A N G U S

20th Spring Bull Sale

Saturday 7th August 2021, 12 noon On Property, 480 Chapmans Lane Chatsbury NSW

www.myanga.com.au

Selling Agent

John Palmer: 0417 653 445 Tim Woodham: 0436 015 115 Peter Godbolt: 0457 591 929

Buy and Sell stock nationally Sale will be interfaced with AuctionsPlus

Enquiries

Stephen Dunne: 0431 007 007 Brett Hart: 0459 516 736

Videos will be available with final weights at www.myanga.com.au

Saturday 7th August 2021

On Property, 480 Chapmans Lane, Chatsbury NSW

Welcome to our 20th Spring Bull Sale

This catalogue aims to provide a fulsome description of the bulls on offer this year. This year's bull line up :

- Great temperament
- Strength of structure
- Features sons of Spring Creek Acclaim
- Myanga Angus Stud is JBAS8 herd with eligibility to enter all States
- Free delivery within 200km and to major centres in NSW

Open Day Saturday 31st July 2021.

We are keen to see you at our open day and are happy to discuss any aspect of the bulls catalogued.

Bulls available for inspection from 9 am till 3 pm or by appointment.

Welcome to the 20th Spring Myanga Bull Sale

We are very pleased to present our 2021 Bull draft for your consideration.

The 2020/21 growing season in the Southern Tablelands has seen well above average rains and mild temperatures. Virtually each month has featured good rains providing ample green feed.

Since our last bull sale things have been busy. In November we have a very pleasing stud heifer sale with a top of \$9250 and an average of \$6800. We also held our third Myanga Blood sale. This sale provides a platform for our clients to sell their Myanga offspring collectively under one banner to gain further reach and profile among buyers across NSW and interstate. We will do the same again in February / March 2022.

This year's bull line-up represents a continued progression from last year. Our focus on structure (to deliver both longevity and calving ease), temperament, growth (particular focused on 400 day and 200 day growth weights) and fertility. This focus drives both our stud sire selection and the selection process for the line up on offer. As

a result this year's line-up is extremely even, offering outcross genetics and showing plenty of growth. On offer is a balance of rising 2 year old bulls and yearling bulls.

Our female herd also continues to match the structure and inject, great temperament and doability. We retain a large portion of our heifers reflecting faith in our programme to produce highly fertile, good temperament moderate mature cows.

All this has meant the quality of our 2021 draft is a step up from 2020 and a continued progression of the Myanga programme.

We look forward to seeing you on Saturday 7th August for our 2021 bull sale commencing 12 noon at Chapman's Lane Chatsbury.

For more information please visit our Facebook page or website www.myanga. com.au

Kind Regards,

Stephen and Sally

"Our focus on fertility, structure

Myanga Quality

All Myanga Bulls in this catalogue have been:

- Tagged at Birth
- Birth, 200, 400 day weights plus P8 Fat, Rib Fat, Eye muscle and IMF scan data submitted to Angus Australia.
- SNP tested for production traits using Angus GS.
- Sire verified through DNA testing.
- Independently assessed for structure.
- Vet inspected and have passed a thorough reproductive examination involving testicular palpation, penile inspection, crush side semen motility and independent accredited sperm morphology assessment.
- Tested to be PI (Bovine Pestivirus carrier state) free.

- Vaccinated with 7 in 1, Vibriosis vaccinated , Pestigard vaccinated and drenched with Nitromec.
- Myanga is a JBAS 8 herd

SUPPLEMENTARY SHEET

With updated weights available prior to the sale on www.myanga.com.au

GUARANTEE

Myanga guarantee all bulls to be fertile and capable of natural service, however any claims must be accompanied by a veterinary certificate and made within 6 months of sale date. If a bull should prove infertile or breaks down due to reasons other than injury, misadventure or negligence Myanga will replace the bull with a satisfactory replacement if available or issue you with a credit equal to the purchase price, minus any salvage value.

and docility remains absolute"

Sale Information

INSPECTIONS

Welcome any time by appointment or from 9.30am on sale day.

INSURANCE

There is no vendor insurance on sale bulls. It will be the responsibility of the purchaser to insure their bulls.

REBATE

Rebate of 2% on stud bulls will be offered to outside agents introducing clients in writing prior to the sale or in attendance on day of sale.

TRANSPORT

Delivery will be arranged as cheaply as possible, with FREE delivery of bulls for the first 200km and to major NSW centres. Bulls remaining at Myanga pending delivery are at the purchaser's risk.

INTENDING BUYERS

A buyer's number system will be in operation. Therefore, all prospective purchasers will be required to register on or prior to sale day at the agent's office prior to commencement of the sale.

INJURY TO PERSON OR PROPERTY

All persons who attend the sale do so at their own risk, and vendors therefore assume no liability. All persons entering bull pen's do so at their own risk.

Please NO children allowed in bull pen's at the Myanga sale complex.

ATTENTION BUYER

Animal details included in this catalogue, including but not limited to pedigree, DNA information, Estimated Breeding Values (EBVs) and Index values, are based on information provided by the breeder or owner of the animal. Whilst all reasonable care has been taken to ensure that the information provided in this catalogue was correct at the time of publication, Angus Australia will assume no responsibility for the accuracy or completeness of the information, nor for the outcome (including consequential loss) of any action taken based on this information.

PARENT VERIFICATION SUFFIXES

The animals listed within this catalogue including its pedigree, are displaying a Parent Verification Suffix which indicates the DNA parent verification status that has been conducted on the animal. The Parent Verification Suffixes that will appear at the end of each animal's name.

The suffix displayed at the end of each animal's name indicates the DNA parentage verification that has been conducted by Angus Australia.

PV : both parents have been verified by DNA SV : the sire has been verified by DNA

- DV : the dam has been verified by DNA
- #: DNA verification has not been conducted
- E : DNA verification has identified that the sire and/or dam may possibly be incorrect, but this cannot be confirmed conclusively.

PRIVACY INFORMATION

In order for Angus Australia to process the transfer of a registered animal in this catalogue, the vendor will need to provide certain information to Angus Australia and the buyer consents to the collection and disclosure of that information by Angus Australia in certain circumstances. If the buyer does not wish for his or her information to be stored and disclosed by Angus Australia, the buyer must complete the form included below and forward it to Angus Australia. If the form is not completed, the buyer will be taken to have consented to the disclosure of such information.

Beef Class Structural Assessment System ANGUS

Structural problems in cattle have a substantial effect on both the reproductive and growth performance of a beef herd. It is widely recognised that structural problems in sires have detrimental effects on conception rates, calving patterns and thus profitability. Similarly, females with inadequate structural characteristics are more prone to weaning lighter calves or conceiving later in the breeding season than their more functional counterparts. These structural problems are filtered through the supply chain resulting in reduced income for the producer, feedlot and thus reducing the overall productivity of the Australian Beef Industry.

Over the two decades, use of the Beef Class Structural Assessment System in the seedstock industry has produced a marked improvement in herds which have shown commitment to using the information appropriately. Through these dedicated breeders, there has been a flow on affect of structural improvement through out all sectors of the beef cattle industry. This structural analysis has allowed the formation of structural EBV's which are gaining momentum within the industry.

Liam Cardile of 'BEEFXCEL' structurally assesses many of the leading seedstock herds in Australia. 'BEEFXCEL' is not involved in any genetic marketing or specific breeding advice and therefore has no conflict of interests to influence their stock appraisal. The integrity of the structural data provided by 'BEEFXCEL' is recognised throughout the industry as Liam is a fully INDEPENDENT assessor.

'MYANGA' STRUCTURAL PROGRAM:

The 2021 'MYANGA' Sale Bulls have been independently structurally assessed to maximise the quality of stock on offer. Any animals deemed inadequate have been removed from the sale draft. All bulls were assessed by Liam Cardile of BEEFXCEL on 16th June 2021. Please contact Liam directly if you wish to discuss the assessment system.

How to use The Beef Class Structural Assessment System

The Beef Class Structural Assessment System uses a 1-9 scoring system;

- A score of 5 is ideal. (Note: Temperament Score of 1 is preferable)
- A score of 4 or 6 shows slight variation from ideal, but this includes most animals. An animal scoring 4 or 6 would be acceptable in any breeding program.
- A score of 3 or 7 shows greater variation but would be acceptable in most commercial programs. However, seedstock producers should be vigilant and understand that this score indicates greater variation from ideal.
- A score of 2 or 8 are low scoring animals and should be looked closely before purchasing.
- A score of 1 or 9 should not be catalogued and are considered culls.

Liam Cardile on 0409 572 570

www.myanga.com.au

RECESSIVE GENETIC CONDITIONS

This is information for bull buyers about the recessive genetic conditions, Arthrogryposis Multiplex (AM), Hydrocephalus (NH), Contractural Arachnodactyly (CA) and Developmental Duplications (DD).

Putting undesirable Genetic Recessive Conditions in perspective

All animals, including humans, carry single copies (alleles) of undesirable or "broken" genes. In single copy form, these undesirable alleles usually cause no harm to the individual.

But when animals carry 2 copies of certain undesirable or "broken" alleles it often results in bad consequences. Advances in genomics have facilitated the development of accurate diagnostic tests to enable the identification and management of numerous undesirable or "broken" genes.

Angus Australia is proactive in providing its members and their clients with relevant tools and information to assist them in the management of known undesirable genes and our members are leading the industry in their use of this technology.

What are AM, NH, CA and DD?

AM, NH, CA and DD are all recessive conditions caused by "broken" alleles within the DNA of individual animals. When a calf inherits 2 copies of the AM or NH alleles their development is so adversely affected that they will be still-born.

In other cases, such as CA and DD, calves carrying 2 copies of the broken allele may reach full-term. In such cases the animal may either appear relatively normal, or show physical symptoms that affect their health and/or performance.

How are the conditions inherited?

Research in the U.S. and Australia indicates that AM, NH, CA and DD are simply inherited recessive conditions. This means that a single gene (or pair of alleles) controls the condition.

For this mode of inheritance two copies of the undesirable allele need to be present before the condition is seen; in which case you may get an abnormal calf. A more common example of a trait with a simple recessive pattern of inheritance is black and red coat colour.

Animals with only one copy of the undesirable allele (and one copy of the normal form of the allele) appear normal and are known as "carriers".

What happens when carriers are mated to other animals?

Carriers, will on average, pass the undesirable allele to a random half (50 %) of their progeny.

When a carrier bull and carrier cow is mated, there is a 25% chance that the resultant calf will inherit two normal alleles, a 50% chance that the mating will result in a carrier (i.e. with just 1 copy of the undesirable allele, and a 25% chance that the calf will inherit two copies of the undesirable gene. If animals tested free of the undesirable gene are mated to carrier animals the condition will not be expressed at all. All calves will appear normal, but approximately half (50%) could be expected to be carriers.

How is the genetic status of animals reported?

DNA-based diagnostic tests have been developed which can be used to determine whether an individual animal is either a carrier or free of the alleles resulting in AM, NH, CA or DD.

Angus Australia uses advanced software to calculate the probability of (untested) animals to being carriers of AM, NH, CA or DD. The software uses the test results of any relatives in the calculations and the probabilities may change as new results for additional animals become available.

The genetic status of animals is being reported using five categories:

AMF	Tested AM free
AMFU	Based on Pedigree AM free - Animal has not been tested
AM_%	_% probability the animal is an AM carrier
AMC	Tested AM-Carrier
AMA	AM-Affected

For NH, CA and DD, simply replace AM in the above table with NH, CA or DD.

Registration certificates and the Angus Australia web-database display these codes. This information is displayed on the animal details page and can be accessed by conducting an "Database Search" from the Angus Australia website or looking up individual animals listed in a sale catalogue.

Implications for Commercial Producers

Your decision on the importance of the genetic condition status of replacement bulls should depend on the genetics of your cow herd (which bulls you previously used) and whether some female progeny will be retained or sold as breeders.

Most Angus breeders are proactive and transparent in managing known genetic conditions, endeavouring to provide the best information available. The greatest risk to the commercial sector from undesirable genetic recessive conditions comes from unregistered bulls with unknown genetic background. The genetic condition testing that Angus Australia seedstock producers are investing in provides buyers of registered Angus bulls with unmatched quality assurance.

