82 #

PURCHASER

PRICE

(L) Kenny's Creek Ninah K309- dam of lots 28, 36 and 62 (R) Lot 28 - Q544

LOT 29. KENNY'S CREEK DRIVE Q130 Q103 PV (HBR)

LOT	29. I	KENNY'S	CREE	K DRIN	/E Q130) Q10	3 ^{PV} (HB	BR)							ANIM	AL ID N	DIQ103
DOB 7/	/8/19	GENETIC	STATUS	AMFU,	CAFU,DD	FU,NH	FU										
TACE		BIRTH				GR	OWTH			FERT	ILITY			CAR	CASE		
\mathbb{N}	DIR	DTRS	GL	BWT	200	400	600	MWT	Milk	SS	DC	CWT	EMA	Rib	Rump	RBY	IMF
EBV	-4.6	1.7	-4.2	4.7	48	81	104	81	18	2.3	-2.4	49	10.7	1.2	2.4	0.4	2.8
Acc	58%	49%	72%	73%	71%	71%	71%	69%	63%	66%	40%	65%	64%	68%	64%	65%	63%
Mid Ju	ly 2021	L TransTasm	ian Angu	s Cattle	Evaluation	n					TF	RAITS OB	SERVED	CE,BWT	200WT,4	loowt,g	enomics
		INDEX	VALUES	;						STR	UCTURA	L ASSES	SMENTS	5			
Ang Breed		Domestic	Hea Gra	~	Heavy Grass		F↓	RӇ	F∐	R	4	K	14/	SN 1	-5 M	uscle	Temp
\$11	L4	\$107	\$11	18	\$112		6	6	6		7	6	5	3		C+	2
		'O G A R DF		S MISS	G112 ^{sv}				USA176 VTMA2	670660 17 TE M	MAPLEC ANIA AFF	omentu Rest Bl Rica A21 Ek finks	ACKCAP				

PRICE

PURCHASER

LOT 30. KENNY'S CREEK M1 Q66 PV (HBR)

LOT	30. I	KENNY'S	6 CREE	K M1 (266 PV (I	HBF	R)								ANI	AL ID	NDIQ66
DOB 1/	/8/19	GENETI	C STATU	S AMFU	,CAFU,DD	FU,N	IHFU										
TACE		BIRTH				G	ROWTH			FERT	ILITY			CAR	CASE		
\mathbb{N}	DIR	DTRS	GL	BWT	200	40	0 600	MWT	Milk	SS	DC	CWT	EMA	Rib	Rump	RBY	IMF
EBV	1	1.1	-10.4	5.4	47	81	L 106	127	6	1.4	-4.7	65	6.6	-0.1	-0.2	-0.2	2.6
Acc	52%	46%	70%	70%	67%	67	% 68%	65%	60%	60%	37%	62%	58%	64%	60%	61%	58%
Mid Ju	ly 2021	L TransTasr	man Angu	s Cattle	Evaluatio	n					TF	RAITS OB	SERVED	CE,BWT,	200WT,4	00WT,G	enomics
		INDEX	VALUES	;						STR	UCTURA	L ASSES	SMENTS				
Ang Breed		Domestic	Hea Gra	-	Heavy Grass		F₩	R	F∠J	R	4	K	TAV	SN 1	-5 Mu	uscle	Temp
\$11	2	\$103	\$12	25	\$105		6	5	6	(6	5	5	4		C+	2
NDIM1	KENN	Y'S CREEM	(M1 ^{PV}						NDIG60	2 KENN	Y'S CRE	EK BARA					
NDIK3	03 KEI	NNY'S CRE	EK BLAC	K BOON	/I K303 PV								OR 7374 K BOOM				

TACE		BIRTH	STATUS	,		,	OWTH			FERT	II ITY			CAR	CASE		
	DIR	DTRS	GL	BWT	200	400	600	MWT	Milk	SS	DC	CWT	EMA	Rib	Rump	RBY	IMF
EBV	3.7	5.5	-5	3.4	54	99	124	85	26	1.6	-5.2	80	7.9	0.5	0.2	-0.2	2.7
Acc	54%	48%	68%	72%	69%	69%	69%	67%	60%	63%	38%	62%	59%	65%	61%	61%	59%
Mid Ju	ly 2021	1 TransTasm	an Angu	s Cattle	Evaluatio	n					TR	AITS OB	SERVED	CE,BWT,	,200WT,4	00WT,G	ienomi
		INDEX	VALUES	5						STR	UCTURA	L ASSES	SMENTS	;			
Ang Breed		Domestic	Hea Gra	2	Heavy Grass		F₩	R↓	F∐	R	<u>_</u>	K	14/	SN 1	5 Mu	uscle	Temp
\$13	88	\$126	\$14	19	\$133		6	6	6	-	7	5	5	4	(C+	2
	-	NY'S CREE		-	-				NDIJ26 NDIH18	5 KENN 1 KENN	Y'S CREI	K SATUR	Ύ [#] N J265 ^F TOR A24 N H732 [†]	1 H181	SV		

PURCHASER

PRICE

LOT	32.	KENNY'S	CREE	K INTE	NSITY I	.123	3 Q449 ^{PV}	′ (HBR)							ANIM	AL ID N	DIQ449
DOB 1	5/7/19	GENETI	C STATI	JS AMFL	J,CAFU,D	DFU,	NHFU										
TACE		BIRTH				G	ROWTH			FERT	ILITY			CAR	CASE		
2N	DIR	DTRS	GL	BWT	200	40	0 600	MWT	Milk	SS	DC	CWT	EMA	Rib	Rump	RBY	IMF
EBV	0.7	0.2	-7.8	6.2	63	11	1 143	125	25	2.9	-7	93	7.4	2.1	1.3	-0.5	2.7
Acc	56%	51%	70%	73%	71%	72	% 72%	68%	64%	66%	40%	66%	62%	67%	64%	64%	62%
Mid Ju	ly 202:	1 TransTasm	nan Angu	ıs Cattle	Evaluatio	n						TRAITS	OBSERV	ED BWT,	,200WT,4	400WT,G	Genomics
		INDEX	VALUES	5						STR	UCTURA	L ASSES	SMENTS	;			
Ang Bree		Domestic	Hea Gra	2	Heavy Grass		F	R↓	F∠J	R	4	K	14/	SN 1	5 M	uscle	Temp
\$14	48	\$127	\$1	64	\$140		6	5	5	(6	5	5	5		C+	2
NDIL1	23 KEN	NNY'S CREE	EK INTER	NSITY L1	23 ^{sv}				NDIJ26	5 KENN	Y'S CREE	INTENSIT EK SATUR K REGEN	N J265 ^I				
NDIK2	69 KE	NNY'S CRE	EK PRIN	CESS K	269 ^{sv}							EK H369					
PURCH	IASER								PRICE								

LOT	33. <i>I</i>	(ENNY'S	CREE	K BEAS	ST MOD	E Qe	639 ^{pv} (H	BR)							ANIM	AL ID N	DIQ639
DOB 1	2/8/19	GENETI	C STAT	US AMFU	J,CAFU,D	DFU,N	NHFU										
TACE		BIRTH				GF	ROWTH			FERT	TILITY			CAR	CASE		
\mathbb{N}	DIR	DTRS	GL	BWT	200	400	600	MWT	Milk	SS	DC	CWT	EMA	Rib	Rump	RBY	IMF
EBV	7.7	5	-5.4	2.8	55	97	126	91	22	1.7	-5.5	66	4.4	2.5	1.3	-1.1	2.3
Acc	62%	52%	73%	74%	73%	73%	5 73%	70%	66%	69%	44%	68%	66%	70%	67%	67%	66%
Mid Ju	ly 2021	TransTasm	nan Angu	is Cattle	Evaluation	ı						TRAITS	OBSERV	ED BWT	,200WT,4	00WT,0	enomics
		INDEX	VALUES	5						STF	UCTURA	L ASSES	SMENTS	5			
Ang Breed		Domestic	Hea Gra	2	Heavy Grass		F₩	RӇ	F∠J	R	4	K	TAI	SN 1	5 Mu	uscle	Temp
\$13	31	\$119	\$13	36	\$129		6	6	6		6	5	6	4		C+	1
		2 BALDRID				1			USA172	149410	BALDRI	ROPHET ^S DGE ISAB TAURI OL	BEL Y69 *				
NDIL1	99 KEN	INY'S CREE	EK FEDE	RATION	L199 ^{sv}							EK FEDE					
PURCH	IASER								PRICE								

LOT	34.	KENNY'S	CREE	K BEA	ST MOD	DE Q6	28 ^{pv} (H	BR)							ANIM	AL ID N	DIQ628
DOB 1	0/8/1	9 GENETI	C STAT	JS AMFI	J,CAFU,D	DFU,N	HFU										
TACE		BIRTH				GR	OWTH			FER	FILITY			CAR	CASE		
\sim	DIR	DTRS	GL	BWT	200	400	600	MWT	Milk	SS	DC	CWT	EMA	Rib	Rump	RBY	IMF
EBV	3.8	1.1	-5.4	3.2	54	99	124	110	17	3.6	-7.6	66	5.4	2.8	0.5	-0.4	2
Acc	61%	52%	72%	73%	72%	72%	72%	69%	65%	68%	43%	67%	65%	69%	66%	67%	65%
Mid Ju	ly 202	1 TransTasm	ian Angi	ıs Cattle	Evaluatio	n						TRAITS	OBSERV	ED BWT,	200WT,4	loowt,g	enomics
		INDEX	VALUES	5						STR	RUCTURA	L ASSES	SMENTS	;			
Ang Bree		Domestic	Hea Gra	2	Heavy Grass		F↓	RӇ	₽ĹĮ	R	<u>L</u>	K	1A/	SN 1	–5 Mu	uscle	Temp
\$1	33	\$121	\$14	41	\$128		6	6	6		6	6	5	4	(C+	2
		22 BALDRID NNY'S CREE			-	V			USA17: NZE140	149410 547010	BALDRII F031 MA	ROPHET ^S DGE ISAE TAURI OI EK FEDE	EL Y69 # JTLIER F	031 ^{sv}			
PURCH	ASER								PRICE								

LOT 35. KENNY'S CREEK BEAST MODE Q614 PV (HBR)