For further information contact Angus Australia's Breed Development & Extension Manager on (02) 6773 4618.

July Quick Reference Table

GRS

GRN

DOM

ABI

Claw

Angle

DOC

ΜF

RΒΥ

P8

RIB

EMA

CWT

DTC

SS

Wilk

MCW

600

400

200

BW

GL

CEDtrs

CEDir

% Band

Birth

Calving Ease

Growth

Fertility

Carcase

PERCENTILE BANDS TABLE

Structure

Other NFI-F

Selection Indexes

Profitability

Greater

Profitability

Greater

Profitability

Greater

Profitability

Greater

punos

More

punos

More

Docile

More

Efficiency

Feed Greater

IMF

More

Yield Yield

Fat

More

18-

More

AMB

Larger

Meight

Carcase

Heavier

Calving

of emiT

Shorter

əziZ

Scrotal

Larger

Meight

ЭviJ

Heavier

Meight

Mature

Heavier

theight

θviJ

Heavier Meight

θviJ Heavier **Meight**

είνe Heavier

Meight

Birth

Lighter

цібиәт

Gestation

Shorter

Difficulty

Calving

ssəŋ

Difficulty

Calving

SSƏJ

+135 +132 +129 +127 +125 +123 +121 +119 +117 +115 +113

> +128 +124 +120

> > +118 +116

> > > +0.88

+1.02

+1.00

94 4° 4°

+0.17

+0.21 +0.24

+0.3

+0.4

84

ť2.1 +1.9 +1.8 +1.7

-0.2 -0.4 -0.6 -0.8

10-1

---0.3 0.4

+5.8 +5.5 +5.2

+67 +66 +65 +64 +62

-4.7 4.4 4.1

+96 +93

+48 +48 +47

+110

-3.9

+1.8

+0.6

-0.5 -1.4

+0.4

÷

-1.8

-3.6 -5.2

> %06 95% 99%

3.1 5.1 9.4

-7.8

-13.4

0.0

-2.4

70% 75% 80% 85%

<u>-</u>

+121

+131

+119 +117 +116 +114 +112 +111 +109

+131

+0.88

+0.92 +0.94 +0.96 +0.98

+0.05 +0.09 +0.13

+2.3 +2.2

÷0.1

+0.5 +0.4 ±0.2

+7.0

+6.7 +6.4 16.1

-5.5

+19 +18 +17 +17 +16 +16

+106 +103 +101 +98

+118 +116 +114 +112

+51 +50 +49

-5.4 -5.1

+4.4

4.4

+5.1

25% 30% 35%

+3.9

+3.8

40% 45% 50% 55% %09 65%

-4.8 -4.5 -4.2

+3.4 +2.9 +2.3 +1.8 +1:2

t3.1 +2.5

-5.7

-5.2 -5.0

-5.8

<u>6</u>.1

+21 +20 +19

+116 +112 +109

+128 +125 +122 +120

+97 +95 +93 +92 06+ -89 187 -86 184

+58 +56 +54 +53 +53

-6.5

+6.5 +5.8

20%

-<u>6</u>.1

+131

66-

-<u>0</u>

+0.01

+128 +126 +123

+121

+151 +141

+193

+140 +132 +128 +125 +123

+164

+0.42 +0.54

+0.60

бų F25 +20

-0.56 -0.33 -0.22 -0.14

44.5

+2.8 +2.1

+3.2 12.0

13.3

+12.5

Ę.

+10.3

-8.2

-3.5

+24

+135 +126 +120

+143 +136

+102 +107

-9.7

F4.3

+28

+154

+156

+117

166

+0.2 +1.5 +2.2 +2.6 +2.9 13.2 +3.4 +3.6 +3.8 44.0 44.2 4.4 +4.6

-10.5

+10.9

+12.1

1% 5%

-8.6 -7.6 -7.0

+8.9 +7.8 +6.9 +6.2 +5.6 +5.0

+9.8

+8.4 +7.4

10% 15%

161

-7.5

13.1 +2.9 F2.7 F2.5 F2.4 F2.3 +2.2 +2.1 F2.0 +1.8 +1.7

+23 +21

13.8

+3.4 t3.1

+1.7

+1.4

+1.6 +1.2

+9.2 +8.4

+175 +165 +158 +152 +148 +143 +139 +135

+152

+0.72

+145 +140 +137 +134

+0.62 +0.66 +0.70 +0.72 +0.74 +0.78 +0.80 +0.82 +0.84 +0.86

+0.76 +0.80 +0.84 +0.86

+18

+16 +14 +12 ÷ 6<u>+</u>

-0.08 -0.03

+2.9

+1.5 +1.3

+1.0 +0.8 +0.5 +0.3

10.9

+7.9

+91 +78 +78 +76 +76 +73 +73 +72 +70 +69

-6.9 -6.5 +0.7

+7.4

+2.7 +2.5

... +1.0 +0.9 +0.8 +0.6 +0.5

+115

+126 GRN

+111

+119

+0.85

+0.98

ဖ္

42.0

+0.5

-0.4

+6.0

+2.0 SS

+17

+98

+114

+48

+4.2 BW

4.5

+2.5

+1.9

Brd Avg

. 2

GRS

DOM

ABI

Claw

Angle

DOC

NFI-F +0.17

MΕ

RBY

Р8

RIB <u>.</u>

EMA

CWT +65

ртс -4.7

Wilk

NCW

600

400 +87

200

GL

CEDir

Growth

Birth

Calving Ease CEDtrs

Fertility

Carcase

BREED AVERAGE EBVs

Structure

Other

Selection Indexes

+111	+108	+106	+103	+99	+94	+86	+65	Lower Profitability
+116	+112	+107	+101	+94	+84	+70	+35	Lower Profitability
+107	+106	+103	+101	+98	+94	+87	+72	Lower Profitability
+113	+110	+106	+102	+97	+91	+80	+54	Lower Profitability
+0.92	+0.94	+0.96	+1.00	+1.04	+1.10	+1.16	+1.32	punos ssəק
+1.04	+1.06	+1.08	+1.12	+1.14	+1.20	+1.26	+1.42	punoS ssəJ
42	0 +	Ņ	ကု	φ	ၐ	-13	-21	Less Docile
+0.28	+0.33	+0.37	+0.43	+0.49	+0.58	+0.70	+0.95	Lower Feed Efficiency
+1.6	+1.5	+1.3	+1.2	+1.0	+0.8	+0.5	-0.1	IMF SsəJ
+0.2	+0.1	-0.1	-0.2	-0.4	-0.7	- 1.1	-1.9	Lower Yield
-1.0	-1:2	-1.4	-1.6	-1.9	-2.3	-2.9	-4.1	ress Fat
-0.6	-0.7	-0.9	 	-1.4	-1.7	-2.2	-3.2	Less Fat
+5.0	+4.7	+4.3	+4.0	+3.5	+3.0	+2.2	+0.4	Smaller EMA
+61	+60	+58	+56	+54	+51	+47	+37	Lighter Carcase Weight
-3.9	-3.6	-3.3	-2.9	-2.5	-1.9	-0.9	+1.3	Longer Time to Calving
+1.6	+1.5	+1.4	+1.3	+1.1	+0.9	+0.5	-0.2	Smaller Scrotal Size
+15	+15	+14	+13	+12	+ 11	+10	+7	Lighter Live Meight
06+	+88	+85	+81	+77	+72	+63	+45	Lighter Mature Weight
+108	+106	+103	+100	+97	+93	+85	+69	Lighter Live Weight
+83	+81	+80	+78	+76	+72	+67	+56	Lighter Live Weight
+46	+45	+44	+43	+41	+39	+36	+29	Lighter Live Weight
+4.8	+5.0	+5.3	+5.6	+5.9	+6.3	+7.0	+8.3	Heavier Birth Weight
-3.6	-3.3	-3.0	-2.6	- <u>'</u>	-1.6	-0.6	+ 	Gestation Length

The percentile bands represent the distribution of EBVs across the 2019 drop Australian Angus and Angus-influenced seedstock animals analysed in the July 2021 TransTasman Angus Cattle Evaluation

Myanga

Longer

Difficulty

Calving

More

Difficulty

Calving

More

gi	
alue	
e	
att	
<u>s</u>	
nbu)
A	
าลท	
asn	
s ¹	
an	
Ē	
021	
N K	
ήη	
é	
ц Ц	
, M	
yse	
nal	
sal	
Jal	
nin	
ж а	
to C	
g	
see	
ğ	
nce n	
lue	
-inf	
·sn	
Ang	
p	
ar	
snb	
Ang	
an '	
alis	
lstr	
AL	
lop	
0 0	
5	
2	
ofa	
B	
ge)
era	
ave	
he	
ts t	
iei,	
res	
ep	
je I	
Frag	
ave	
eq	
3re	
L LL L	