TACE	,	BIRTH			,	GRO	WTH			FERT	ILITY			CAR	CASE		
	DIR	DTRS	GL	BWT	200	400	600	MWT	Milk	SS	DC	CWT	EMA	Rib	Rump	RBY	IMF
EBV	1.9	1.5	-5.4	4.7	59	105	136	121	19	1.5	-5.5	70	5.2	-0.4	-2.3	1.1	1.4
Acc	61%	52%	73%	74%	72%	72%	73%	70%	65%	68%	43%	68%	66%	70%	66%	67%	65%
Mid Jul	y 2021	TransTasr	nan Angu	is Cattle	Evaluatio	n						TRAITS	OBSERV	ED BWT	200WT,4	00WT,Ge	enomics

	INDEX V	ALUES					STRUCTL	IRAL ASSE	SSMENTS			
Angus Breeding	Domestic	Heavy Grain	Heavy Grass	F	R₩	F∠J	R∠J	K	14/	SN 1-5	Muscle	Temp
\$132	\$123	\$140	\$128	6	6	6	7	6	6	4	C+	1

USA17960722 BALDRIDGE BEAST MODE B074 PV

NDIL199 KENNY'S CREEK FEDERATION L199 SV

PURCHASER

PRICE

(L) Lot 35 - Q614 (R) Q568 sold in last years female sale is a flush sister to lots 34 and 35

ANIMAL ID NDIQ614

LOT	36. K	ENNY'S	CREE	K INTE	NSITY	Q455	PV (HBR	!)							ANIMA	AL ID NE	DIQ455
DOB 15	5/7/19	GENET	IC STATI	JS AMFL	J,CAFU,D	DFU,N	HFU										
TACE		BIRTH				GF	OWTH			FERT	ILITY			CAR	CASE		
\sim	DIR	DTRS	GL	BWT	200	400	600	MWT	Milk	SS	DC	CWT	EMA	Rib	Rump	RBY	IMF
EBV	-4.9	-0.2	-7.2	6.7	59	109	143	137	18	1.9	-7.1	78	2	0.8	-0.1	-1	3.5
Acc	63%	58%	73%	74%	73%	73%	73%	72%	69%	68%	51%	70%	67%	71%	68%	69%	67%
Mid Jul	y 2021 ⁻	TransTasr	nan Angu	is Cattle	Evaluatio	n						TRAITS	OBSERV	ED BWT,	200WT,4	00WT,G	enomics
		INDEX	VALUES	5						STR	UCTURA	L ASSES	SMENTS	;			
Ang		Domestic	Hea Gra	2	Heavy Grass		F	R	F∠J	R	4	Re	141	SN 1	-5 Mu	iscle	Temp

\$141	\$117	\$168	\$127	6	6	6	6	5	5	4	C+	2
USA1736650	06 H P C A IN	ITENSITY #				USA16497		NGENUIT		#		
NDIK309 KEN	NNY'S CREE	K NINAH K30	09 ^{sv}			NZE14647 NDIG82 K				31 ^{sv}		

PURCHASER

LOT	37. ł	(ENNY'S	CREE	k DRIV	E Q125	• ^{PV} (HBR)								ANIM	IAL ID N	DIQ125
DOB 1:	1/8/19	GENET	IC STAT	US AMF	J,CAFU,D	DFU,N	NHFU										
TACE		BIRTH				GF	ROWTH			FERT	TILITY			CAR	CASE		
\mathbb{N}	DIR	DTRS	GL	BWT	200	400	600	MWT	Milk	SS	DC	CWT	EMA	Rib	Rump	RBY	IMF
EBV	6.3	1.4	-4.2	2.1	45	85	111	103	22	1.3	-2.2	64	9.3	-0.4	-0.6	0.5	2.9
Acc	58%	49%	71%	75%	73%	73%	6 73%	69%	63%	67%	40%	67%	64%	69%	65%	66%	64%
Mid Ju	ly 2021	TransTasm	nan Angu	is Cattle	Evaluation	n					TF	RAITS OB	SERVED	CE,BWT	,200WT,	400WT,G	enomics
		INDEX	VALUES	5						STF	RUCTURA	L ASSES	SMENTS	5			
Ang Breed		Domestic	Hea Gra	2	Heavy Grass		F₩	RӇ	F∠J	R	4	K	TAI	SN 1	5 M	uscle	Temp
\$12	22	\$114	\$13	34	\$117		7	6	6		6	5	6	4		C+	2
USA18	30147	'0 G A R DF	RIVE PV						USA176	670660	MAPLEC	OMENTU REST BL	ACKCAP				
NDIK3	38 KEI	NNY'S CRE	EK DRE	AM K338	3 sv							K BERKL EK DREA					
BUBB									DDIAE								

PURCHASER

PRICE

LOT 38. KENNY'S CREEK EDMUND Q117 PV (HBR)

SALE LOTS

LOT	38. K	ENNY'S	CREE	K EDM	UND Q	117 ^{pv}	(HBR)								ANIM	AL ID NE	0IQ117
DOB 10)/8/19	GENET	IC STAT	US AMFL	J,CAFU,D	DFU,NH	FU										
TACE		BIRTH				GRO	WTH			FER1	TILITY			CAR	CASE		
\mathbb{N}	DIR	DTRS	GL	BWT	200	400	600	MWT	Milk	SS	DC	CWT	EMA	Rib	Rump	RBY	IMF
EBV	5.1	-2.5	-4.4	5.1	52	86	119	111	17	2.8	-6.9	74	7	1.4	0.6	0.3	1.3
Acc	53%	48%	66%	70%	67%	67%	68%	67%	61%	61%	40%	63%	60%	66%	62%	63%	60%
Mid Ju	y 2021 ⁻	TransTasr	nan Angi	us Cattle	Evaluatio	n					TF	RAITS OB	SERVED	CE,BWT,	200WT,4	OOWT,G	enomics

	INDEX V	ALUES					STRUCTU	RAL ASSE	SSMENTS			
Angus Breeding	Domestic	Heavy Grain	Heavy Grass	F₩	R₩	F∐	R∠J	K	TA	SN 1-5	Muscle	Temp
\$122	\$109	\$124	\$120	 6	6	7	6	6	6	5	C+	2

NDIL463 KENNY'S CREEK EDMUND L463 PV

NDIL304 KENNY'S CREEK SATURN L304 sv

PURCHASER

PRICE

Kenny's Creek Saturn 304 is dam to Q117 Lot 38

LOT	39. <i>I</i>	(ENNY'S	CREE	K REG	ENT H1	47 Q	458 ^{pv} (I	HBR)							ANIM	AL ID NI	DIQ458
DOB 10	6/7/19	GENETI	C STATI	JS AMF	U,CAFU,D	DFU,N	HFU										
TACE		BIRTH				GF	ROWTH			FERT	ILITY			CAR	CASE		
\mathbb{N}	DIR	DTRS	GL	BWT	200	400	600	MWT	Milk	SS	DC	CWT	EMA	Rib	Rump	RBY	IMF
EBV	2.1	5.9	-9.1	5.7	42	71	102	113	8	0.6	-6.5	64	10.6	0	-0.6	1.5	2.7
Acc	56%	51%	69%	72%	69%	69%	70%	67%	61%	63%	41%	65%	61%	67%	63%	64%	61%
Mid Ju	y 2021	TransTasm	nan Angu	is Cattle	e Evaluatio	n					TR	AITS OB	SERVED	3WT,200)WT(x2),4	400WT,G	enomics
		INDEX	VALUES	5						STR	UCTURA	L ASSES	SMENTS	;			
Ang Breed		Domestic	Hea Gra	~	Heavy Grass		F₩	R↓	F∐	R	Lj	k	1A/	SN 1	-5 M	uscle	Temp
\$13	5	\$115	\$1	56	\$123		7	6	6	(3	5	5	4		C+	2
NDIH1	47 KEN	NY'S CREI	EK REGE	ENT H14	17 ^{sv}								<u>F D145 ^{PV}</u> D147 ^{PV}				
NDIK3	38 KEN	NNY'S CRE	EK DRE	AM K33	8 ^{sv}								EY H16 ^P M H808				

PURCHASER

SEE SALE VIDEOS AT WWW.KENNYSCREEK.COM.AU

DOB 1	6/7/1	9 GENETI	C STATU	S AMFI	J,CAFU,D	DFU,N	IHFU										
TACE		BIRTH				GF	ROWTH			FERT	ILITY			CAR	CASE		
\mathbb{N}	DIR	DTRS	GL	BWT	200	400	600	MWT	Milk	SS	DC	CWT	EMA	Rib	Rump	RBY	IMF
EBV	1.6	-3	-5.4	4.7	44	82	100	93	13	1	-8	63	3.6	0.8	1.8	-0.6	2.2
Acc	56%	51%	68%	71%	69%	69%	69%	66%	61%	62%	40%	64%	60%	66%	62%	63%	60%
Mid Ju	ly 202	1 TransTasm	nan Angu	s Cattle	Evaluatio	n					TR	AITS OB	SERVED E	3WT,200	WT(x2),4	00WT,G	enomics
		INDEX	VALUES							STR	UCTURA	L ASSES	SMENTS				
Ang Bree		Domestic	Hea Grai	-	Heavy Grass		F₩	RӇ	F∐	R	<u>l</u> j	K	TAV	SN 1	-5 Mi	uscle	Temp
\$1:	15	\$108	\$12	2	\$109		6	6	6	6	6	4	5	5		C+	2
NDIH1	47 KE	NNY'S CREE	EK REGE	NT H14	7 ^{sv}						-		D145 PV D147 PV	1			
NDIK3	38 KE	NNY'S CRE	EK DREA	M K33	8 ^{sv}								EY H16 ^P M H808				

PURCHASER

PRICE

ООВ З,	/8/19	GENETIC	STATUS	AMFU,	CAFU,DD	FU,NHI	=U										
TACE		BIRTH				GRO	OWTH			FERT	ILITY			CAR	CASE		
	DIR	DTRS	GL	BWT	200	400	600	MWT	Milk	SS	DC	CWT	EMA	Rib	Rump	RBY	IMF
EBV	9.7	7.7	-8.7	1.5	45	79	100	81	21	2.2	-8.2	66	6.4	1.8	0.6	-0.6	3.4
Acc	59%	54%	71%	73%	72%	72%	72%	70%	65%	68%	45%	67%	64%	69%	66%	67%	65%
Mid Ju	ly 202:	1 TransTasm	an Angu	s Cattle	Evaluatio	n					TR	AITS OBS	SERVED	3WT,200	WT(x2),4	00WT,G	enomic
		INDEX	VALUES	;						STR	UCTURA	L ASSES	SMENTS	;			
Ang Breed		Domestic	Hea Gra	2	Heavy Grass		F₩	R↓	F∐	R	Į.	K	141	SN 1	-5 Mu	iscle	Temp
\$13	35	\$119	\$15	52	\$124		6	6	6	6	6	5	5	4		B-	2
		NNY'S CREE			23 ^{sv}				NDIJ26 VTMB1	5 KENNY TE MANI	''S CREE	NTENSIT K SATUR LEY B1 P	N J265 ^r	PV			
VDIL4.	23 NLI	NINT 5 CILL		L423					NDIB28	4 KENN	Y'S CREI	<u>ek kiwi e</u>	3284 ^{sv}				