www.	myan	ga.c	om.au
------	------	------	-------

Myanga 2021 Bull Sale - Quíck EBV Table

<		Calving	g Ease	Bi	rth			Growth			Ferti	llity			Carce	ISE			Othe		Structu	ural	Se	ection In	dexes	
ζ		CEDir	CEDtrs	GL	BWT	200	400	900	MCW	Milk	SS	DIC	CWT	EMA	RIB	P8	RBY	IMF	NFI-F	200	Angle (Claw	ABI	DOM (SRN (GRS
-	MYAQ100	+5.2	+6.1	-4.4	+3.6	+53	+94	+120	+84	+20	+1.1	-4.3	+74	+5.0	+2.5	+1.9	-1.0	+2.3	+0.10		1.16	-	\$127	\$118	\$129	126
5	MYAQ116	-1.1	+4.5	-2.1	+5.5	+57	+102	+128	+117	+15	+1.7	-4.5	+74	+1.8	-0.1	-1.0	+0.4	+2.0	-0.37		1.1	1.24	\$122	\$117 \$	\$132	118
т	MYAQ97	+3.0	+3.9	-1.8	+3.9	+55	+96	+125	+101	+20	+0.9	-4.6	+79	+3.3	-0.1	-0.8	+0.1	+1.9	-0.05		1.14	0.92	\$123	\$116	3128 \$	121
4	MYAQ112	-0.2	+3.3	-3.5	+4.8	+56	+104	+133	+99	+21	+2.1	-3.2	+76	+3.8	-1.1	-1.7	+0.7	+1.8	-0.30		0.88	0.78	\$125	\$119	3131 \$	123
5	MYAQ132	-5.0	-2.5	-3.4	+4.7	+48	+82	+112	+92	+15	+2.4	-0.8	+61	+10.8	+0.2	-0.6	+1.8	+0.8	+0.10		-	1.04	\$97	\$98	\$87 \$	103
9	MYAQ162	-2.6	+3.0	-4.0	+5.9	+55	+92	+118	+110	8 +	+3.7	-4.3	+72	+6.3	l.l+	+0.6	+0.9	+0.3	+0.34		1.16	0.84	\$105	\$106	\$94 \$	110
7	MYAQ128	-1.3	-5.3	-7.1	+6.7	+42	+78	79+	+92	+16	+2.5	-4.5	+55	+5.9	-1.1	+1.8	+0.0	+1.2	+0.30		0.96	0.98	\$91	\$94	\$84	\$93
Ø	MYAQ126	-5.8	-8.2	-4.8	+5.4	+49	+81	+99	+86	[]+	+1.6	-2.9	+57	+4.8	-0.1	-0.2	+1.9	-0.6	-0.56		0.64	0.72	\$72	\$90	\$48	\$ 84
6	MYAQ110	+2.0	+2.0	-8.4	+5.8	+52	+92	+122	+116	+12	+0.3	-0.6	+72	+8.9	-1.8	-3.8	+2.0	+1.0	-0.22		1.1	0.9	\$109	\$110	\$110	111
10	MYAQ133	+1.4	+2.8	-6.8	+4.6	+55	+96	+123	+88	+19	+2.1	-1.6	+74	+6.9	+0.1	-0.2	+1.3	+0.7	-0.02		0.72	0.52	\$112	\$115	\$102	119
Ξ	MYAQ167	+4.6	+6.9	-2.0	+2.6	+44	+84	+96	+56	+19	+0.6	-2.4	+64	+8.1	+1.2	+0.5	+0.6	+1.7	+0.25	ı	0.76	0.72	\$110	\$118	\$104	114
12	MYAR17	+2.9	+3.9	-3.5	+3.2	+50	+94	+115	+81	+25	+0.8	-4.7	+65	+6.9	+2.1	[. +	+0.5	+0.9	+0.07		0.9	-	\$117	\$117 \$	\$109	121
13	MYAR16	+4.1	+2.5	-5.2	+6.5	+49	+85	+115	+101	+15	+2.3	-4.7	-40	+3.0	+1.0	+1.2	-0.6	+1.5	+0.04	ı	0.98	0.7	\$110	\$103	\$109	
14	MYAR15	+4.7	+7.6	-6.7	+4.5	+44	+86	+116	+95	+23	+2.1	-2.7	+66	+3.5	-0.2	-1.0	+0.0	+1.6	+0.52		0.8	0.7	\$109	\$105	1111	110
15	MYAR7	-2.1	-0.8	-6.4	+8.2	+65	+113	+159	+156	+17	+2.4	-3.0	+87	+4.8	-1.6	-2.5	+1.6	+0.2	-0.33	ı	1.04	0.7	\$124	\$112	3125 \$	126
16	MYAR1	+6.9	+5.3	-7.5	+4.7	+51	+92	+125	+120	+20	+3.3	-7.0	+68	+3.2	+2.1	+2.3	-0.5	+1.0	+0.52		1.14	0.76	\$124	\$111	\$122	123
17	MYAR42	-4.4	-5.3	-5.2	+7.6	+64	+113	+149	+158	+18	+3.4	-2.6	+90	+5.7	-1.4	-1.9	+2.3	0.0+	+0.06		1.22	1.08	\$113	\$111	\$110	116
18	MYAR30	-6.1	-5.6	-4.1	+7.1	+58	+105	+137	+118	+15	+2.8	-1.6	+76	+4.6	-1.8	-0.8	+1.6	+1.3	+0.06		1.08	0.92	\$114	\$111	117 \$	115
19	MYAR5	-6.4	-7.2	-2.7	+5.7	+46	+81	+109	+95	+16	+1.4	-2.1	+61	+8.6	-2.0	-0.8	+1.0	+1.3	+0.03	ı	ı	ı	\$91	\$91	\$87	\$94
20	MYAR27	-0.9	+6.2	-3.6	+5.0	+48	+91	+119	+117	+22	+1.4	-3.4	+69+	+4.2	-1.0	-3.2	+1.2	+0.9	+0.09		0.8	0.86	\$101	\$103 \$	\$102	102
21	MYAQ177	-3.4	-2.2	-1.8	+5.2	+42	+72	+101	+73	+15	+1.2	-2.9	+54	+5.5	-2.5	-1.3	+1.8	+0.2	-0.41	ı	0.98	0.8	\$87	\$91	\$75	\$94
22	MYAQ145	+0.5	+6.0	-2.6	+5.5	+59	+100	+126	+119	+13	+1.4	-3.4	+79	+6.6	+0.1	-0.5	+1.6	+0.7	-0.44		1.22	1.02	\$119	\$120	3115 \$	122
23	MYAQ143	I	I	I	ı	ı	ı	ı	ı	ı	ı	ı	ı	ı	ı	ı	ı	ı	ı	ı	ı	ı	ı	ı	ı	ı
24	MYAQ149	-7.3	-1.3	-0.2	+6.4	+55	+93	+117	+105	+13	+1.0	-0.5	+71	+4.6	-1.0	-2.7	+1.2	+1.2	-0.26		0.92	0.86	\$85	\$96	\$81	\$90
25	MYAQ113	+5.6	+5.5	-4.9	+2.9	+50	+82	+103	+84	+12	+0.1	-1.7	+72	+9.2	+0.3	-1.8	+1.6	+1.4	+0.09	ı	0.88	0.86	\$110	\$115	\$106	113
26	MYAQ155	-10.1	-1.2	-1.5	+6.4	+42	+77	+111	+91	+14	+2.7	+0.8	+55	+5.8	-1.3	-0.8	+1.2	+0.4	-0.07		-	-	\$72	\$77	\$58	\$ 82
27	MYAQ121	+2.0	+1.7	-5.3	+4.9	+41	+71	+91	+67	+15	+0.7	-6.6	+55	+5.1	+4.9	+4.6	-1.3	+1.2	+0.42	ı	1.34	1.32	\$99	\$96	\$87 \$	103
TA	CE []*J]]], i] man Angus Cattle Eveluation	CEDir +1.9	CEDtrs +2.5	GL -4.5	BWT +4.2	200 +48	400 +87	600 +114	MCW +98	MIIk +17	SS +2.0	DTC -4.7	CWT +65	EMA +6.0	RIB -0.1	P8 -0.4	RBY +0.5	IMF +2.0	NFI-F I +0,17	00C /	Angle (+0.98	Claw +0.85	ABI +119	DOM (5RN (5RS 115

www.myanga.com.au

Myanga ANGUS

E.

															100					
	GRS	\$107	\$109	\$96	\$118	\$102	\$126	\$130	\$109	\$108	\$132	\$108	\$132		\$111	\$93	\$103	GRS	+115	
Indexes	GRN	\$106	\$119	\$75	\$113	\$94	\$131	\$140	\$99	\$94	\$135	\$123	\$138		\$124	\$103	\$114	GRN	+126	
election	MOM	\$111	\$108	\$100	\$117	\$108	\$119	\$118	\$107	\$109	\$129	\$108	\$124		\$106	\$94	\$101	DOM	111+	
S	ABI	\$106	\$111	\$90	\$116	\$99	\$126	\$132	\$105	\$104	\$132	\$111	\$133		\$115	\$97	\$107	ABI	+119	
tural	Claw	0.76	0.5	0.54	1.14	-	0.94	0.72	0.7	0.82	0.86	0.98			0.74	0.62	1.04	Claw	+0.85	0
Struc	Angle	0.88	0.82	0.86	0.9	1.18	0.84	0.98	0.72	0.86	1.04	1.06			0.9	0.74	1.1	Angle	+0.98	
ler	DOC	ı.	,	,	ı	ı.	ı	ı.	+10	ı.	I	ı.	I.	ı	+15	ı.	'	DOC	9+	
Oth	NFI-F	-0.66	-0.17	+0.09	-0.04	+0.20	-0.32	-0.10	-0.20	+0.12	+0.11	-0.37	+0.27	ı	+0.29	+0.12	-0.06	NFI-F	+0.17	
	IMF	+1.3	+1.6	+0.3	+0.9	+1.5		+1.7	+0.1	+0.6	+0.3	+1.6	+1.2	ı	+1.8	+1.9	+1.8	IMF	+2.0	
	RBY	+1.3	+1.5	+1.7	+1.7	+1.6	+1.5	+0.4	+1.5	+1.5	+3.2	+1.0	+1.5	ı	+0.8	-0.6	+0.2	RBY	+0.5	
case	P8	-2.1	-3.0	+0.5	-1.3	-1.0	-3.1	-0.6	-2.3	-0.5	-3.5	-3.1	-1.2	ı	-1.7	-0.7	-0.7	P8	-0.4	ad is
Caro	RIB	-2.2	-1.0	0.0+	-0.8	-0.8	-1.2	-0.3	-0.9	+0.1	-1.5	-2.8	-0.7	ı	-0.8	-0.7	+0.2	RIB	-0.1	ALC: NO
	EMA	+2.8	+5.6	+6.0	+6.3	+7.9	+5.5	+5.5	+3.6	+6.2	+8.8	+0.9	+8.6	ı	+7.2	0.0+	+4.1	EMA	+6.0	
	CWT	+61	+61	+61	+66	+59	06+	+78	+75	+61	+76	+66	+80		+74	+65	+73	CWT	+65	
ility	DIC	-3.4	-3.7	-4.2	-3.7	-2.0	-2.3	-3.6	-4.3	-5.8	-3.5	-2.7	-3.5	ı	-3.6	-5.8	-5.5	DTC	-4.7	
Fert	SS	+1.2	+2.5	+3.3	+1.2	+1.4	+1.8	+2.4	+2.6	+2.4	+2.5	+1.3	+1.8	ı	+2.5	+3.3	+2.3	SS	+2.0	
	Milk	+18	+19	+10	+19	+13	+16	+21	+13	+15	+14	+17	+17	ı	+14	+15	+16	MIIk	+17	
	MCW	+109	+121	+82	+96	+61	+133	+127	+115	+57	+118	+151	+115		+127	+107	+122	MCW	+98	
Growth	009	+114	+121	+103	+117	+86	+148	+150	+125	+91	+133	+133	+132		+132	+117	+121	909	+114	- A.
	400	+91	+91	+86	+92	+71	+112	+112	+95	+73	+104	+101	+101		+100	+92	+94	400	+87	
	200	+54	+54	+52	+53	+40	+62	+63	+55	+43	+54	+56	+53		+56	+51	+54	200	+48	
th	BWT	+3.8	+5.5	+5.9	+4.6	+1.9	+4.6	+7.9	+6.9	+3.2	+5.0	+6.2	+4.2		+8.0	+8.5	+8.4	BWT	+4.2	
Bir	GL	-1.5	-6.4	-3.6	-4.3	-7.4	-0.6	-6.3	-4.9	-2.3	-8.3	-6.3	-7.6		-4.0	-3.9	-1.5	GL	-4.5	
g Ease	CEDtrs	+4.4	+1.9	+0.1	+0.4	+3.5	+6.5	-3.6	+1.6	+5.8	+2.7	+0.3	+3.3		-3.1	-4.5	-1.0	CEDtrs	+2.5	
Calving	CEDir	+2.0	-0.5	-9.0	+4.3	+3.6	-3.6	-1.0	-0.5	+2.1	+1.9	+2.3	+3.1		-5.9	-6.0	-5.8	CEDir	+1.9	Je.
	Ident	AQ98	4Q151	AQ156	4Q115	AQ176	AR26	AR38	'AR47	AR12	AR35	YAR9	YAR8	AR22	'AR45	'AR41	AR39		attle Evaluation	C.C.F.
	Animai	8 MY	9 MY,	W O	1 MY	2 MY,	3 MY	4 MY	5 MY	6 MY	7 MY	89 W	6 W	YM O	۲M I.	2 MY	3 MY	TACF	TransTasman Angus C	5
			14	(1)	(*)	(*)	(r)	(*)	(*)	(1)	(*)	(1)	(7)	4	4	4	4			10

Sale Lots

MYANGA PROCLAIM Q100^{sv}

Mating Type: AI

MYA0100 HBR

HGS

\$126

26

Temp. Sheath

DOB: 24/09/2019

Lot 1

Traits Observed: 200WT,400WT,Scan(EMA,Rib,Rump,IMF),Genomics

JINDRA 3RD DIMENSIONPV JINDRA ACCLAIM^{SV}

JINDRA BLACKBIRD LASSY 1111#

Sire: USA18866428 SPRING CREEK ACCLAIM 7049^{sv}

SUMMITCREST COMPLETE 1P55#

SJH COMPLETE OF 353F 0100#

J/R SUSANNA OF 5050 353F#

July 2021 TransTasman Angus Cattle Evaluation

		-			•				
TACE	Dir	Dtrs	GL	BW	200 W	400 W	600 W	MCW	Milk
EBV	+5.2	+6.1	-4.4	+3.6	+53	+94	+120	+84	+20
ACC	47%	40%	63%	69%	68%	68%	68%	65%	60%
Perc	29	21	51	34	27	28	36	76	22
SS	DtC	CWT	EMA	Rib	Rump	RBY	IMF	NFI-F	Doc
+1.1	-4.3	+74	+5.0	+2.5	+1.9	-1.0	+2.3	+0.10	-
60%	33%	63%	59%	66%	61%	62%	59%	50%	-
84	57	18	64	3	6	94	35	41	-

Purchaser:

Lot 2

MYANGA PROCLAIM Q116^{sv}

DOB: 3/10/2019 Traits Observed: 200WT,400WT,Scan(EMA,Rib,Rump,IMF),Genomics JINDRA 3RD DIMENSIONPV

JINDRA ACCLAIM^{SV}

JINDRA BLACKBIRD LASSY 1111#

Sire: USA18866428 SPRING CREEK ACCLAIM 7049sv

SUMMITCREST COMPLETE 1P55#

SJH COMPLETE OF 353F 0100#

J/R SUSANNA OF 5050 353F#

July 2021 TransTasman Angus Cattle Evaluation

TACE	Dir	Dtrs	GL	BW	200 W	400 W	600 W	MCW	Milk
EBV	-1.1	+4.5	-2.1	+5.5	+57	+102	+128	+117	+15
ACC	46%	39%	62%	69%	67%	67%	67%	64%	60%
Perc	74	35	85	78	12	11	20	19	64
SS	DtC	CWT	EMA	Rib	Rump	RBY	IMF	NFI-F	Doc
+1.7	-4.5	+74	+1.8	-0.1	-1.0	+0.4	+2.0	-0.37	-
60%	33%	62%	59%	64%	60%	61%	59%	49%	-
60	53	18	97	49	65	55	46	4	-

Mating Type: AI ONSLOW BERKLEY G388^{sv}

Dam: DRMK11 MYANGA WILCOOLA K11#

HAZELDEAN B360PV MYANGA WILCOOLA E180#

MYANGA WILCOOLA B19# Selection Indexes

	Selection	i illuexes	
ABI	DOM	HGN	HGS
\$122	\$117	\$132	\$118
47	34	44	46

\$.....

Purchaser:....

Purchaser:

www.myanga.com.au

\$

5 5 C+ 3 7 5 1

Genetic Status: AMFU,CAFU,DDF,NHFU

SITZ NEW DESIGN 458N#

THE LAURELS CLARINET C40^{sv}

GILMANDYKE MODEST C81PV

MYANGA WILCOOLA D38#

HGN

\$129

48

Selection Indexes

THE LAURELS GRANITE G90PV

DOM

\$118

31

MYANGA WILCOOLA F66#

Dam: DRMJ200 MYANGA WILCOOLA J200#

ABI \$127

37

7

5

\$

MYA0116 HBR

Genetic Status: AMF,CAF,DDF,NHF TE MANIA BERKLEY B1PV

Muscle

ONSLOW BEEAC E387#

NGU

Genetic Status: AMF,CAF,DDF,NHF

MYA0112

MYAQ132

HBR

MYANGA PROCLAIM Q112^{sv}

Traits Observed: 200WT,400WT,Scan(EMA,Rib,Rump,IMF),Genomics

JINDRA 3RD DIMENSIONPV

JINDRA ACCLAIM^{SV} JINDRA BLACKBIRD LASSY 1111#

Sire: USA18866428 SPRING CREEK ACCLAIM 7049^{sv}

SUMMITCREST COMPLETE 1P55#

SJH COMPLETE OF 353F 0100#

J/R SUSANNA OF 5050 353F#

July 2021 TransTasman Angus Cattle Evaluation

		-			•				
TACE	Dir	Dtrs	GL	BW	200 W	400 W	600 W	MCW	Milk
EBV	-0.2	+3.3	-3.5	+4.8	+56	+104	+133	+99	+21
ACC	46%	40%	63%	68%	68%	67%	68%	65%	60%
Perc	69	46	67	64	14	9	13	49	18
SS	DtC	CWT	EMA	Rib	Rump	RBY	IMF	NFI-F	Doc
+2.1	-3.2	+76	+3.8	-1.1	-1.7	+0.7	+1.8	-0.30	-
60%	33%	63%	59%	66%	62%	62%	59%	50%	-
41	76	14	82	79	81	41	55	7	-

Purchaser:

Lot 5

Lot 4

DOB: 3/10/2019

MYANGA GRASSRANGE Q132^{sv}

Sire: DKKJ518 HARDHAT GM GRASS RANGE Y21 J518PV

		oury 2		Jiuomun	Angus o		uution		
TACE	Dir	Dtrs	GL	BW	200 W	400 W	600 W	MCW	Milk
EBV	-5.0	-2.5	-3.4	+4.7	+48	+82	+112	+92	+15
ACC	53%	46%	67%	71%	69%	69%	71%	67%	62%
Perc	90	88	69	61	56	70	56	62	65
SS	DtC	CWT	EMA	Rib	Rump	RBY	IMF	NFI-F	Doc
+2.4	-0.8	+61	+10.8	+0.2	-0.6	+1.8	+0.8	+0.10	-
62%	41%	66%	63%	68%	65%	66%	63%	57%	-
28	96	65	4	39	54	8	89	41	-

Purchaser:....

Lot 6

DOB: 28/10/2019

Purchaser:

TACE 🔊 🔪

EBV

ACC

Perc

SS

+3.7

62%

3

MYANGA WILCOOLA D7#

Selection Indexes

Mating Type: AI

BRAVEHEART OF STERNSV PC BRAVEHEART J069sv

PC MISS 338 RIGHT TIME D82PV Dam: MYAL189 MYANGA WILCOOLA L189#

> ONSLOW MIDLAND D83^{sv} MYANGA WILCOOLA G9#

Sale Lots

Lot 7

DOB: 12/10/2019

ot 7	MYANGA KLOO	NEY Q128 ^{sv}
3: 12/10/2019	Traits Observed: 200WT,400WT,Scan(EMA,Rib,Rump,IMF),Genom	nics Mating Type: Natural Genetic Status: AMFL
	BOOROOMOOKA THEO T030 ^{sv} MILLAH MURRAH KLOONEY K42 ^{pv} MILLAH MURRAH PRUE H4 ^{sv}	SINCLAIR GI HARDHAT GM GRASS RANG KANSAS ANI
Sire: EUDM	405 GILMANDYKE KLOONEY M405 ^{₽∨}	Dam: MYAN7 MYANGA ANNIE N7#
	GILMANDYKE GARVOC G0055 ^{sv} GILMANDYKE DORIS K0578 ^{pv} FORRES DORIS D95 ^{sv}	PC THE DON MYANGA WILCOOLA J44# MYANGA WII

July 2021 TransTasman Angus Cattle Evaluation

		-			-				
TACE	Dir	Dtrs	GL	BW	200 W	400 W	600 W	MCW	Milk
EBV	-1.3	-5.3	-7.1	+6.7	+42	+78	+97	+92	+16
ACC	49%	43%	65%	68%	67%	66%	67%	64%	58%
Perc	75	96	14	93	82	79	85	63	59
SS	DtC	CWT	EMA	Rib	Rump	RBY	IMF	NFI-F	Doc
+2.5	-4.5	+55	+5.9	+1.1	+1.8	+0.0	+1.2	+0.30	-
60%	36%	63%	59%	65%	61%	62%	60%	51%	-
25	53	84	48	17	7	71	78	67	-

Purchaser:....

Lot 8

MYANGA RAINMASTER Q126^{PV}

DOB: 12/10/2019 Traits Observed: 200WT,400WT,Scan(EMA,Rib,Rump,IMF),Genomics

> O C C PAXTON 730P# COLEMAN CHARLO 0256PV

BOHI ABIGALE 6014#

Sire: USA18578966 S A V 654X RAINMASTER 6849PV

SAV 8180 TRAVELER 004#

S A V BLACKCAP MAY 4136# S A V MAY 2397#

July 2021 TransTasman Angus Cattle Evaluation

TACE	Dir	Dtrs	GL	BW	200 W	400 W	600 W	MCW	Milk
EBV	-5.8	-8.2	-4.8	+5.4	+49	+81	+99	+86	+11
ACC	51%	43%	68%	72%	70%	69%	70%	67%	63%
Perc	92	99	45	77	47	72	82	73	90
SS	DtC	CWT	EMA	Rib	Rump	RBY	IMF	NFI-F	Doc
+1.6	-2.9	+57	+4.8	-0.1	-0.2	+1.9	-0.6	-0.56	-
62%	35%	65%	61%	66%	62%	63%	61%	50%	-
65	80	78	67	49	43	7	99	1	-

PC THE DOMINATOR D114PV Dam: DRMG217 MYANGA WILCOOLA G217^E

MYANGA TRACES Y11^{sv}

MYANGA WILCOOLA#

Selection Indexes

ABI	DOM	HGN	HGS
\$72	\$90	\$48	\$84
98	94	99	96

Purchaser:.....

Lot 9

DOB: 3/10/2019

MYANGA GRASSRANGE Q110^{sv}

Traits Observed: 200WT,400WT,Scan(EMA,Rib,Rump,IMF),Genomics Mating Type: Natural

BT RIGHT TIME 24J#

SINCLAIR GRASS MASTER#

N BAR PRIMROSE Y3051#

Sire: DKKJ518 HARDHAT GM GRASS RANGE Y21 J518PV

BON VIEW NEW DESIGN 1407#

KANSAS ANNIE Y21sv AMAROO EXPO ANNIE U024#

	Suly 2021 Hunshushun Angus Sullie Evaluation											
TACE	Dir	Dtrs	GL	BW	200 W	400 W	600 W	MCW	Milk			
EBV	+2.0	+2.0	-8.4	+5.8	+52	+92	+122	+116	+12			
ACC	52%	45%	67%	71%	69%	69%	70%	66%	62%			
Perc	54	58	6	84	30	33	31	20	89			
SS	DtC	CWT	EMA	Rib	Rump	RBY	IMF	NFI-F	Doc			
+0.3	-0.6	+72	+8.9	-1.8	-3.8	+2.0	+1.0	-0.22	-			
62%	39%	66%	63%	69%	65%	66%	64%	56%	-			
97	96	24	12	91	99	6	84	10	-			

Purchaser:.....

U,CAFU,DDFU,NHFU

MYAQ128

HBR

RASS MASTER# GE Y21 J518^{PV}

NIE Y21^{sv}

MINATOR D114PV

LCOOLA E159#

Selection Indexes

ABI	DOM	HGN	HGS
\$91	\$94	\$84	\$93
90	90	90	91

HBR Genetic Status: AMFU,CAFU,DDFU,NHFU

MYAQ126

PC TC STOCKMAN A49sv

PINE CREEK LRT MS PREMIER S1^{sv}

	MITANGA IRACES I
MYANGA WILCO	DOLA B19 [#]
	MYANGA WILCOOLA

ABI	DOM	HGN	HGS
\$72	\$90	\$48	\$84
98	94	99	96

\$.....

HBR Genetic Status: AMFU,CAFU,DDF,NHFU

MYA0110

YOUNG DALE KNOCKOUT 134U#

YOUNG DALE XCALIBER 32XPV

BROOKMORE TIBBIE 222T#

Dam: MYAM68 MYANGA MISS EXCALI BER M68#

HAZELDEAN D134^{sv}

MYANGA WILCOOLA G23# MYANGA WILCOOLA X5#

Selection Indexes

	Ociection	i indexes	
ABI	DOM	HGN	HGS
\$109	\$110	\$110	\$111
71	57	72	64

F	R		R	7	1	Muscle	Temp.	Sheath
6	6	5	6	4	5	C+	1	5

\$.....

Mating Type: ET

6 5 6 5 5 6 \$..... Lot 11 MYANGA PROCLAIM Q167^{sv} Traits Observed: 200WT,400WT,Scan(EMA,Rib,Rump,IMF),Genomics DOB: 28/10/2019 Mating Type: AI Genetic Status: AMF,CAF,DDF,NHF JINDRA 3RD DIMENSIONPV RAFF MIDLAND Z204PV JINDRA ACCLAIM^{SV} ONSLOW MIDLAND D83^{sv} JINDRA BLACKBIRD LASSY 1111# Sire: USA18866428 SPRING CREEK ACCLAIM 7049sv Dam: DRMF86 MYANGA WILCOOLA F86# SUMMITCREST COMPLETE 1P55# SJH COMPLETE OF 353F 0100# J/R SUSANNA OF 5050 353F# Selection Indexes July 2021 TransTasman Angus Cattle Evaluation

MYANGA RAINMASTER Q133^{PV}

Mating Type: ET

Purchaser:....