LOT	42. I	KENNY'S	CREE	K INTE	NSITY I	L123	Q554 ^{P\}	′ (HBR)							ANIM	AL ID N	DIQ554
DOB 2	6/7/19	GENETI	C STATI	JS AMFU	J,CAFU,D	DFU,N	HFU										
TACE		BIRTH				GR	OWTH			FERT	ILITY			CAR	CASE		
\mathbb{N}	DIR	DTRS	GL	BWT	200	400	600	MWT	Milk	SS	DC	CWT	EMA	Rib	Rump	RBY	IMF
EBV	12.8	11	-9.6	0.1	37	68	86	68	19	-0.2	-6.6	59	4.6	3.5	3.6	-2.7	3.4
Acc	58%	53%	71%	73%	72%	72%	72%	69%	65%	67%	44%	67%	64%	69%	65%	66%	64%
Mid Ju	ly 2021	L TransTasm	nan Angu	is Cattle	Evaluatio	n					TR	AITS OB	SERVED	BWT,200)WT(x2),4	100WT,0	Genomics
		INDEX	VALUES	5						STR	UCTURA	L ASSES	SMENTS	;			
Ang Breed		Domestic	Hea Gra	2	Heavy Grass		F₩	RӇ	F∐	R	L)	k	14/	SN 1	-5 Mu	uscle	Temp
\$1:	12	\$102	\$1:	18	\$107		6	6	6	6	6	6	5	4		C+	2
NDIL1	23 KEN	INY'S CREE	K INTER	NSITY L1	.23 ^{sv}				NDIJ26	5 KENNY	'S CREE	NTENSIT	N J265	PV			
NDIL4:	23 KEN	NNY'S CREE	EK KIWI	L423 ^{PV}								LEY B1 P EK KIWI I					
PURCH	IASER								PRICE								

43. K	ENNY'S	CREE	K LOTT	O Q118	3 ^{pv} (H	BR)								ANIM	AL ID NI	DIQ118
)/8/19	GENETI	C STATI	JS AMFL	J,CAFU,DI	DFU,NH	IFU										
	BIRTH			GROWTH					FERT	ILITY						
DIR	DTRS	GL	BWT	200	400	600	MWT	Milk	SS	DC	CWT	EMA	Rib	Rump	RBY	IMF
-10.1	-8.1	-5.5	7.1	65	117	168	172	19	4.1	-6.2	104	9.1	-1.3	-2.1	2.1	2.2
62%	57%	74%	74%	72%	72%	73%	72%	67%	68%	46%	70%	67%	72%	68%	70%	67%
y 2021 [·]	TransTasm	an Angu	is Cattle	Evaluatior	n					TF	RAITS OB	SERVED	CE,BWT	,200WT,4	400WT,G	enomics
	INDEX	VALUES	5			STRUCTURAL ASSESSMENTS										
Angus Domestic Heavy Heavy Breeding Grain Grass						F₩	R	F∠J	R	4	K	TAI	SN 1	5 M	uscle	Temp
54	\$121	\$18	31	\$141		7	5	6	ļ	5	5	6	5		C+	2
BESSLE	MONT LOT	PV		HIOG18 AYRVALE GENERAL G18 PV WWEJ8 ESSLEMONT JENNY J8 PV												
13 KEN	INY'S CREI	EK JEDI	DA M213	B PV									7 SV			
	0/8/19 DIR - 10.1 62% y 2021 us ling 4 8 ESSLE	Ø/8/19 GENETI BIRTH DIR DIR DTRS -10.1 -8.1 62% 57% y 2021 TransTasm INDEX Js ling Domestic 4 \$121 BESSLEMONT LOT	0/8/19 GENETIC STATI BIRTH DIR DTRS GL -10.1 -8.1 -5.5 62% 57% 74% y 2021 TransTasman Angu INDEX VALUES JS Domestic Gra 4 \$121 \$14 BESSLEMONT LOTTO L3 F	0/8/19 GENETIC STATUS AMFL BIRTH DIR DTRS GL BWT -10.1 -8.1 -5.5 7.1 62% 57% 74% 74% y 2021 TransTasman Angus Cattle INDEX VALUES JS Domestic Heavy Grain 4 \$121 \$181 BESSLEMONT LOTTO L3 PV	D/8/19 GENETIC STATUS AMFU,CAFU,D BIRTH DIR DTRS GL BWT 200 -10.1 -8.1 -5.5 7.1 65 62% 57% 74% 74% 72% y 2021 TransTasman Angus Cattle Evaluation INDEX VALUES INDEX VALUES Js Domestic Heavy Grain Heavy Grass 4 \$121 \$181 \$141	O/8/19 GENETIC STATUS AMFU,CAFU,DDFU,NH BIRTH GRC DIR DTRS GL BWT 200 400 -10.1 -8.1 -5.5 7.1 65 117 62% 57% 74% 74% 72% 72% 9 2021 TransTasman Angus Cattle Evaluation INDEX VALUES Js Domestic Heavy Heavy Grain Grass 4 \$121 \$181 \$141 BESSLEMONT LOTTO L3 PV	BIRTH GROWTH DIR DTRS GL BWT 200 400 600 -10.1 -8.1 -5.5 7.1 65 117 168 62% 57% 74% 74% 72% 72% 73% y 2021 TransTasman Angus Cattle Evaluation INDEX VALUES	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	D/8/19 GENETIC STATUS AMFU, CAFU, DDFU, NHFU BIRTH GROWTH FERT DIR DTRS GL BWT 200 400 600 MWT Milk SS -10.1 -8.1 -5.5 7.1 65 117 168 172 19 4.1 62% 57% 74% 74% 72% 72% 73% 72% 67% 68% INDEX VALUES JS Domestic Heavy Grain Grass HEAVY Heavy Grain Grass FU RU FU Ru BESSLEMONT LOTTO L3 ^{FV} HIOG18 AYRVAL WWEJ8 ESSLEM A KENNY'S CPEEK LEDDA M212 FV NDIH147 KENN	D/8/19 GENETIC STATUS AMFU, CAFU, DDFU, NHFU BIRTH GROWTH FERTILITY DIR DTRS GL BWT 200 400 600 MWT Milk SS DC -10.1 -8.1 -5.5 7.1 65 117 168 172 19 4.1 -6.2 62% 57% 74% 74% 72% 72% 73% 72% 67% 68% 46% y 2021 TransTasman Angus Cattle Evaluation TF INDEX VALUES Js Domestic Heavy Grain Heavy Grass FL FL RL RL 4 \$121 \$181 \$141 7 5 6 5 BESSLEMONT LOTTO L3 PV MDIH147 KENNY'S CREI	D/8/19 GENETIC STATUS AMFU,CAFU,DDFU,NHFU BIRTH GROWTH FERTILITY DIR DTRS GL BWT 200 400 600 MWT Milk SS DC CWT -10.1 -8.1 -5.5 7.1 65 117 168 172 19 4.1 -6.2 104 62% 57% 74% 74% 72% 73% 72% 67% 68% 46% 70% y 2021 TransTasman Angus Cattle Evaluation TRAITS OB INDEX VALUES Js Domestic Heavy Grain Heavy Grass Heavy FL R FL R Image: Colspan="3">R 4 \$121 \$181 \$141 7 5 6 5 5 BESSLEMONT LOTTO L3 PV NDIH147 KENNY'S CREEK LEDDA M213 PV	D/8/19 GENETIC STATUS AMFU,CAFU,DDFU,NHFU BIRTH GROWTH FERTILITY DIR DTRS GL BWT 200 400 600 MWT Milk SS DC CWT EMA -10.1 -8.1 -5.5 7.1 65 117 168 172 19 4.1 -6.2 104 9.1 62% 57% 74% 74% 72% 72% 73% 72% 67% 68% 46% 70% 67% y 2021 TransTasman Angus Cattle Evaluation TRAITS OBSERVED INDEX VALUES STRUCTURAL ASSESSMENTS Js Domestic Heavy Grain Heavy Grass FU RU FU RU FU FU <t< td=""><td>D/8/19 GENETIC STATUS AMFU,CAFU,DDFU,NHFU BIRTH GROWTH FERTILITY CAR DIR DTRS GL BWT 200 400 600 MWT Milk SS DC CWT EMA Rib -10.1 -8.1 -5.5 7.1 65 117 168 172 19 4.1 -6.2 104 9.1 -1.3 62% 57% 74% 74% 72% 72% 73% 72% 67% 68% 46% 70% 67% 72% y 2021 TransTasman Angus Cattle Evaluation TRAITS OBSERVED CE,BWT INDEX VALUES STRUCTURAL ASSESSMENTS JS Domestic Heavy Grain Heavy Grass FL FL RL FL SN 1 A A \$121 \$181 \$141 7 5 6 5 5 6 5 HIOG18 AYRVALE GENERAL G18^{PV} WWE/8 ESSLEMONT JENNY /8 ^{PV} NDIH147 KENNY'S CREEK REGENT H147 ^{SV} </td><td>$\frac{1}{12} = \frac{1}{12}$</td><td>D/8/19 GENETIC STATUS AMFU,CAFU,DDFU,NHFU BIRTH GROWTH FERTILITY CARCASE DIR DTRS GL BWT 200 400 600 MWT Milk SS DC CWT EMA Rib Rump RBY -10.1 -8.1 -5.5 7.1 65 117 168 172 19 4.1 -6.2 104 9.1 -1.3 -2.1 2.1 62% 57% 74% 74% 72% 72% 67% 68% 46% 70% 67% 72% 68% 70% y 2021 TransTasman Angus Cattle Evaluation TRAITS OBSERVED CE,BWT,200WT,400WT,60WT,60WT,60WT,60WT,60WT,60WT,60WT,</td></t<>	D/8/19 GENETIC STATUS AMFU,CAFU,DDFU,NHFU BIRTH GROWTH FERTILITY CAR DIR DTRS GL BWT 200 400 600 MWT Milk SS DC CWT EMA Rib -10.1 -8.1 -5.5 7.1 65 117 168 172 19 4.1 -6.2 104 9.1 -1.3 62% 57% 74% 74% 72% 72% 73% 72% 67% 68% 46% 70% 67% 72% y 2021 TransTasman Angus Cattle Evaluation TRAITS OBSERVED CE,BWT INDEX VALUES STRUCTURAL ASSESSMENTS JS Domestic Heavy Grain Heavy Grass FL FL RL FL SN 1 A A \$121 \$181 \$141 7 5 6 5 5 6 5 HIOG18 AYRVALE GENERAL G18 ^{PV} WWE/8 ESSLEMONT JENNY /8 ^{PV} NDIH147 KENNY'S CREEK REGENT H147 ^{SV}	$ \frac{1}{12} = \frac{1}{12}$	D/8/19 GENETIC STATUS AMFU,CAFU,DDFU,NHFU BIRTH GROWTH FERTILITY CARCASE DIR DTRS GL BWT 200 400 600 MWT Milk SS DC CWT EMA Rib Rump RBY -10.1 -8.1 -5.5 7.1 65 117 168 172 19 4.1 -6.2 104 9.1 -1.3 -2.1 2.1 62% 57% 74% 74% 72% 72% 67% 68% 46% 70% 67% 72% 68% 70% y 2021 TransTasman Angus Cattle Evaluation TRAITS OBSERVED CE,BWT,200WT,400WT,60WT,60WT,60WT,60WT,60WT,60WT,60WT,

PURCHASER

PRICE

DOB 2	7/8/19	GENETI	C STATU	JS AMFL	J,CAC,DD	FU.NHI	FU											
TACE	/ -/ -	BIRTH			//	,	OWTH			FERT	ILITY			CAR	CASE			
\mathbb{N}	DIR	DTRS	GL	BWT	200	400	600	MWT	Milk	SS	DC	CWT	EMA	Rib	Rump	RBY	IMF	
EBV	3.4	1.5	-3.4	3	36	67	80	69	14	0.7	-4.9	49	6.9	0.1	0.4	0.3	1.7	
Acc	51%	46%	65%	69%	66%	66%	67%	65%	60%	60%	36%	61%	58%	64%	60%	60%	58%	
Mid Ju	ıly 2021	TransTasm	ian Angu	s Cattle	Evaluatio	n					TF	RAITS OB	SERVED	CE,BWT,	,200WT,4	00WT,0	enomics	
INDEX VALUES									STRUCTURAL ASSESSMENTS									
Angus Breeding		Domestic	tic Heavy Grain		Heavy Grass		FU RU		F∠J	R_J		K	14	SN 1	5 Mu	uscle	Temp	
\$95		\$100	\$9	2	\$96		7	6	6	5 5		5	6	4		C+	2	
	NDIN431 KENNY'S CREEK RESOURCE N431 PV								USA17016597 S A V RESOURCE 1441 ^{PV} NDIJ228 KENNY'S CREEK WILCOOLA J228 ^{SV} NDIG73 KENNY'S CREEK AFRICA G73 ^{SV}									
NDIJ3	68 KEN	NY'S CREE	K BLACI	KBOOM	J368 ^{pv}				NDIG15 KENNY'S CREEK AFRICA G75									
PURC									PRICE									

DOB 3	0/8/19	GENET	C STATL	IS AMFI	U,CAFU,DI	DFU.	NHFU											
TACE	- / - /	BIRTH		-	- / /	,	ROWTH			FERTILITY				CARCASE				
\sim				200 40		0 600	MWT	Milk	SS	DC	CWT	EMA	Rib	Rump	RBY	IMF		
EBV	2.8	7.4	-2.4	5.3	46	86	113	95	16	3.2	-8	65	-0.2	0.9	1.1	-1.1	2.9	
Acc	56%	52%	68%	71%	69%	69%	% 70%	68%	64%	64%	44%	66%	63%	68%	65%	65%	63%	
Mid Ju	ly 2021	L TransTasm	nan Angu	s Cattle	Evaluation	n					TF	AITS OB	SERVED	CE,BWT,	200WT,4	00WT,G	enomics	
INDEX VALUES							STRUCTURAL ASSESSMENTS											
Ang Bree		Domestic	Hea Gra				F	RӇ	F∠J	R	<u>_</u>	K	1A/	SN 1	-5 Mu	uscle	Temp	
\$13	30	\$113	\$14	7	\$120		6	6	7	•	7	5	6	4		С	2	
		NNY'S CREI				/			NDIG57	9 KENN	Y'S CRE	PLEMEN EK WILCO LEY B1 P	DOLA G5					

PURCHASER

LOT	46. I	KENNY'S	CREE	k Mon	IENTUM	Q10	04 ^{₽V} (HE	BR)							ANIN	MAL ID N	DIQ104
DOB 7	/8/19	GENETIC	STATUS	AMFU,	CAFU,DDI	FU,NH	IFU										
TACE		BIRTH				GF	ROWTH			FERT	ILITY			CAR	CASE		
\mathbb{N}	DIR	DTRS	GL	BWT	200	400	600	MWT	Milk	SS	DC	CWT	EMA	Rib	Rump	RBY	IMF
EBV	1	3.8	-5.1	3.6	46	79	98	95	15	-0.1	-1.1	60	3.7	0.4	0	-2.1	4.7
Acc	64%	57%	74%	75%	74%	74%	5 74%	73%	69%	69%	46%	70%	67%	71%	68%	69%	67%
Mid Ju	ly 202:	1 TransTasm	nan Angu	s Cattle	Evaluation	ı					TF	RAITS OB	SERVED	CE,BWT	,200WT	,400WT,G	enomics
		INDEX	VALUES	;						STR	UCTURA	L ASSES	SMENTS	;			
Ang Bree		Domestic	Hea Gra	2	Heavy Grass		F₩	R↓	F∐	R	<u>L</u> J	K	1A/	SN 1	5 N	luscle	Temp
\$10	01	\$98	\$12	20	\$93		6	6	7	(6	5	6	4		С	2
USA17	/35414	45 G A R M(OMENTU	IM ^{pv}								ROGRESS G EYE 17					
NDIL2	23 KEI	NNY'S CREE	EK WILC	DOLA L2	223 ^{pv}							PROCEEL		03 ^{sv}			
PURCH	HASER								PRICE								

PURCHASER

LOT 47. KENNY'S CREEK Q147 PV (HBR)

DOB 20)/8/19	GENET	IC STAT	US AMFL	J,CAFU,D	DFU,NH	FU										
TACE		BIRTH				GRO	WTH			FERT	TILITY			CAR	CASE		
	DIR	DTRS	GL	BWT	200	400	600	MWT	Milk	SS	DC	CWT	EMA	Rib	Rump	RBY	IMF
EBV	4	4.3	-2.5	4.4	57	105	127	94	17	1.1	-5.7	78	7.5	1.2	1.7	-0.8	3.1
Acc	62%	55%	71%	73%	72%	72%	73%	71%	67%	69%	41%	68%	66%	70%	66%	67%	66%
Mid Jul	y 2021 ⁻	TransTasr	nan Angu	us Cattle	Evaluatio	n		-			TF	AITS OB	SERVED	CE,BWT,	200WT,4	OOWT,G	enomics

	INDEX V	ALUES				-	STRUCT	JRAL ASSE	ESSMENTS			
Angus Breeding	Domestic	Heavy Grain	Heavy Grass	F₩	R	F∠J	R_J	K	TA	SN 1-5	Muscle	Temp
\$147	\$133	\$162	\$140	6	6	6	7	5	6	5	C+	2

USA16752262 CONNEALY CAPITALIST 028 [#] USA14407230 LD DIXIE ERICA 2053 [#] WWEL3 ESSLEMONT LOTTO L3 ^{PV}

USA17666102 LD CAPITALIST 316 PV

NDIN11 KENNY'S CREEK BARA N11 sv

PURCHASER

PRICE

(L) LD Capitalist 316 - sire of lot 47, (R) Kenny's Creek Bara L303 - grand dam of lot 47 Kenny's Creek Bara L303

ANIMAL ID NDIQ147

ANIMAL ID NDIQ131

LOT 48. KENNY'S CREEK MOMENTUM Q131 PV (HBR)

DOB 12	2/8/19	GENET	IC STAT	US AMFL	J,CAFU,C	DFU,NH	FU										
TACE		BIRTH				GRO	WTH			FERT	ILITY			CAR	CASE		
	DIR	DTRS	GL	BWT	200	400	600	Milk	SS	DC	CWT	EMA	Rib	Rump	RBY	IMF	
DIR DTRS GL BWT 200 400 600 MWT Milk SS DC CWT EMA Rib Rump RBV EBV -0.3 -0.9 -2.8 4 45 87 104 78 20 1.6 -2 59 7.9 1 -0.3 0.1												0.1	3.6				
Acc	63%	56%	71%	74%	73%	72%	73%	72%	69%	69%	45%	69%	66%	70%	67%	68%	66%
Mid Ju	y 2021 ⁻	FransTasr	nan Angı	us Cattle	Evaluatio	n					TF	AITS OB	SERVED	CE,BWT,	200WT,4	00WT,G	enomics

	INDEX V	ALUES					STRUCTU	RAL ASSE	SSMENTS			
Angus Breeding	Domestic	Heavy Grain	Heavy Grass	F	R₩	F∐	R∠J	K	TAI	SN 1-5	Muscle	Temp
\$117	\$114	\$132	\$110	7	5	6	5	4	5	5	C+	2
USA173541	.45 G A R MON						0873 G A F 4804 G A F					
NDIG334 KE	ENNY'S CREEP	MOONGAR	A G334 PV				KENNY'S C KENNY'S C					

PURCHASER

SALE LOTS

DOB 22	1/7/19	9 GENETI	C STATI	JS AMFL	J,CAFU,D	DFU,NH	IFU										
TACE		BIRTH				GRO	OWTH			FERT	ILITY			CAR	CASE		
\mathbb{N}	DIR	DTRS	GL	BWT	200	400	600	MWT	Milk	SS	DC	CWT	EMA	Rib	Rump	RBY	IMF
EBV	0.6	5.2	-2.5	6.2	64	113	142	118	25	0.8	-6.8	90	11.3	-0.3	-3.1	1.5	2.9
Acc	65%	60%	73%	74%	73%	73%	74%	73%	70%	70%	52%	71%	69%	72%	70%	70%	69%
Mid Ju	y 202	1 TransTasm	ian Angi	is Cattle	Evaluatio	n		-				TRAITS	OBSERV	ED BWT	,200WT,4	00WT,G	ienomio
		INDEX	VALUES	5						STR	UCTURA	L ASSES	SMENTS	;			
Ang Breed		Domestic	Hea Gra	2	Heavy Grass		F↓	R₩	F∐	Rz	Ų	K	1A/	SN 1	5 Mu	iscle	Temp
\$16	51	\$141	\$18	36	\$148		6	6	6	e	6	5	5	5		B-	2
JSA17	36650	06 H P C A I	NTENSI	TY #					USA160	78549	g a r pf		IED 287	L#			
NDIJ26	5 KEN	NY'S CREE	K SATU	RN J265	PV							<u>ROPHET ^S EK SATUF</u>		SV			