Lot 12

DOB: 7/04/202

					0				
TACE	Dir	Dtrs	GL	BW	200 W	400 W	600 W	MCW	Milk
EBV	+2.9	+3.9	-3.5	+3.2	+50	+94	+115	+81	+25
ACC	49%	43%	80%	68%	68%	68%	69%	66%	60%
Perc	47	40	67	25	40	27	48	81	4
SS	DtC	CWT	EMA	Rib	Rump	RBY	IMF	NFI-F	Doc
+0.8	-4.7	+65	+6.9	+2.1	+1.1	+0.5	+0.9	+0.07	-
61%	36%	64%	61%	66%	62%	63%	61%	51%	-
91	49	51	32	5	14	50	87	37	-

Purchaser:....

Sire: USA18578966 S A V 654X RAINMASTER 6849PV

SAV 8180 TRAVELER 004# S A V BLACKCAP MAY 4136#

S A V MAY 2397#

July 2021 TransTasman Angus Cattle Evaluation

TAC Transferment	E 1	Dir	Dtrs	GL	BW	200 W	400 W	600 W	MCW	Milk
E	BV	+1.4	+2.8	-6.8	+4.6	+55	+96	+123	+88	+19
A	ACC	51%	42%	68%	71%	69%	69%	69%	66%	62%
F	Perc	58	51	17	59	17	23	29	70	32
:	SS	DtC	CWT	EMA	Rib	Rump	RBY	IMF	NFI-F	Doc
+	·2.1	-1.6	+74	+6.9	+0.1	-0.2	+1.3	+0.7	-0.02	-
6	62%	34%	64%	61%	66%	62%	63%	60%	49%	-
	41	92	18	32	42	43	18	91	26	-

Purchaser:....

FACE	Dir	Dtrs	GL	BW	200 W	400 W	600 W	MCW	Milk
EBV	+4.6	+6.9	-2.0	+2.6	+44	+84	+96	+56	+19
ACC	49%	41%	65%	72%	71%	70%	71%	68%	64%
Perc	34	15	86	15	75	62	87	98	30
SS	DtC	CWT	EMA	Rib	Rump	RBY	IMF	NFI-F	Doc
+0.6	-2.4	+64	+8.1	+1.2	+0.5	+0.6	+1.7	+0.25	-
62%	35%	66%	61%	67%	63%	64%	61%	52%	-
94	86	53	18	15	25	45	59	61	-

ONSLOW POPPY A144[#]

ARDROSSAN SCOTCH CAP W23# ARDROSSAN WILCOOLA Y210#

ARDROSSAN WILCOOLA Q68+95^{sv}

	Selection	Oelection maexes					
ABI	DOM	HGN	HGS				
\$110	\$118	\$104	\$114				
69	31	77	57				
	ABI \$110 69	ABI DOM \$110 \$118 69 31	ABI DOM HGN \$110 \$118 \$104 69 31 77				

	IVI	ya	115	za
		ic		
H		N G		5
				054.9179.2

Genetic Status: AMFU,CAFU,DDFU,NHFU

PC TC STOCKMAN A49^{sv}

MYANGA TRACES Y11^{sv}

HGN

\$102

79

Muscle Temp. Sheath

B-

MYANGA WILCOOLA#

Selection Indexes

PINE CREEK LRT MS PREMIER S1^{sv}

PC THE DOMINATOR D114PV

MYANGA WILCOOLA B19#

DOM

\$115

41

Dam: DRMG217 MYANGA WILCOOLA G217^E

ABI

\$112

66

TTO ID CT

MYAQ133

HGS

\$119

44

2

MYAQ167

4

HBR

HBR

	_	~										DOM			J		0
Dir	Dtrs	GL	BVV	200 W	400 W	600 W	MCW	Milk	A	ABI		DOM		пGI	N	HG	5
4.6	+6.9	-2.0	+2.6	+44	+84	+96	+56	+19	\$	110		\$118		\$10	4	\$1 [.]	14
9%	41%	65%	72%	71%	70%	71%	68%	64%							-		-
34	15	86	15	75	62	87	98	30		69		31		77		5	7
t C	CWT	EMA	Rib	Rump	RBY	IMF	NFI-F	Doc	F	R	F	R					
2.4	+64	+8.1	+1.2	+0.5	+0.6	+1.7	+0.25	-						K	Muscle	Temp.	Sheat
5%	66%	61%	67%	63%	64%	61%	52%	-			67		L	11			
36	53	18	15	25	45	59	61	-	6	6	6	5	5	5	B-	2	5
									\$								
				MY	ANG	A PRO	OCLA	IM R1	7 ^{sv}							MY	AR17
20	Traits	Observed.	GL,200W	T,Scan(EM	A,Rib,Rum	o,IMF),Gen	omics	Matin	g Type: Al		Gen	etic Sta	atus: A	MFU,C	CAFU,	DFU,	NHFU
20	Traits	Observed.	GL,200W JIND	T,Scan(EM/ RA 3RD D	A,Rib,Rumj DIMENSIC	o,IMF),Gen N ^{PV}	omics	Matin	g Type: Al		Gen	etic Sta TC /	atus: A ABER	MFU,O	CAFU,E N 759 ^s	D DFU, I	NHFU
20	JIN	Observed: DRA ACC	GL,200W JIND LAIM ^{sv}	T,Scan(EM/ RA 3RD D	A,Rib,Rumj DIMENSIC	o,IMF),Gen N ^{PV}	omics	Matin	g Type: Al REN	NNYLE	Gen EA H	etic Sta TC / 7 ^{PV}	atus: A ABER	MFU,C Deen	CAFU,E N 759 ^s	v V	NHFU
20	JIN	Observed: DRA ACC	GL,200W JIND CLAIM ^{SV} JIND	T,Scan(EM) RA 3RD D RA BLACI	A,Rib,Rumj MENSIC KBIRD LA	o,IMF),Gen N ^{PV} SSY 1111	omics #	Matin	g Type: AI REI	NNYLE	Gen EA H	etic Sta TC / 7 ^{PV} LAW	atus: A ABER 'SONS	MFU, O DEEN NEW	C AFU,E N 759 ^s Desig	DDFU, I ∨ SN 140	NHFU 7 Z1:
20 SA1	JIN 8866428	Observed: DRA ACC SPRINC	GL,200W JIND LAIM ^{SV} JIND CREE	T,Scan(EM/ RA 3RD D RA BLACI K ACCL/	A,Rib,Rumj DIMENSIC KBIRD LA AIM 7049	o,IMF),Gen N ^{PV} .SSY 1111 jsv	omics # Dam	Matiny	g Type: AI REN 129 MY	NNYLE Anga	Gen EA H7 EM	etic Sta TC / 7 ^{PV} LAW	atus: A ABER SONS DR L '	MFU, G DEEN NEW 129 [#]	CAFU,E N 759 ^s DESIG	DDFU, I ∨ GN 140	NHFU 7 Z1
20 SA1	JIN 8866428	Observed: DRA ACC SPRINC	GL,200W JIND LAIM ^{SV} JIND G CREE I SUM	T,Scan(EM RA 3RD D RA BLACI K ACCLA MITCRES	A,Rib,Rump DIMENSIC KBIRD LA AIM 7049 T COMPL	o,IMF),Gen N ^{PV} SSY 1111 jsv .ETE 1P5	omics # Dam 5 [#]	Matin	g Type: AI REN 129 MYA	NNYLE ANGA	Gen EA H7	etic Sta TC / 7 ^{PV} LAW PER(TE I	atus: A ABER SONS DR L '	MFU, O DEEN NEW 129 [#] A EMI	DESIG	DDFU,I ✓ GN 140 R E34	NHFU 7 Z1 ¦3 ^{₽V}
20 SA1	JIN 8866428 SJI	Observed: DRA ACC SPRINC	GL,200W JIND LAIM ^{SV} JIND CREE I SUM ETE OF 3	T,Scan(EM/ RA 3RD D RA BLACH K ACCL/ MITCRES 353F 0100	A,Rib,Rump MENSIC (BIRD LA AIM 7049 T COMPL)#	o,IMF),Gen IN ^{PV} SSY 1111 Jsv .ETE 1P5 353E [#]	omics # Dam 5 [#]	Matin	g Type: AI REN 129 MY # MY#	NNYLE ANGA ANGA	Gen EA H7 X EM MISS	etic Sta TC / 7 ^{PV} LAW PER(TE I S EMP	atus: A ABER SONS DR L ' MANI/ PEROI	MFU,0 DEEN NEW 129 [#] A EMI R J13 PRIN	CAFU,E N 759 ^S DESIG PERO 0 [#]	DDFU,I ✓ GN 140 R E34 S D109	NHFU 7 Z1: ¦3 ^{₽∨} 9#
20 SA1	Iraits JIN 8866428 SJF	Observed: DRA ACC SPRINC I COMPL	GL,200W JIND LAIM ^{SV} JIND G CREE I SUM ETE OF (J/R S	T,Scan(EM, RA 3RD D RA BLACI K ACCLA MITCRES 353F 0100 GUSANNA Apgus C	A,Rib,Rump MMENSIC (BIRD LA AIM 7049 T COMPL # OF 5050	o,IMF),Gen NP ^V SSY 1111 Jsv .ETE 1P5 353F [#] uation	omics # Dam 5 [#]	Matin	g Type: AI REM 129 MY/ MY/	NNYLE ANGA ANGA	Gen EA H7 X EM MISS	etic Sta TC / 7 ^{PV} LAW PER(TE I S EMP MYA	atus: A ABER SONS DR L ' MANI/ PEROI ANGA	MFU, O DEEN NEW 129 [#] A EMI R J13 PRIN	DESIG	DDFU,I ✓ GN 140 R E34 S D109	NHFU 7 Z1: ¦3 ^{₽∨} 9 [#]
20 SA1	JIN 38866428 SJH July 20 Dtrs	Observed: DRA ACC SPRINC I COMPL 021 Trans	GL,200W JIND LAIM ^{SV} JIND CREE I SUM ETE OF S J/R S Tasman BW	T,Scan(EM, RA 3RD D RA BLACI K ACCLA MITCRES 353F 0100 GUSANNA Angus C 200 W	A,Rib,Rump MENSIC ABIRD LA AIM 7049 T COMPL 7 OF 5050 attle Eval	o,IMF),Gen N ^{PV} SSY 1111 osv .ETE 1P5 353F [#] uation	omics # Dam 5 [#]	Matin, h: MYAL	g Type: AI REM 129 MY MY	NNYLE ANGA ANGA	Gen EA H7 EM MISS	etic Sta TC / 7 ^{PV} LAW PER(TE I S EMP MY/ Select	atus: A ABER SONS DR L MANIA EROI ANGA tion Ir	MFU, C DEEN NEW 129 [#] A EMI R J13 PRIN Ndexe	DESIG DESIG DESIG DESIG DESIG 0 [#] ICESS 95	DDFU,I ✓ GN 140 R E34 G D109 HG	NHFU 7 Z1: I3 ^{₽V} 9 [#]
SA1	Jiraits JIN 8866428 SJI- July 20 Dtrs +3 9	Observed: DRA ACC SPRINC I COMPL 021 Trans GL	GL,200W JIND LAIM ^{SV} JIND CREEI SUM ETE OF S J/R S Tasman BW	T,Scan(EM RA 3RD D RA BLACI K ACCLA MITCRES 353F 0100 SUSANNA Angus C 200 W	A,Rib,Rump MENSIC AIRD LA AIM 7049 T COMPL # OF 5050 attle Eval 400 W	0,IMF),Gen N ^{PV} SSY 1111 sv .ETE 1P5 353F [#] uation 600 W +115	omics # Dam 5 [#] MCW	Matin MYAL Milk	g Type: AI REM 129 MY MY	ANGA ANGA	Gen EA H EA H MISS	etic Sta TC / 7 ^{PV} LAW PER(TE I S EMP MY/ Select DOM	ABER SONS DR L' MANIA PEROI ANGA	MFU, O DEEN NEW 129 [#] A EMI R J13 PRIN DRIN DECE	CAFU,I N 759 ^S DESIG PERO 0 [#] ICESS 95 N	DDFU,I ✓ GN 140 R E34 G D109 HG	NHFU 7 Z1: 13 ^{₽V} 9 [#] 58
20 SA1 Dir 2.9	Jin JIN 8866428 SJF July 2 Dtrs +3.9	Observed: DRA ACC SPRINC I COMPL 021 Trans GL -3.5	GL,200W JIND LAIM ^{SV} JIND GCREEI SUM ETE OF S J/R S STasman BW +3.2	T,Scan(EM, RA 3RD D RA BLACI K ACCLA MITCRES 353F 0100 SUSANNA Angus C 200 W +50 6990	A,Rib,Rump MENSIC (BIRD LA AIM 7049 T COMPL # OF 5050 attle Eval 400 W +94	0,IMF),Gen N ^{₽V} SSY 1111 sv ETE 1P5 353F [#] uation 600 W +115	omics # 5 [#] MCW +81	Matin Milk +25 60%	g Type: AI REN 129 MYA MYA	ANGA ANGA ABI 117	Gen EA HT MISS	etic Sta TC / 7 ^{PV} LAW PER(TE I S EMP MY/ Select DOM \$117	ABER SONS DR L MANIA EROI ANGA	MFU, 0 DEEN NEW 129 [#] A EMI R J13 PRIN 10exe HGN	CAFU,I N 759 ^S DESIG PERO 0 [#] ICESS 9 N 9	SDFU,I SN 140 R E34 S D109 HG \$12	NHFU 7 Z1: 13 ^{₽∨} 9 [#] 38 21
20 SA1 Dir 2.9 9%	Jin JIN 8866428 SJH July 2 Dtrs +3.9 43%	Observed: DRA ACC SPRINC I COMPL 021 Trans GL -3.5 80% 67	GL,200W JIND LAIM ^{SV} JIND CREE SUM ETE OF 3 J/R S Tasman BW +3.2 68% 25	T,Scan(EM RA 3RD D RA BLACI K ACCLA MITCRES 353F 0100 SUSANNA Angus C 200 W +50 68% 40	A,Rib,Rump MENSIC (BIRD LA AIM 7049 T COMPL " OF 5050 attle Eval 400 W +94 68% 27	0,IMF),Gen N ^{PV} SSY 1111 sv ETE 1P5 353F [#] uation 600 W +115 69% 48	omics # 5 [#] MCW +81 66% 81	Matin Milk +25 60% 4	g Type: AI REN 129 MY/ MY/	ANGA ANGA ABI 117 57	Gen EA H7 MISS	etic Sta TC / 7 ^{PV} LAW PER(TE I S EMP MY/ Select DOM \$117 34	ABER SONS OR L MANIA PEROI ANGA tion Ir	MFU, C DEEN NEW 129# A EMI R J13 PRIN DRIN DEEN HGN S10 73	CAFU,I N 759 ^s DESIG PERO 0 [#] ICESS 9 9	ODFU,I V GN 140 R E34 S D109 HG \$12 3	NHFU 7 Z1: 13 ^{₽V} 9 [#] 3S 21 8
20 SA1 Dir 2.9 9%	Jin JIN 8866428 SJH July 2 Dtrs +3.9 43% 40	Observed: DRA ACC SPRINC I COMPL 021 Trans GL -3.5 80% 67 EMA	GL,200W JIND LAIM ^{SV} JIND CREEI SUM ETE OF 3 J/R S STasman BW +3.2 68% 25	T, Scan (EM, RA 3RD D RA BLACI K ACCLA MITCRES 353F 0100 SUSANNA Angus C 200 W +50 68% 40	A,Rib,Rump MENSIC (BIRD LA AIM 7049 T COMPL # OF 5050 attle Eval 400 W +94 68% 27	D,IMF),Gen N ^{PV} SSY 1111 SV ETE 1P5 353F [#] uation 600 W +115 69% 48	omics # 5 [#] MCW +81 66% 81	Matin Milk +25 60% 4	g Type: AI REN 129 MY/ MY/	ANGA ANGA ABI 117 57	Gen EA H MISS	etic Sta TC / 7 ^{PV} LAW PER(TE I S EMF MY/ Select DOM \$117 34	ABER ABER SONS DR L MANI/ PEROI ANGA tion Ir	MFU, C DEEN NEW 129 [#] A EMI R J13 PRIN DEX HGN \$10 73	CAFU,I N 759 ^S DESIG PERO 0 [#] ICESS SS N 9	DDFU,I V GN 140 R E34 S D109 HG \$12 3	NHFU 7 Z1: 13 ^{PV} 9 [#] 6S 21 8
20 SA1 Dir 2.9 9% 17 t C	Jini Jini 8866428 SJi- July 2 Dtrs +3.9 43% 40 CWT	Observed: DRA ACC SPRINC I COMPL 021 Trans GL -3.5 80% 67 EMA	GL,200W JIND CAIM ^{SV} JIND G CREEI SUM ETE OF 3 J/R S STasman BW +3.2 68% 25 Rib	T,Scan(EM, RA 3RD D RA BLACI K ACCLA MITCRES 353F 0100 600 CUSANNA Angus C 200 W +50 68% 40 Rump	A,Rib,Rump MENSIC (BIRD LA AIM 7049 T COMPL # OF 5050 attle Eval 400 W +94 68% 27 RBY	0,IMF),Gen N ^{₽V} SSY 1111 sv ETE 1P5 353F [#] uation 600 W +115 69% 48 IMF •0.0	omics # Dam 5 [#] MCW +81 66% 81 NFI-F	Matin, Milk +25 60% 4 Doc	g Type: AI REN 129 MY/ MY/ \$	ANGA ANGA ABI 117 57	Gen EA H7 MISS	etic Sta TC / 7 ^{PV} LAW PERC TE I S EMF MY/A Select DOM \$117 34	ABER SONS OR L' MANIA EROI ANGA tion Ir	MFU, G DEEN NEW 129# A EMI R J13 PRIN HGP HGP S10 73	CAFU,I N 759 ^S DESIG PERO 0 [#] ICESS SS N 9	DDFU,I V GN 140 R E34 S D109 HG \$12 3	NHFU 7 Z1: 13 ^{₽V} 9 [#] 6S 21 8
20 SA1 Dir 2.9 9% 17 t C 1.7	Jini 38866428 SJF July 2 Dtrs +3.9 43% 40 CWT +65	Observed: DRA ACC SPRINC H COMPL 021 Trans GL -3.5 80% 67 EMA +6.9 OUICE	GL,200W JIND LAIM ^{SV} JIND CREEI SUM ETE OF 3 J/R S Tasman BW +3.2 68% 25 Rib +2.1	T,Scan(EM, RA 3RD D RA BLACI X ACCLA MITCRES 353F 0100 USANNA Angus C 200 W +50 68% 40 Rump +1.1	A,Rib,Rum MENSIC (BIRD LA AIM 7049 T COMPL # OF 5050 attle Eval 400 W +94 68% 27 RBY +0.5	p,IMF),Gen N ^{PV} SSY 1111 psv ETE 1P5 353F [#] uation 600 W +115 69% 48 IMF +0.9	omics # Dam 5 [#] MCW +81 66% 81 NFI-F +0.07 5000	Matin, Milk +25 60% 4 Doc -	g Type: AI REN 129 MY/ MY/ \$	ANGA ANGA ABI 117 57		etic Sta TC / 7 ^{PV} LAW PERC TE I S EMP MY/ Select DOM \$117 34	ABER ABER SONS DR L ² MANI/ PEROI ANGA tion Ir	MFU, (C DEEN NEW 129# A EMI R J13 PRIN HGP S10 73	CAFU, I N 759 ^S DESIG PERO 0 [#] ICESS 25 N 9 Muscle	DDFU,I SN 140 R E34 B D109 HC \$12 3 Temp.	NHFU 7 Z1: 33 ^{₽V} 9 [#] 35 21 8 Sheat
20 SA1 Dir 2.9 9% 17 t C 1.7 5%	Jinants JIN 8866428 SJH July 24 Dtrs +3.9 43% 40 CWT +65 64%	Observed: DRA ACC SPRINC H COMPL 021 Trans GL -3.5 80% 67 EMA +6.9 61% 20	GL,200W JIND LAIM ^{SV} JIND CREEI SUM ETE OF 3 J/R S Tasman BW +3.2 68% 25 Rib +2.1 66%	T,Scan(EM RA 3RD D RA BLACI K ACCLA MITCRES 353F 0100 SUSANNA Angus C 200 W +50 68% 40 Rump +1.1 62%	A,Rib,Rump MENSIC (BIRD LA AIM 7049 T COMPL " OF 5050 attle Eval 400 W +94 68% 27 RBY +0.5 63% 50	0,IMF),Gen N ^{PV} SSY 1111 sv ETE 1P5 353F [#] uation 600 W +115 69% 48 IMF +0.9 61%	omics # Dam 5 [#] MCW +81 66% 81 NFI-F +0.07 51% 27	Matin, Milk +25 60% 4 Doc - -	g Type: AI REN 129 MY/ MY/ \$ 5	ANGA ANGA ABI 117 57 6		etic Sta TC / 7 ^{PV} LAW PERC TE I S EMP MY/ Select DOM \$1117 34	ABER SONS SONS DR L ² MANI/ PEROI NNGA tion Ir	MFU, (C DEEN NEW 129# A EMI R J13 PRIN ndexe HGP 5	CAFU, I N 759 ^S DESIG PERO 0 [#] ICESS SS N 9 9 Muscle	DDFU,IV V SN 140 R E34 B D109 HG \$11 3 Temp. 1	NHFU 7 Z1: 13 ^{PV} 9 [#] 6S 21 8 Sheat 4

Lot 10 DOB: 17/10/2019

Traits Observed: 200WT,400WT,Scan(EMA,Rib,Rump,IMF),Genomics

O C C PAXTON 730P#

COLEMAN CHARLO 0256PV BOHI ABIGALE 6014#

Sale Lots

MYANGA KLOONEY R16^{sv}

Mating Type: Natural

MYAR16 HBR

HGS

\$111

64

Temp. Sheath

Lot 13 DOB: 6/04/2020

Traits Observed: 200WT,Scan(EMA,Rib,Rump,IMF),Genomics BOOROOMOOKA THEO T030^{sv} MILLAH MURRAH KLOONEY K42PV

MILLAH MURRAH PRUE H4^{sv}

Genetic Status: AMFU,CAFU,DDFU,NHFU

BT CROSSOVER 758N# FLAG CROSS COUNTRY 90052#

Dam: DRMJ137 MYANGA CROSS COUNTRY J137#

MYANGA LUCY C35#

ABI \$110

69

5 5

6

\$

Mating Type: Natural

SCR QUEEN IDELETTE 50596#

MYANGA LUCY Y21#

HGN

\$109

73

Selection Indexes

DOM

\$103

75

Sire: EUDM405 GILMANDYKE KLOONEY M405^{PV}

GILMANDYKE GARVOC G0055^{sv}

GILMANDYKE DORIS K0578PV

FORRES DORIS D95^{sv}

July 2021 TransTasman Angus Cattle Evaluation

TACE	🚽 Dir	Dtrs	GL	BW	200 W	400 W	600 W	MCW	Milk
EBV	+4.1	+2.5	-5.2	+6.5	+49	+85	+115	+101	+15
ACC	51%	44%	69%	70%	68%	68%	69%	66%	60%
Perc	38	54	38	92	48	59	48	44	63
SS	DtC	CWT	EMA	Rib	Rump	RBY	IMF	NFI-F	Doc
+2.3	-4.7	+60	+3.0	+1.0	+1.2	-0.6	+1.5	+0.04	-
61%	35%	63%	60%	66%	62%	62%	60%	50%	-
32	49	70	90	18	13	88	67	33	-

Purchaser:...

MYANGA KLOONEY R15^{sv}

DOB: 6/04/2020

Lot 14

Traits Observed: 200WT,Scan(EMA,Rib,Rump,IMF),Genomics

BOOROOMOOKA THEO T030^{sv} MILLAH MURRAH KLOONEY K42PV

MILLAH MURRAH PRUE H4^{SV}

Sire: EUDM405 GILMANDYKE KLOONEY M405PV

GILMANDYKE GARVOC G0055^{sv}

GILMANDYKE DORIS K0578PV

FORRES DORIS D95^{sv}

July 2021 TransTasman Angus Cattle Evaluation

		-			-				
TACE	Dir	Dtrs	GL	BW	200 W	400 W	600 W	MCW	Milk
EBV	+4.7	+7.6	-6.7	+4.5	+44	+86	+116	+95	+23
ACC	51%	45%	66%	70%	69%	68%	69%	66%	60%
Perc	33	11	18	57	76	55	46	56	8
SS	DtC	CWT	EMA	Rib	Rump	RBY	IMF	NFI-F	Doc
+2.1	-2.7	+66	+3.5	-0.2	-1.0	+0.0	+1.6	+0.52	-
62%	37%	64%	60%	66%	62%	63%	60%	51%	-
41	83	45	85	52	65	71	63	87	-

Purchaser:....