PURCHASER

PRICE

DOB 7	/8/19	GENETIC	STATUS	AMFU,	CAC,DDF	NHF											
TACE		BIRTH				GRC	WTH			FERT	ILITY			CAR	CASE		
\sim	DIR	DTRS	GL	BWT	200	400	600	MWT	Milk	SS	DC	CWT	EMA	Rib	Rump	RBY	IMF
EBV	-8.5	-5.2	-3.5	5.9	46	83	112	83	19	2.5	-3.8	61	2.9	1.1	2.9	-1.3	2.8
Acc	52%	46%	69%	70%	67%	67%	68%	66%	59%	62%	36%	62%	58%	65%	61%	61%	59%
Mid Ju	ly 2022	L TransTasm	ian Angus	Cattle	Evaluatio	n						TR	AITS OBS	SERVED (CE,BWT,2	00WT,G	enomics
		INDEX	VALUES							STR	UCTURA	L ASSES	SMENTS	;			
Ang Bree		Domestic	Heav Grain	2	Heavy Grass		F↓	R↓	F∠J	R	L)	K	14/	SN 1	-5 Mu	iscle	Temp
\$9	9	\$90	\$104	4	\$98		6	6	6	(6	6	6	4	(C+	2
		INY'S CREE		ED L2:	17 ^{sv}				NDIH64 NDIF53	5 KENN 7 KENN	Y'S CRE	PROCEEL EK BARA EK PREDI E25 #	H645 #	F537 ^{sv}			

LOT	51. ł	(ENNY'S	CREE	K H14	7 Q95 ^P	^۷ (H	BR)								ANI	AL ID	NDIQ95
DOB 5,	/8/19	GENETIC	STATUS	S AMFU	,CAFU,DD)FU,N	IHFU										
TACE		BIRTH				0	ROWTH			FERT	ILITY			CAR	CASE		
\mathbb{N}	DIR	DTRS	GL	BWT	200	40	0 600	MWT	Milk	SS	DC	CWT	EMA	Rib	Rump	RBY	IMF
EBV	-2.3	-6.6	-9	6.8	54	10	2 139	133	17	2.4	-4.9	80	7.4	-0.8	-0.7	1.6	1.8
Acc	55%	50%	70%	71%	68%	68	% 69%	67%	61%	62%	40%	63%	60%	66%	62%	63%	60%
Mid Ju	ly 2021	. TransTasn	nan Angu	is Cattle	Evaluatio	n					TR	AITS OB	SERVED	CE,BWT	,200WT,4	00WT,G	enomics
		INDEX	VALUES	5						STR	UCTURA	L ASSES	SMENTS	5			
Ang Breed		Domestic	Hea Gra	2	Heavy Grass		F↓	R↓	F∐	R	<u>_</u>	K	1A/	SN 1	5 Mu	uscle	Temp
\$13	37	\$119	\$1	52	\$130		6	6	5		6	5	6	4		C+	2
		INY'S CRE							NDID14 NDIG65	7 KENN 5 KENN	HARETOA IY'S CREI IY'S CREI	EK BARA EK AFRIC	D147 ^{PV} CA G655	PV			
									NDIG33	5 KENN	IY'S CREI	EK JEDD	A G335 *	ŧ			
PURCH	IASER																

LOT	52. K	ENNY'S	CREE	k driv	'E Q94	^{PV} (HBP	R)								ANIN	IAL ID N	IDIQ94
DOB 5/	/8/19	GENETIC	STATUS	S AMFU,	CAFU,DD	FU,NHF	U										
TACE BIRTH GROWTH FERTILITY CARCASE DIR DIRS GL BWT 200 400 600 MWT Milk SS DC CWT EMA Rib Rump RBY IM																	
	DIR	DTRS	GL	BWT	200	400	600	MWT	Milk	SS	DC	CWT	EMA	Rib	Rump	RBY	IMF
EBV	9.6	-3.2	-4.1	-0.1	36	66	82	62	22	1.6	-3.4	53	9.6	2.7	1.6	-0.5	3.4
Acc	59%	51%	71%	73%	72%	71%	72%	69%	63%	68%	43%	67%	65%	69%	66%	66%	65%
Mid Ju	ly 2021	TransTasr	nan Angu	is Cattle	Evaluatio	n					TF	AITS OB	SERVED	CE,BWT,	200WT,4	00WT,Ge	enomics

	INDEX V	ALUES					STRUCTU	RAL ASSE	SSMENTS			
Angus Breeding	Domestic	Heavy Grain	Heavy Grass	F	R	F∠J	R∐	K	TA	SN 1-5	Muscle	Temp
\$105	\$102	\$111	\$101	6	6	6	6	5	5	4	C+	2

USA18301470 G A R DRIVE $^{\mbox{\tiny PV}}$

NDIL407 KENNY'S CREEK BARA L407 SV

USA17354145 G A R MOMENTUM ^{PV} USA17670660 MAPLECREST BLACKCAP 3007 [#] BNAD145 TUWHARETOA REGENT D145 ^{PV} NDID147 KENNY'S CREEK BARA D147 ^{PV}

PURCHASER

PRICE

(L) Kenny's Creek Bara L407 - dam of lot 52 (R) Lot 53 - Q37

LOT 53. KENNY'S CREEK MOJO Q37 PV (HBR)

							'										
DOB 22	2/7/19	GENET	IC STAT	US AMFL	J,CAFU,D	DFU,N	HFU										
TACE		BIRTH				GR	OWTH			FER	TILITY			CAR	CASE		
$\mathbb{P}^{\mathbb{N}}$	DIR	DTRS	GL	BWT	200	400	600	MWT	Milk	SS	DC	CWT	EMA	Rib	Rump	RBY	IMF
EBV	3.3	4.9	-5.2	3.7	45	88	111	81	13	0.9	-5.2	66	6.7	1.2	0	0	2.6
Acc	61%	52%	69%	72%	70%	70%	71%	67%	63%	65%	40%	65%	62%	67%	64%	64%	62%
Mid Jul	ly 2021 ⁻	TransTasr	nan Angı	us Cattle	Evaluatio	n					TF	RAITS OB	SERVED	CE,BWT,	200WT,4	OOWT,G	enomics
		INDEX	INDEX VALUES STRUCTURAL ASSESSMENTS														
Ang	us r	Domostio	Неа	avy	Heavy		ΕU	рЦ	ELL	D	1	<u> </u>	Rul	CNI 1	5 M	unala	Tomp

Breeding	Domestic	Grain	Grass		F	R	F_J	R_J	ACC.	741	SN 1-5	Muscle	Temp
\$132	\$121	\$144	\$126	_	7	6	6	6	5	5	5	C+	2
TFAM45 LAN	NDFALL MOJO	M45 ^{sv}						RVALE BART LANDFALL I		; #			
NDIN119 K	ENNY'S CREE	K BARA N11	9 ^{PV}					9663 LT DF KENNY'S C		-			

PRICE

PURCHASER

LOT 54. KENNY'S CREEK M155 Q60 sv (HBR) DOB 31/7/19 GENETIC STATUS AMFU.CAFU.DDFU.NHFU

DOD 3	1/1/19	GENEI	IC STAIL	JJ AIVIFU	,CAFU,L	יטרט,ואה	FU										
TACE		BIRTH				GRO	WTH			FERT	ILITY			CAR	CASE		
	DIR	DTRS	GL	BWT	200	400	600	MWT	Milk	SS	DC	CWT	EMA	Rib	Rump	RBY	IMF
EBV	6.6	5.5	-10.6	2.1	47	85	119	101	21	3.8	-7.6	68	4.1	1.4	1	0.2	1.7
Acc	53%	48%	67%	68%	66%	66%	67%	65%	59%	60%	39%	62%	59%	65%	61%	62%	59%
Mid Ju	ly 2021 ⁻	TransTasr	man Angi	us Cattle	Evaluatio	n					TF	AITS OB	SERVED	CE,BWT,	200WT,4	00WT.Gr	enomics

	INDEX V	ALUES					STRUCTU	RAL ASSE	SSMENTS			
Angus Breeding	Domestic	Heavy Grain	Heavy Grass	FH	R₩	F∠J	R∠J	K	TAV	SN 1-5	Muscle	Temp
\$134	\$116	\$140	\$129	7	6	6	6	5	5	5	C+	2
NDIM155 KI	ENNY'S CREE	K BLACKPEA	ARL M155 PV				6055 SYDG KENNY'S C					
NDIM243 K	ENNY'S CREE	K M243 #					ASCOT HAI					

PURCHASER

ANIMAL ID NDIQ37

ANIMAL ID NDIQ60

SALE LOTS

	8/7/19	BIRTH	001410	0 / 10/11 0	,CAFU,DI	- /	OWTH			EEDT	ILITY			CAR	ACE.		
	DIR	DTRS	GL	BWT	200	400	600	MWT	Milk	SS	DC	CWT	EMA	Rib	Rump	RBY	IMF
EBV	-4.1	-2.2	-5.9	6	<u> </u>	98	126	101	14	2.6	-9	68	8.7	0.8	1.2	0.5	3
lcc	65%	54%	71%	72%	71%	71%	72%	69%	64%	66%	41%	66%	64%	69%	65%	66%	64%
Mid Ju	ly 2021	TransTasm	nan Angu	s Cattle I	Evaluation	n					TF	RAITS OB	SERVED	CE,BWT,	200WT,4	00WT,G	enomic
		INDEX	VALUES							STR	UCTURA	L ASSES	SMENTS	;			
Ang Bree	-	Domestic	Hea Grai	2	Heavy Grass		F	RӇ	F∐	R	4	K	1A/	SN 1	-5 Mu	iscle	Temp
\$1	52	\$128	\$17	'3	\$139		6	6	6		6	5	6	5	()+	2
FAM4	-	DFALL MOJ							TFAK69 WWEL3	6 LAND ESSLE	-	SA K696 TTO L3 P					