Lot 15

DOB: 3/04/2020

MYANGA KLOONEY R7^{sv}

Traits Observed: 200WT,Scan(EMA,Rib,Rump,IMF),Genomics BOOROOMOOKA THEO T030^{sv}

MILLAH MURRAH KLOONEY K42PV

MILLAH MURRAH PRUE H4^{sv}

Sire: EUDM405 GILMANDYKE KLOONEY M405PV

GILMANDYKE GARVOC G0055^{sv} GILMANDYKE DORIS K0578PV

FORRES DORIS D95^{sv}

Purchaser:

PAPA EQUATOR 2928# RAFF DAZZLER D353^{SV} HOFF BLACKBIRD 594 5217#

Dam: DRMJ5 MYANGA WILCOOLA J5#

ONSLOW STOCKMAN S419[#]

MYANGA WILCOOLA X5# ARDROSSAN WILCOOLA V6#

0 a la atlana luada waa

	Selection	indexes	
ABI	DOM	HGN	HGS
\$109	\$105	\$111	\$110
71	71	71	66

\$.....

MYAR7

HBR

Genetic Status: AMFU.CAFU.DDFU.NHFU Mating Type: Natural

TC TOTAL 410#

DSK T410 JUSTIFY J29sv

VERMONT DREAM E287PV

Dam: MYAN55 MYANGA DREAM N55#

RAFF DAZZLER D353^{sv} MYANGA PRINCESS K216#

MYANGA PRINCESS A29#

Selection Indexes

ABI	DOM	HGN	HGS
\$124	\$112	\$125	\$126
43	50	54	26

	ab	AD		A	1	11		
-	6	5	5	6	5	6	C+	1
	<u>م</u>							
	\$							

6	5	6	C+	2	5	
						•
				MY/	AR15	

Muscla

KANSAS DON CRUSADER Y184PV

HBR Genetic Status: AMFU.CAFU.DDFU.NHFU

www.myanga.com.au

17

Myanga Proclaim Q116^{sv} (MYAQ116)

<image>

Myanga Proclaim Q100^{sv} (MYAQ100)

Myanga Klooney R7^{sv} (MYAR7)

www.myanga.com.au

www.myanga.com.au

Myanga Klooney R16^{sv} (MYAR16)

Myanga Generation R8[#] (MYAR8)

Myanga Proclaim R17^{sv} (MYAR17)

Myanga George The 3rd R41^{sv} (MYAR41)

www.myanga.com.au

NG

MYAR1

APR

www.myanga.com.au

Lot	16
DOB: 1	/04/2020

Traits Observed: 200WT,Scan(EMA,Rib,Rump,IMF),Genomics BOOROOMOOKA THEO T030^{SV} MILLAH MURRAH KLOONEY K42PV

MILLAH MURRAH PRUE H4^{sv}

Sire: EUDM405 GILMANDYKE KLOONEY M405^{PV}

GILMANDYKE GARVOC G0055^{sv}

GILMANDYKE DORIS K0578PV FORRES DORIS D95^{sv}

July 2021 TransTasman Angus Cattle Evaluation

					J				
TACE	Dir	Dtrs	GL	BW	200 W	400 W	600 W	MCW	Milk
EBV	+6.9	+5.3	-7.5	+4.7	+51	+92	+125	+120	+20
ACC	50%	45%	66%	70%	69%	68%	68%	65%	60%
Perc	18	27	11	61	34	33	25	16	23
SS	DtC	CWT	EMA	Rib	Rump	RBY	IMF	NFI-F	Doc
+3.3	-7.0	+68	+3.2	+2.1	+2.3	-0.5	+1.0	+0.52	-
61%	37%	63%	60%	66%	62%	63%	60%	51%	-
7	14	37	88	5	4	86	84	87	-

Purchaser:

MYANGA GENERATION R42^{sv}

MYANGA KLOONEY R1^{sv}

DOB: 8/05/2020

Lot 17

Traits Observed: 200WT,Scan(EMA,Rib,Rump,IMF),Genomics

CONNEALY CONSENSUS 7229SV VAR GENERATION 2100PV

SANDPOINT BLACKBIRD 8809#

Sire: EUDM418 GILMANDYKE GENERATION M418PV

MILLAH MURRAH DOC F159PV GILMANDYKE ELOXA J0146^{sv}

NARRANGULLEN ELOXA Z13#

July 2021 TransTasman Angus Cattle Evaluation

Dir	Dtrs	GL	BW	200 W	400 W	600 W	MCW	Milk
-4.4	-5.3	-5.2	+7.6	+64	+113	+149	+158	+18
51%	46%	65%	69%	68%	68%	69%	66%	61%
88	96	38	98	2	2	3	1	41
DtC	CWT	EMA	Rib	Rump	RBY	IMF	NFI-F	Doc
-2.6	+90	+5.7	-1.4	-1.9	+2.3	+0.0	+0.06	-
38%	64%	61%	67%	63%	63%	61%	52%	-
84	2	51	85	84	3	99	36	-
	Dir -4.4 51% 88 DtC -2.6 38% 84	Dir Dtrs -4.4 -5.3 51% 46% 88 96 Dt C CWT -2.6 +90 38% 64% 84 2	Dir Dtrs GL -4.4 -5.3 -5.2 51% 46% 65% 88 96 38 Dt C CWT EMA -2.6 +90 +5.7 38% 64% 61% 84 2 51	Dir Dtrs GL BW -4.4 -5.3 -5.2 +7.6 51% 46% 65% 69% 88 96 38 98 Dt C CWT EMA Rib -2.6 +90 +5.7 -1.4 38% 64% 61% 67% 84 2 51 85	Dir Dtrs GL BW 200 W -4.4 -5.3 -5.2 +7.6 +64 51% 46% 65% 69% 68% 88 96 38 98 2 Dt C CWT EMA Rib Rump -2.6 +90 +5.7 -1.4 -1.9 38% 64% 61% 67% 63% 84 2 51 85 84	Dir Dtrs GL BW 200 W 400 W -4.4 -5.3 -5.2 +7.6 +64 +113 51% 46% 65% 69% 68% 68% 88 96 38 98 2 2 Dt C CWT EMA Rib Rump RBY -2.6 +90 +5.7 -1.4 -1.9 +2.3 38% 64% 61% 67% 63% 63% 84 2 51 85 84 3	Dir Dtrs GL BW 200 W 400 W 600 W -4.4 -5.3 -5.2 +7.6 +64 +113 +149 51% 46% 65% 69% 68% 68% 69% 88 96 38 98 2 2 3 Dt C CWT EMA Rib Rump RBY IMF -2.6 +90 +5.7 -1.4 -1.9 +2.3 +0.0 38% 64% 61% 67% 63% 63% 61% 84 2 51 85 84 3 99	Dir Dtrs GL BW 200 W 400 W 600 W MCW -4.4 -5.3 -5.2 +7.6 +64 +113 +149 +158 51% 46% 65% 69% 68% 68% 69% 66% 88 96 38 98 2 2 3 1 Dt C CWT EMA Rib Rump RBY IMF NFI-F -2.6 +90 +5.7 -1.4 -1.9 +2.3 +0.0 +0.06 38% 64% 61% 67% 63% 63% 61% 52% 84 2 51 85 84 3 99 36

Purchaser:....

Lot 18

DOB: 20/04/2020

J

MYANGA GENERATION R30^{sv}

Traits Observed: 200WT,Scan(EMA,Rib,Rump,IMF),Genomics

CONNEALY CONSENSUS 7229^{sv} VAR GENERATION 2100PV

SANDPOINT BLACKBIRD 8809#

Sire: EUDM418 GILMANDYKE GENERATION M418PV

MILLAH MURRAH DOC F159PV

GILMANDYKE ELOXA J0146^{sv}

NARRANGULLEN ELOXA Z13#

uly	2021	Trans	Tasman	Angus	Cattle	Eval	uation
				1			

TACE	Dir	Dtrs	GL	BW	200 W	400 W	600 W	MCW	Milk
EBV	-6.1	-5.6	-4.1	+7.1	+58	+105	+137	+118	+15
ACC	51%	46%	64%	69%	68%	68%	69%	66%	61%
Perc	92	96	57	96	9	8	9	18	66
SS	DtC	CWT	EMA	Rib	Rump	RBY	IMF	NFI-F	Doc
+2.8	-1.6	+76	+4.6	-1.8	-0.8	+1.6	+1.3	+0.06	-
61%	38%	63%	61%	66%	63%	63%	61%	52%	-
16	92	14	71	91	60	11	75	36	-

Purchaser:

Mating Type: Natural Genetic Status: AMFU,CAFU,DDFU,NHFU

TE MANIA INFINITY 04 379 AB# NITY H27PV

VERMONT QUEENIE Z342PV

Dam: MYAL149 MYANGA LUCY L149#

KANSAS DON CRUSADER Y184PV

MYANGA LUCY Y21#

Selection Indexes

ARDROSSAN WILCOOLA Q68+95^{SV} Selection Indexes

ABI	DOM	HGN	HGS
\$114	\$111	\$117	\$115
62	54	64	54

Genetic Status: AMFU,CAFU,DDFU,NHFU

TE MANIA BERKLEY B1PV HAZELDEAN GECKO G440^{sv}

HAZELDEAN C506#

RAFF DAZZLER D353^{sv} MYANGA JAPARA J10# ARDROSSAN JAPARA Y251#

Selection Indexes

BANNABY	INFI

Mating Type: Natural

Dam: MYAL50 MYANGA JAPARA L50#

MYANGA LUCY C35#

Mating Type: Natural

Genetic Status: AMF.CAF.DDF.NHF TE MANIA INFINITY 04 379 AB#

ARDROSSAN SCOTCH CAP W23#

MYAR30

HBR

BANNABY INFINITY H27PV

ARDROSSAN WILCOOLA Y210#

VERMONT QUEENIE Z342PV

Dam: DRMK120 MYANGA WILCOOLA K120#

Sale Lots

MYANGA GRASSMAN R5^{sv}

Mating Type: Natural

MYAR5 HBR

Lot 19 DOB: 2/04/2020

Traits Observed: 200WT,Scan(EMA,Rib,Rump,IMF),Genomics BT RIGHT TIME 24J#

SINCLAIR GRASS MASTER#

N BAR PRIMROSE Y3051#

Sire: DKKJ518 HARDHAT GM GRASS RANGE Y21 J518PV

BON VIEW NEW DESIGN 1407#

KANSAS ANNIE Y21sv

AMAROO EXPO ANNIE U024#

July 2021 TransTasman Angus Cattle Evaluation

		-			•				
TACE	Dir	Dtrs	GL	BW	200 W	400 W	600 W	MCW	Milk
EBV	-6.4	-7.2	-2.7	+5.7	+46	+81	+109	+95	+16
ACC	52%	45%	66%	70%	69%	68%	69%	65%	61%
Perc	93	98	79	82	66	73	63	57	61
SS	DtC	CWT	EMA	Rib	Rump	RBY	IMF	NFI-F	Doc
+1.4	-2.1	+61	+8.6	-2.0	-0.8	+1.0	+1.3	+0.03	-
61%	39%	65%	62%	68%	64%	65%	63%	56%	-
74	88	67	14	93	60	28	75	32	-

Purchaser:....