PURCHASER

PRICE

LOT	56. I	KENNY'S	CREE	k reg	ENT H1	47 (Q84 ^{₽V} (HI	BR)							ANI	MAL ID	NDIQ84
DOB 4	/8/19	GENETIC	STATUS	S AMFU	,CAFU,DD	FU,N	IHFU										
TACE		BIRTH				G	ROWTH			FERT	ILITY			CAR	CASE		
PN	DIR	DTRS	GL	BWT	200	40	0 600	MWT	Milk	SS	DC	CWT	EMA	Rib	Rump	RBY	IMF
EBV	-0.2	3.9	-5.5	4.9	53	99	9 139	148	12	4	-7.6	82	7.5	0.6	-0.3	0.8	2.7
Acc	55%	50%	69%	71%	69%	68	% 70%	67%	61%	63%	40%	64%	61%	67%	63%	64%	61%
Mid Ju	ly 202:	1 TransTasm	nan Angu	s Cattle	Evaluatio	n					TF	RAITS OB	SERVED	CE,BWT	,200WT,	400WT,0	Genomics
	Mid July 2021 TransTasman Angus Cattle Evaluation TRAITS OBSERVED CE,BWT,200WT,400WT,Genomics INDEX VALUES STRUCTURAL ASSESSMENTS																
Ang Bree		Domestic	Hea Gra	-	Heavy Grass		F↓	R↓	F∠J	R	<u>_</u>	K	1A/	SN 1	5 M	uscle	Temp
\$1	57	\$126	\$18	34	\$142		6	6	6		6	5	5	4		C+	2
NDIH1	.47 KEI	NNY'S CREI	EK REGE	ENT H14	7 ^{sv}				NDID14	17 KENN	Y'S CRE	EK BARA	T D145 ^{PV} D147 ^{PV}				
NDIM	180 KE	NNY'S CRE	EK M18	0 sv								EK TRUST EK JEDD	A K346 s	V			
PURC	ASER								PRICE								

LOT	57. K	(ENNY'S	CREE	{ Q80	9 ^{PV} (AP	R)									ANIM	AL ID N	DIQ809
DOB 6	/8/19	GENETIC	STATUS	S AMFU,	CAFU,DD	FU,NH	IFU										
TACE		BIRTH				GF	ROWTH			FERT	ILITY			CAR	CASE		
\mathbb{N}	DIR	DTRS	GL	BWT	200	400	600	MWT	Milk	SS	DC	CWT	EMA	Rib	Rump	RBY	IMF
EBV	-13.5	-2.6	-1.9	7.4	60	106	140	128	18	3.8	-6.2	81	1.9	-1.3	0.3	-0.2	2.4
Acc	54%	49%	70%	69%	67%	66%	68%	65%	60%	62%	41%	63%	59%	65%	61%	62%	60%
Mid Ju	ly 2021	TransTasm	nan Angu	s Cattle	Evaluatio	n					TF	AITS OB	SERVED	CE,BWT,	200WT,4	400WT,G	enomics
		INDEX	VALUES	;						STR	UCTURA	L ASSES	SMENTS	;			
Ang Bree		Domestic	Hea Gra	-	Heavy Grass		F₩	R↓	F∐	R	Lj	k	1A/	SN 1	-5 M	uscle	Temp
\$1:	16	\$101	\$12	29	\$109		6	6	6	(6	5	6	4		C+	2
NDIL2	17 KEN	INY'S CREE	EK PROC	EED L2:	17 ^{sv}							PROCEEI EK BARA					
ATCK3	55 DOI	JGHBOY K	355 ^{sv}							41 ARDR 06 RENN			R A241 PV	1			
PURCH	ASER								PRICE								

LOT	58. KI	ENNY'S	6 CREE	k Payv	VEIGH	r Q550	^{PV} (HB	R)							ANIMA	AL ID NC	0IQ550
DOB 25	5/7/19	GENET	IC STATI	US AMFL	J,CAFU,D	DFU,NH	FU										
TACE	TACE BIRTH GROWTH FERTILITY CARCASE																
\mathbb{N}	DIR	DTRS	GL	BWT	200	400	600	MWT	Milk	SS	DC	CWT	EMA	Rib	Rump	RBY	IMF
EBV	1.8	5.7	-0.7	3.9	49	89	106	84	18	1.5	-4.8	67	4.6	2.1	1.1	-0.9	2.6
Acc	62%	54%	74%	74%	73%	73%	74%	72%	68%	69%	45%	69%	66%	71%	67%	68%	67%
Mid Ju	y 2021 1	FransTasr	nan Angu	us Cattle	Evaluatio	n					TR	AITS OB	SERVED	BWT,200)WT(x2),4	00WT,Ge	enomics

	INDEX V	ALUES					STRUCTU	RAL ASSE	SSMENTS			
Angus Breeding	Domestic	Heavy Grain	Heavy Grass	F	R↓	F∠J	R∠J	K	TAV	SN 1-5	Muscle	Temp
\$114	\$113	\$119	\$112	7	6	6	6	5	6	4	C+	2

USA17038724 BASIN PAYWEIGHT 1682 PV

NDIJ249 KENNY'S CREEK BARA J249 sv

USA15332050 BASIN PAYWEIGHT 0065 [#] USA15875998 21AR 0 LASS 7017 [#] USA15738589 WERNER WESTWARD 357 [#] NDIF118 KENNY'S CREEK BARA F118

PURCHASER

PRICE

(L) Kenny's Creek Bara J249 - dam of lots 26, 58, 61 (R) Lot 58 - Q550

LOT 59. KENNY'S CREEK MOMENTUM Q45 PV (HBR)

LOT	59. I	KENNY'S	CREE	k MON	1ENTUM	1 Q4	15 ^{pv} (HBF	R)							ANI	AL ID	NDIQ45
DOB 2	3/7/19	GENETI	C STATL	I S AMFL	J,CAFU,D	DFU,	NHFU,										
TACE		BIRTH				0	ROWTH			FERT	TILITY			CAR	CASE		
\mathbb{N}	DIR	DTRS	GL	BWT	200	40	0 600	MWT	Milk	SS	DC	CWT	EMA	Rib	Rump	RBY	IMF
EBV	-15.1	-8.7	-3.2	6.5	55	96	6 125	102	24	1.5	-2.4	71	14.2	-1.1	-2.5	2.2	3.7
Acc	66%	56%	69%	72%	71%	70	% 71%	70%	66%	67%	44%	67%	65%	69%	66%	66%	65%
Mid Ju	ly 2021	L TransTasm	nan Angu	s Cattle	Evaluatio	n					TF	RAITS OB	SERVED	CE,BWT,	,200WT,4	00WT,0	Genomics
		INDEX	VALUES	;						STF	RUCTURA	L ASSES	SMENTS	;			
Ang Breed		Domestic	Hea Gra	2	Heavy Grass		F↓	RӇ	F∐	R	4	K	1A/	SN 1	5 Mu	uscle	Temp
\$12	22	\$108	\$14	15	\$111	_	7	6	6		6	5	6	3		C+	2
USA17	35414	15 G A R M	OMENTU	IM PV					USA16	734804	G A R PF G A R BI	G EYE 17	770 #				
NDIN3	KENN	Y'S CREEK	BARA N	3 ^{PV}							MONT LO Y'S CREE						
PURCH	IASER								PRICE								

LOT 60. KENNY'S CREEK Q167 PV (HBR)

DOB 29	9/8/19	GENET	IC STAT	US AMFL	J,CAFU,D	DFU,NH	FU										
TACE		BIRTH				GRO	WTH			FERT	ILITY			CAR	CASE		
	DIR	DTRS	GL	BWT	200	400	600	MWT	Milk	SS	DC	CWT	EMA	Rib	Rump	RBY	IMF
EBV	4.9	-0.4	-4.1	1.8	45	82	100	93	24	1.6	-6.8	69	8.5	1	2.7	-0.9	3.1
Acc	56%	53%	67%	70%	69%	68%	70%	68%	63%	64%	44%	66%	64%	69%	65%	67%	64%
Mid Jul	y 2021 ⁻	TransTasr	nan Angu	us Cattle	Evaluatio	n					TR	AITS OB	SERVED	CE,BWT,	200WT,4	OOWT,Ge	enomics

	INDEX V	ALUES						STRUCTU	RAL ASSE	SSMENTS			
Angus Breeding	Domestic	Heavy Grain	Heavy Grass	F	-	R₩	F∐	R∠J	K	TA	SN 1-5	Muscle	Temp
\$124	\$113	\$134	\$117		6	6	6	6	6	6	4	С	2
NDIL442 KE	NNY'S CREEK	REGENT L4	42 ^{sv}					TUWHARE KENNY'S C					
NDIN6 KENI	NY'S CREEK N	INAH N6 ^{sv}						SSLEMONT KENNY'S CI					
							NDIL160	KEININY'S CI		H L160 "			

ANIMAL ID NDIQ167

42

LOT	61. I	KENNY'S	CREE	k Payv	NEIGHT	Q53	7 ^{pv} (HB	SR)							ANIN	IAL ID N	DIQ537
DOB 22	2/7/19	GENETI	C STATI	JS AMFL	J,CAFU,DI	DFU,NH	HFU										
TACE		BIRTH				GRO	OWTH			FERT	ILITY			CAR	CASE		
\mathbb{N}	DIR	DTRS	GL	BWT	200	400	600	MWT	Milk	SS	DC	CWT	EMA	Rib	Rump	RBY	IMF
EBV	3.6	5.5	-1.4	2.6	51	92	112	71	23	0.8	-1.2	70	4.3	3	2.5	-1.4	2
Acc 62% 54% 73% 74% 73% 73% 73% 71% 68% 68% 44% 69% 66% 70% 67% 68% 66%																	
Nid July 2021 TransTasman Angus Cattle Evaluation TSX TSX																	
		INDEX	VALUES	5						STR	UCTURA	AL ASSES	SMENTS	;			
Ang Breed		Domestic	Hea Gra	,	Heavy Grass		F₩	RӇ	F∐	R	4	R	14/	SN 1	-5 N	luscle	Temp
\$10)3	\$108	\$9	4	\$110		7	6	7		7	6	6	4		C+	2
JSA17	03872	24 BASIN PA	AYWEIGI	HT 1682	PV							AYWEIGH	HT 006S * 17 *	ŧ			
NDIJ24	9 KEN	INY'S CREE	K BARA	J249 ^{sv}								R WESTV EK BARA	/ARD 357 F118 #	7 #			

PURCHASER

PRICE

LOT 62. KENNY'S CREEK INTENSITY Q500 PV (HBR)

SALE LOTS

DOB 18	8/7/19	GENET	IC STAT	US AMFL	J,CAFU,D	DFU,N	HFU										
TACE		BIRTH				GR	OWTH			FER	TILITY			CAR	CASE		
$\mathbb{P}^{\mathbb{N}}$	DIR	DTRS	GL	BWT	200	400	600	MWT	Milk	SS	DC	CWT	EMA	Rib	Rump	RBY	IMF
EBV -16.8 -1.4 -3.3 7.5 65 115 152 147 16 2.8 -4.1 83 5.9										5.9	1.6	1	-0.3	2.7			
Acc	63%	58%	73%	74%	73%	73%	73%	72%	69%	68%	51%	70%	67%	71%	68%	69%	67%
Mid Ju	ly 2021 ⁻	TransTasn	nan Angı	us Cattle	Evaluatio	n						TRAITS	OBSERV	ED BWT,	200WT,4	00WT,G	enomics
		INDEX	VALUES	5						STF	UCTURA	L ASSES	SMENTS	5			
Ang	us r	Omestic	Hea	avy	Heavy		E/ \	D	ЕЛ	R	1	6	(A)	SNI 1	5 M	isclo	Tomp

Angus Breeding	Domestic	Heavy Grain	Heavy Grass	F	R↓	F∠J	R∠J	K	14	SN 1-5	Muscle	Temp
\$119	\$102	\$133	\$113	6	6	6	7	5	5	4	C+	2
USA173665	506 H P C A IN	TENSITY #				USA1607	7066 G A R 8549 G A R	PREDESTI	NED 287L	-		
NDIK309 KI	ENNY'S CREEP	(NINAH K30)9 ^{sv}				7010F031 (ENNY'S CR)31 ^{sv}		

PURCHASER

PRICE

(L) Lot 62 - Q500 (R) Flush sister to lots 36 and 62 sold in female last year for \$15K

ANIMAL ID NDIQ500

ANIMAL ID NDIQ78

LOT 63. KENNY'S CREEK DRIVE Q78 PV (HBR)

DOB 3/	/8/19	GENETIC	C STATU	S AMFU,	CAFU,DE	DFU,NHF	U										
TACE		BIRTH				GRO	WTH			FERT	ILITY			CAR	CASE		
TACE	DIR	DTRS	GL	BWT	200	400	600	MWT	Milk	SS	DC	CWT	EMA	Rib	Rump	RBY	IMF
EBV	-3.9	2.2	-5.1	3.9	49	95	118	94	18	1.7	-0.5	69	13.7	0.2	-1	2.1	2.7
Acc	58%	50%	72%	73%	72%	72%	73%	70%	64%	68%	42%	67%	65%	69%	66%	66%	65%
Mid Ju	ly 2021	TransTasr	man Angi	us Cattle	Evaluatio	n					TF	AITS OB	SERVED	CE,BWT,	200WT,4	00WT,G	enomics

	INDEX \	ALUES					STRUCTU	RAL ASSE	SSMENTS			
Angus Breeding	Domestic	Heavy Grain	Heavy Grass	F	R↓	F∠J	R∠J	K	TAV	SN 1-5	Muscle	Temp
\$130	\$124	\$142	\$126	6	6	6	6	6	6	5	C+	2
USA183014	70 G A R DRI	VE PV				USA1767	4145 G A F 0660 MAPI	ECREST B	LACKCAP	3007 #		
NDIL161 KE	NNY'S CREE	K NINAH L16	51 ^{sv}				6506 H P (

PURCHASER

LOT	64. I	(ENNY'S	CREEK	Q819) ^{PV} (AP	R)									ANIM	al id N	DIQ819
DOB 2/	/9/19	GENETIC	STATUS A	AMFU,C	CAFU,DD	FU,NI	HFU										
TACE		BIRTH				GF	ROWTH			FERT	ILITY			CAR	CASE		
\mathbb{N}	DIR	DTRS	GL	BWT	200	400	600	MWT	Milk	SS	DC	CWT	EMA	Rib	Rump	RBY	IMF
EBV	-4.7	-2.7	-3.1	5.2	42	78	106	89	18	2.3	-5.5	58	6.1	0.1	0.3	0	2.8
Acc	48%	38%	52%	69%	55%	53%	53%	52%	44%	45%	31%	47%	44%	50%	47%	47%	45%
Mid Ju	ly 2021	L TransTasm	nan Angus	Cattle E	Evaluatio	n							TRAITS O	BSERVE	D CE,BW	T,200W	T,400WT
		INDEX	VALUES							STR	UCTURA	L ASSE	SSMENTS				
Ang Breed		Domestic	Heavy Grain		Heavy Grass		F↓	RӇ	F∐	R	Įj	K	1 _{AV}	SN 1	-5 Mu	uscle	Temp
\$11	L3	\$99	\$126		\$106		6	6	6	-	7	6	6	4		C	2
NDIM4	KENN	Y'S CREEK	M4 ^E										CA G655 F ECTION H				
ATCK3	56 DO	UGHBOY K	356 #						NORG9 ATCH35				0 G918 ^s	/			
PURCH	IASER								PRICE								

LOT	65. I	KENNY'S	CREE	k MOJ	0 Q46 [⊧]	[∨] (HI	BR)								ANI	MAL ID	NDIQ46
DOB 24	4/7/19	GENETI	C STATU	S AMFL	J,CAFU,D	DFU,N	NHFU										
TACE		BIRTH				Gl	ROWTH			FER1	ILITY			CAR	CASE		
\mathbb{N}	DIR	DTRS	GL	BWT	200	400) 600	MWT	Milk	SS	DC	CWT	EMA	Rib	Rump	RBY	IMF
EBV	-5.5	3.5	-6.1	7.8	65	121	L 162	135	20	3	-4.9	96	6.6	-2	-2.5	1.7	2.5
Acc	63%	52%	72%	72%	71%	71%	6 72%	68%	64%	66%	41%	66%	63%	68%	65%	65%	64%
Mid Jul	y 2021	L TransTasm	nan Angu	s Cattle	Evaluatio	n					TF	RAITS OB	SERVED	CE,BWT,	,200WT,4	loowt,g	enomics
		INDEX	VALUES							STF	UCTURA	L ASSES	SMENTS	;			
Ang Breed		Domestic	Hea Gra	2	Heavy Grass		F↓	R↓	F∐	R	L)	k	14/	SN 1	5 M	uscle	Temp
\$16	0	\$135	\$18	35	\$148		6	6	6		6	5	6	5		C+	2
TFAM4	5 LANI	DFALL MOJ	0 M45 ^{s\}	/					TFAK69	96 LAND		E7 ^{PV} SA K696 WESTW		SV			
NDIN1	44 KEI	NNY'S CRE	EK BARA	N144	PV							EK BARA					
PURCH	ASER								PRICE								

LOT	66. I	KENNY'S	CREE	k Payv	NEIGHT	Q638	^{в рv} (НВ	SR)							ANIM	AL ID N	DIQ638
DOB 1	2/8/19	9 GENET	IC STAT	US AMFI	J,CAFU,D	DFU,NH	IFU										
TACE		BIRTH				GRO	WTH			FERT	TILITY			CAR	CASE		
$\mathbb{P}\mathbb{N}$	DIR	DTRS	GL	BWT	200	400	600	MWT	Milk	SS	DC	CWT	EMA	Rib	Rump	RBY	IMF
EBV	-13.1	3.2	-2.3	6.8	61	105	132	117	12	0.7	-1.5	78	4.3	-1.1	-2.7	0.4	2.1
Acc	61%	53%	74%	74%	73%	73%	74%	72%	68%	69%	43%	69%	66%	70%	67%	67%	66%
Mid Ju	ly 2021	L TransTasn	nan Angi	is Cattle	Evaluation	ı					TR	AITS OB	SERVED E	3WT,200)WT(x2),4	400WT,G	enomics
		INDEX	VALUES	6						STF	RUCTURA	L ASSES	SMENTS				
Ang Bree		Domestic	Hea Gra	2	Heavy Grass		F↓	RӇ	F∠J	R	4	K	14/	SN 1	-5 M	uscle	Temp
\$9	6	\$98	\$1	02	\$96		6	5	6		5	5	5	5		C+	2
USA17	03872	24 BASIN P	AYWEIG	HT 1682	PV				USA158	375998	21AR 0	LASS 70		•			
NDIL2	23 KEN	NY'S CRE	EK WILC	00LA L2	223 ^{pv}						H P C A IY'S CRE			03 ^{sv}			

PURCHASER

PRICE

Kenny's Creek Bara Wilcoola L223 - dam of lots 46 and 66

SALE LOTS

LOT	67. K	ENNY'S	CREE	(CAPI	TALIST	Q47	PV (HBR)								ANI	MAL ID	NDIQ47
DOB 24	4/7/19	GENETI	C STATU	IS AMFU	,CAC,DD	C,NH	FU										
TACE		BIRTH				GI	ROWTH			FERT	ILITY			CAR	CASE		
2 N	DIR	DTRS	GL	BWT	200	400	600	MWT	Milk	SS	DC	CWT	EMA	Rib	Rump	RBY	IMF
EBV	8.5	10.9	-9.9	2.2	41	76	103	108	15	0.5	-7.3	47	-0.7	-0.8	-1.5	-0.2	2
Acc	55%	50%	68%	71%	69%	69%	6 70%	68%	63%	63%	43%	65%	62%	67%	63%	64%	62%
Mid Ju	ly 2021	TransTasm	an Angu	s Cattle	Evaluatior	I					TF	RAITS OB	SERVED	CE,BWT	,200WT,	400WT,G	enomics
		INDEX	VALUES							STR	UCTURA	L ASSES	SMENTS				
Ang Breed		Domestic	Hea Gra	2	Heavy Grass		F	RӇ	F∠J	R	<u>l</u> j	K	1A/	SN 1	5 M	uscle	Temp
\$11	_4	\$105	\$12	25	\$107		6	6	7	(6	6	5	5		C+	2
NDIN9	KENNY	S CREEK	TRUST N	19 ^{pv}								TRUST 6					
NDIG5	4 KENN	NY'S CREE	K FEDER	ATION G	54 ^{sv}							RICA A21 EK FEDEI		144 #			

PURCHASER

PRICE

	0/ 10			AIVIEU.	CAF, DDF	U.NHF	U										
		BIRTH			,	<i>'</i>	OWTH			FERT	ILITY			CAR	CASE		
	DIR	DTRS	GL	BWT	200	400	600	MWT	Milk	SS	DC	CWT	EMA	Rib	Rump	RBY	IMF
EBV	-5.4	-4.5	0.3	5.2	43	72	94	98	8	1.5	-4.4	48	2.1	-0.8	-0.8	-0.6	3.1
Acc	53%	46%	69%	73%	71%	71%	72%	70%	62%	64%	38%	66%	62%	68%	64%	65%	62%
Mid July	/ 2021	TransTasm	an Angu	s Cattle	Evaluatio	n					TI	RAITS OB	SERVED	CE,BWT,	,200WT,4	400WT,G	enomics
		INDEX	VALUES							STR	UCTURA	L ASSES	SMENTS	;			
Angus Breedii		Domestic	Hea Grai	-	Heavy Grass		F	R	F∠J	R	Lj	K	"TAY	SN 1	5 M	uscle	Temp
\$90)	\$87	\$10	2	\$83		6	6	6	6	6	5	6	4		C+	2
NDIM45	5 KENN	NY'S CREE	< JUSTIC	E M45	SV				NDIK10	0 KENN	Y'S CRE	JSTICE J9 EK CROS	S K100 #	ŧ			
NDIL291	1 KEN	NY'S CREE	K BLACI	KBOOM	L291 PV							K DARWII EK BLACK		368 ^{pv}			

LOT 69. KENNY'S CREEK CAPITALIST Q634 PV (HBR) ANIMAL ID NDIQ634 DOB 11/8/19 GENETIC STATUS AMFU, CAFU, DDFU, NHFU BIRTH GROWTH FERTILITY CARCASE TACE DIR DTRS GL BWT 200 400 600 MWT Milk SS DC CWT EMA Rib Rump RBY IMF EBV 6.8 6 -6.6 3.9 89 -3.5 7 51 115 107 11 1.6 76 -0.1 -2.2 1.3 1.8 71% 71% 69% 65% 58% 51% 69% 73% 71% 66% 41% 66% 63% 68% 65% 65% 63% Acc Mid July 2021 TransTasman Angus Cattle Evaluation TRAITS OBSERVED BWT,200WT(x2),400WT,Genomics INDEX VALUES STRUCTURAL ASSESSMENTS Angus Heavy Heavy 14 F₩ R₩ F∐ R∐ SN 1-5 Temp Domestic Muscle RC Breeding Grain Grass \$119 6 6 6 6 C+ 2 \$124 \$131 \$121 6 6 5 USA0035 S A V FINAL ANSWER 0035 # USA16752262 CONNEALY CAPITALIST 028 # USA16204878 PRIDES PITA OF CONANGA 8821 * NDIH33 KENNY'S CREEK REGENT H33 ^{PV} NDIH369 KENNY'S CREEK H369 ^{SV} NDIK269 KENNY'S CREEK PRINCESS K269 sv

PURCHASER

LOT	70. I	KENNY'S	CREE	K L46:	3 Q75 P\	′ (HB	BR)								ANII	MALID	NDIQ75
DOB 3	/8/19	GENETIC	STATUS	S AMFU	,CAFU,DD	FU,N	HFU										
TACE		BIRTH				G	ROWTH			FERT	ILITY			CAR	CASE		
\mathbb{N}	DIR	DTRS	GL	BWT	200	400	0 600	MWT	Milk	SS	DC	CWT	EMA	Rib	Rump	RBY	IMF
EBV	3	4.6	-8.1	5.4	46	75	107	94	9	2.2	-6.8	66	6	3.3	1.7	-1.5	3
Acc	55%	52%	66%	70%	68%	68%	69%	68%	62%	63%	44%	65%	62%	67%	63%	65%	62%
Mid Ju	ly 202:	1 TransTasn	nan Angu	s Cattle	Evaluatio	n					TF	AITS OB	SERVED	CE,BWT,	200WT,4	100WT,G	enomics
		INDEX	VALUES	;						STR	UCTURA	L ASSES	SMENTS	5			
Ang Breed		Domestic	Hea Gra		Heavy Grass		F	R	F∠J	R	L)	K	141	SN 1	-5 M	uscle	Temp
\$12	24	\$104	\$13	37	\$117		7	6	6	7	7	6	6	4		C+	2
		NNY'S CREE							NDID62 VTMB1	2 KENNY TE MAN	'S CREE IA BERK	MUND E1 K CHAMF LEY B1 P EK KIWI I	PAGNE D	62 ^{sv}			

PURCHASER

PRICE

LOT 70A. KENNY'S CREEK INTENSITY Q504 PV (HBR)

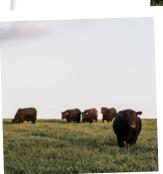
DOB 18	3/7/19	GENET	IC STAT	JS AMFL	J,CAFU,D	DFU,NH	FU										
TACE		BIRTH				GRO	WTH			FERT	ILITY			CAR	CASE		
	DIR	DTRS	GL	BWT	200	400	600	MWT	Milk	SS	DC	CWT	EMA	Rib	Rump	RBY	IMF
EBV	5.7	4.4	-5.5	3.4	58	104	131	102	29	0.5	-7.2	82	10.4	0.5	-0.6	0	3.9
Acc	65%	60%	73%	74%	73%	73%	74%	73%	70%	70%	52%	71%	69%	72%	70%	70%	69%
Mid Ju	y 2021 ⁻	TransTasr	nan Angi	is Cattle	Evaluatio	n						TRAITS	OBSERV	ED BWT,	200WT,4	00WT,G	enomics

	INDEX V	ALUES					STRUCTU	RAL ASSE	SSMENTS			
Angus Breeding	Domestic	Heavy Grain	Heavy Grass	F	R	F∠J	R∠J	K	14/	SN 1-5	Muscle	Temp
\$162	\$139	\$189	\$148	6	6	6	6	5	6	5	C+	2
USA173665	06 H P C A IN	TENSITY #					7066 G A R 8549 G A R		-	#		
NDIJ265 KE	NNY'S CREEK	SATURN J2	65 ^{pv}				5688 G A R KENNY'S CI			SV		

PURCHASER

PRICE

(L) Lot 70A - Q504 (R) Kenny's Creek Saturn J265 - dam of lots 24, 49 and 70A



ANIMAL ID NDIQ504

KENNY'S CREEK COW FAMILIES

BARA FAMILY

Started with the purchase of K150 in 1991, she was a 1990 drop calf. K150 grew into a moderate framed cow, very docile, fertile and trait leading carcase. Showing tremendous longevity and living until nearly 22 years of age. Now she is +4.3 Calving Ease and +2.1 IMF with 91 registered progeny in 6 herds. Some standout daughters are U72 with 14 progeny, Q120 with 66 progeny, Y120 with 22 progeny and A341 and D147. The Bara family continues to impress these traits now.

FINKS MISS FAMILY

Embryos were imported from Fink Beef Genetics, Kansas USA in 2001. The donor cow was Finks Miss 8315 and the sire was GAR Precision 1680. From these embryos there were 8 daughters. Kenny's Creek used X56 as a donor cow resulting in 12 progeny. Other females from these embryos are X34, purchased by Welcome Swallow, X44, purchased by Old Bundemar and X51, purchased by Bill Cornell and St. Paul's Angus. Our top priced cow in 2014 was D118 purchased by Moore Park Livestock, Glen Innes. The Finks Miss family has a very consistent phenotype and extra thickness and body depth.

MITTAGONG FAMILY

V254 purchased from Te Mania in 2004, she was a productive donor cow having 87 progeny in 5 herds. Her daughters have been donors at Sterita Park, Te Mania and Paringa. Daughters have bred on particularly well, like C27 with 28 progeny, who was sold in 2014 to Redbank Angus. Sons of V254 have regularly topped bull sales. The Mittagong family breeds exceptional phenotype and strong maternal dams.

PATRIOT FAMILY

Gets its name from sire Lord Patriot, the corner stone cow was T97 with 55 progeny. Other donor cows have been W37 with 62 progeny and X320. The Patriot cow line is one of the bigger framed cow families at Kenny's Creek.

SATURN FAMILY

Started with Scotch Cap OB45 embryos purchased from Ardrossan Angus. V82 was the most proficient donor of this family with 63 progeny. A couple of daughters carried on as donors, C711 has 28 progeny and was sold to Bannaby Angus in 2011. Her flush sister C715 had 48 progeny. The Saturn family is a moderate frame line with very good maternal and carcase qualities.

WILCOOLA FAMILY

Kenny's Creek purchased T138 from Ardrossan, a big framed matron by 036 x Q82. T138 was born in 1998 and her IMF EBV still stacks up well at +3.2 with 28 progeny recorded. The Wilcoola family are typified by large framed cows with good udders and rib angle.

NOTES

Attention Buyer

Animal details included in this catalogue, including but not limited to pedigree, DNA information, Estimated Breeding Values (EBVs) and Index values, are based on information provided by the breeder or owner of the animal. Whilst all reasonable care has been taken to ensure that the information provided in this catalogue was correct at the time of publication, Angus Australia will assume no responsibility for the accuracy or completeness of the information, nor for the outcome (including consequential loss) of any action taken based on this information.

Parent Verification Suffixes

The animals listed within this catalogue including its pedigree, are displaying a Parent Verification Suffix which indicates the DNA parent verification status that has been conducted on the animal. The Parent Verification Suffixes that will appear at the end of each animal's name are as follows:

- PV: both parents have been verified by DNA
- SV: the sire has been verified by DNA
- DV: the dam has been verified by DNA
- #: DNA verification has not yet been conducted
- E: DNA verification has identified that the sire and/or dam may possibly be incorrect, but this cannot be confirmed conclusively.

BUYERS REGISTRATION SLIP

Name		
Trading Name		
Address		
Phone	Fax	
Signature		
DELIVERY INSTRUCTIONS		
Lots Purchased		
Insurance		
Special Instructions		

REGISTRATION TRANSFER DETAILS

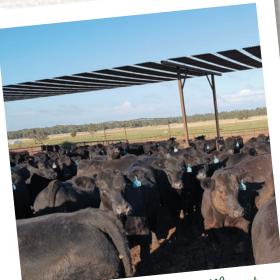
Do you wish to have the Angus Society of Australia's registration of your bull transferred into your name?

 \bigcirc No \bigcirc Yes – Society ID Number:

Special Instructions

DELIVERY INSTRUCTIONS

The signature of your Agent is required if you elect to settle through an Agent.


Agent

KENNY'S CREEK BUYBACK PROGRAM

Buying Angus heifers for breeding

Buying steers for The Mount feedlot 380-450kg

Buying grass fed Angus cattle 500-600kg

Each year we buyback HEIFERS, FEEDER STEERS AND KILL CATTLE with the objective of providing a premium to our bull clients

> FOR FURTHER INFORMATION, CONTACT SAM SAM@KENNYSCREEK.COM.AU | 0403 180 804

If undeliverable, please return to: Kenny's Creek Angus, Hillgrove, 591 Murringo Road Boorowa NSW 2586

POSTAGE PAID AUSTRALIA