MYANGA KLOONEY R27^{sv}

DOB: 17/04/2020

Lot 20

Traits Observed: 200WT,Scan(EMA,Rib,Rump,IMF),Genomics BOOROOMOOKA THEO T030^{sv}

MILLAH MURRAH KLOONEY K42PV

MILLAH MURRAH PRUE H4^{sv}

Sire: EUDM405 GILMANDYKE KLOONEY M405PV

GILMANDYKE GARVOC G0055^{sv}

GILMANDYKE DORIS K0578PV

FORRES DORIS D95^{sv}

July 2021 TransTasman Angus Cattle Evaluation

TACE Dir Dtrs GL BW 200 W 400 W 600 W MCW M EBV -0.9 +6.2 -3.6 +5.0 +48 +91 +119 +117 +	
EBV -0.9 +6.2 -3.6 +5.0 +48 +91 +119 +117 +	Milk
	+22
ACC 51% 45% 66% 70% 69% 69% 69% 66% 6	61%
Perc 73 20 65 69 54 37 39 19	12
SS DtC CWT EMA Rib Rump RBY IMF NFI-F D	Doc
+1.4 -3.4 +69 +4.2 -1.0 -3.2 +1.2 +0.9 +0.09	-
62% 37% 64% 61% 66% 63% 63% 61% 52%	-
74 73 36 77 76 97 21 87 40	-

Purchaser:.....

Lot 21

MYANGA GRASSRANGE Q177^{sv}

DOB: 4/11/2019 Traits Observed: 200WT,400WT,Scan(EMA,Rib,Rump,IMF),Genomics

BT RIGHT TIME 24J#

SINCLAIR GRASS MASTER#

N BAR PRIMROSE Y3051#

Sire: DKKJ518 HARDHAT GM GRASS RANGE Y21 J518PV

BON VIEW NEW DESIGN 1407#

KANSAS ANNIE Y21^{sv} AMAROO EXPO ANNIE U024#

July 2021 TransTash an Angus Cattle Evalu

	July 2021 Transfasman Angus Cattle Evaluation									
TACE	Dir	Dtrs	GL	BW	200 W	400 W	600 W	MCW	Milk	
EBV	-3.4	-2.2	-1.8	+5.2	+42	+72	+101	+73	+15	
ACC	52%	45%	66%	71%	69%	69%	69%	66%	63%	
Perc	84	87	88	73	83	92	79	89	64	
SS	DtC	CWT	EMA	Rib	Rump	RBY	IMF	NFI-F	Doc	
+1.2	-2.9	+54	+5.5	-2.5	-1.3	+1.8	+0.2	-0.41	-	
61%	40%	66%	62%	67%	63%	65%	62%	55%	-	
81	80	87	55	97	73	8	98	3	-	

Purchaser:....

Genetic Status: AMFU,CAFU,DD1%,NHFU

TE MANIA INFINITY 04 379 AB# BANNABY INFINITY H27PV

VERMONT QUEENIE Z342PV

Dam: MYAL10 MYANGA WILCOOLA L10#

ARDROSSAN EQUATOR A276PV

MYANGA WILCOOLA F101# MYANGA WILCOOLA X22#

Selection Indexes

HBR

Genetic Status: AMFU.CAFU.DDFU.NHFU PAPA EQUATOR 2928#

HOFF BLACKBIRD 594 5217#

Dam: MYAL13 MYANGA WILCOOLA L13#

MYANGA STOCKMAN X14# MYANGA WILCOOLA C60# MYANGA WILCOOLA A23#

... . . .

Selection Indexes									
ABI	DOM	HGN	HGS						
\$101	\$103	\$102	\$102						
81	75	79	81						

\$.....

MYA0177

HBR

Mating Type: Natural Genetic Status: AMFU,CAFU,DDFU,NHFU RAFF MIDLAND Z204PV

ONSLOW MIDLAND D83^{sv}

ONSLOW POPPY A144[#]

Dam: DRMG232 MYANGA WILCOOLA G232#

ONSLOW STOCKMAN S419# MYANGA WILCOOLA S57 W9#

ARDROSSAN WILCOOLA S57#

Selection Indexes								
ABI DOM HGN HGS								
\$87	\$91	\$75	\$94					
92	93	94	90					

www.myanga.com.au

Mating Type: Natural

RAFF DAZZLER D353^{sv}

Genetic Status: AMFU,CAFU,DDFU,NHFU

RAFF MIDLAND Z204PV

MYANGA TRACES Y18sv

MYANGA PRINCESS X8#

HGN

\$115

66

MYANGA 715#

Selection Indexes

MYANGA MIDLANDS Z204 E49^{sv}

DOM

\$120

26

MYANGA PRINCESS A29#

Dam: DRMG146 MYANGA PRINCESS G146#

ABI

\$119

53

MYAQ145

HGS

\$122

36

23

HBR

Muscle Temp. Sheath 6 6 6 6 4 5 С 5 1 \$..... Purchaser:..... MYAQ143 Lot 23 MYANGA GENERATION Q143^{sv} APR DOB: 20/10/2019 Traits Observed: None Genetic Status: AMFU,CAFU,DDFU,NHFU Mating Type: ET CONNEALY CONSENSUS 7229^{SV} VAR GENERATION 2100PV SANDPOINT BLACKBIRD 8809# Sire: EUDM418 GILMANDYKE GENERATION M418PV Dam: DETAILS UNAVAILABLE MILLAH MURRAH DOC F159PV **GILMANDYKE ELOXA J0146**^{sv} NARRANGULLEN ELOXA Z13# July 2021 TransTasman Angus Cattle Evaluation Selection Indexes TACE 🔊 Dir Dtrs GI BW 200 W 400 W 600 W MCW Milk DOM HGN HGS ABI FRV ACC _ _ _ Temp Sheath 6 5 6 5 5 C+ 5 6 1 Purchaser:.... \$..... MYA0149 Lot 24 MYANGA PROCLAIM Q149^{sv} HBR DOB: 22/10/2019 Traits Observed: 200WT,400WT,Scan(EMA,Rib,Rump,IMF),Genomics Mating Type: AI Genetic Status: AMFU,CAFU,DDFU,NHFU PC TC STOCKMAN A49^{sv} JINDRA 3RD DIMENSIONPV JINDRA ACCLAIM^{SV} PC THE DOMINATOR D114PV JINDRA BLACKBIRD LASSY 1111# PINE CREEK LRT MS PREMIER S1^{sv} Sire: USA18866428 SPRING CREEK ACCLAIM 7049sv Dam: DRMJ191 MYANGA BETTY J191# SUMMITCREST COMPLETE 1P55# MYANGA STOCKMAN X14# SJH COMPLETE OF 353F 0100# MYANGA BETTY B36# J/R SUSANNA OF 5050 353F# MYANGA Z13# July 2021 TransTasman Angus Cattle Evaluation Selection Indexes TACE 🙉 Dtrs GL BW 200 W 400 W 600 W MCW Milk Dir DOM HGN HGS ARI -0.2 EBV -7.3 -1.3 +6.4 +55 +93 +117 +105+13 \$85 \$90 \$96 \$81 ACC 47% 39% 63% 69% 68% 67% 68% 65% 60% 93 87 92 93 Perc 95 83 97 91 18 30 42 38 80 CWT EMA Rib RBY IMF NFI-F SS DtC Rump Doc +1.0-0.5 +71 +4.6 -1.0 -2.7 +1.2 +1.2-0.26 Temp. Sheath Muscle 60% 32% 63% 59% 65% 61% 61% 59% 49% 6 6 5 5 5 5 C+ 1 5 87 97 28 71 76 94 21 78 8 Purchaser:.... \$ www.myanga.com.au

Sire: USA18866428 SPRING CREEK ACCLAIM 7049^{sv}

SUMMITCREST COMPLETE 1P55# SJH COMPLETE OF 353F 0100#

TACE	Dir	Dtrs	GL	BW	200 W	400 W	600 W	MCW	Milk
EBV	+0.5	+6.0	-2.6	+5.5	+59	+100	+126	+119	+13
ACC	48%	41%	64%	69%	68%	68%	68%	66%	62%
Perc	64	22	80	78	8	14	23	16	80
SS	DtC	CWT	EMA	Rib	Rump	RBY	IMF	NFI-F	Doc
+1.4	-3.4	+79	+6.6	+0.1	-0.5	+1.6	+0.7	-0.44	-
61%	33%	63%	60%	65%	61%	62%	59%	50%	-
74	73	9	36	42	51	11	91	3	-

MYANGA PROCLAIM Q145^{sv}

Mating Type: AI

J/R SUSANNA OF 5050 353F# July 2021 TransTasman Angus Cattle Evaluation

Lot 22

DOB: 21/10/2019

Traits Observed: 200WT,400WT,Scan(EMA,Rib,Rump,IMF),Genomics

JINDRA 3RD DIMENSIONPV JINDRA ACCLAIM^{SV}

JINDRA BLACKBIRD LASSY 1111#

Sale Lots

Dir

+5.6

48%

27

DtC

-1.7

34%

91

Dtrs

+5.5

42%

26

CWT

+72

63%

25

MYANGA PROCLAIM Q113^{sv}

MYAQ113 HBR

MYA0155

HBR

Lot 25 DOB: 3/10/2019

Traits Observed: 200WT,400WT,Scan(EMA,Rib,Rump,IMF),Genomics

JINDRA 3RD DIMENSIONPV

JINDRA ACCLAIM^{SV} JINDRA BLACKBIRD LASSY 1111#

SUMMITCREST COMPLETE 1P55#

400 W

+82

68%

68

RBY

+1.6

61%

11

600 W

+103

69%

77

IMF

+1.4

59%

71

MCW

+84

66%

77

NFI-F

+0.09

50%

40

Milk

+12

62%

89

Doc

J/R SUSANNA OF 5050 353F#

Mating Type: AI

Genetic Status: AMF,CAF,DDF,NHF

ARDROSSAN ADMIRAL A2PV

HAZELDEAN D134^{sv} HAZELDEAN Z345#

Dam: DRMG63 MYANGA CONCHITA G63#

ST PAULS TRACES T32#

MYANGA CONCHITA Y22#

REYANNAH CONCHITA R5+96[#]

Selection Indexes DOM HGN HGS ABI \$110 \$115 \$106 \$113 69 76 41 59

98 Purchaser:

Lot 26

TACE 🙉

FRV

ACC

Perc

SS

+0.1

60%

MYANGA GRASSMAN Q155^{sv}

DOB: 22/10/2019

Traits Observed: 200WT,400WT,Scan(EMA,Rib,Rump,IMF),Genomics BT RIGHT TIME 24J#

SINCLAIR GRASS MASTER#

N BAR PRIMROSE Y3051#

Sire: DKKJ518 HARDHAT GM GRASS RANGE Y21 J518PV

Sire: USA18866428 SPRING CREEK ACCLAIM 7049^{sv}

GL

-49

64%

43

EMA

+9.2

59%

10

SJH COMPLETE OF 353F 0100#

BW

+2.9

69%

20

Rib

+0.3

65%

36

July 2021 TransTasman Angus Cattle Evaluation

200 W

+50

68%

43

Rump

-1.8

60%

83

KANSAS ANNIE Y21sv

AMAROO EXPO ANNIE U024#

July 2021 TransTasman Angus Cattle Evaluation

		oury 2		Jusinan	Aligus O		uation		
TACE	Dir	Dtrs	GL	BW	200 W	400 W	600 W	MCW	Milk
EBV	-10.1	-1.2	-1.5	+6.4	+42	+77	+111	+91	+14
ACC	54%	47%	69%	73%	71%	71%	72%	69%	65%
Perc	98	82	91	91	82	83	57	64	73
SS	DtC	CWT	EMA	Rib	Rump	RBY	IMF	NFI-F	Doc
+2.7	+0.8	+55	+5.8	-1.3	-0.8	+1.2	+0.4	-0.07	-
63%	42%	68%	65%	70%	66%	67%	65%	58%	-
18	99	84	50	83	60	21	96	21	-

KANSAS VICKY N4+93[#]

C A FUTURE DIRECTION 5321# MYANGA RIVERLAND W2#

ARDROSSAN RIVERLANDS L5+91#

Genetic Status: AMFU.CAFU.DDFU.NHFU

YTHANBRAE THE DON W57#

\$.....

\$.....

Purchaser:....

Purchaser:....

www.myanga.com.au

Mating Type: Natural KANSAS FARM BOSS Y72sv

BON VIEW NEW DESIGN 1407#

Dam: DRMD67 MYANGA RIVERLAND D67#

Lot 2	28															MY	AQ98 HBR	
DOB: 19 /	/09/2019	Traits O MU	bserved: 2	00WT,400 KOUI AVIATOF MCA	//T,Scan(El PALS B&E Հ ^{s∨} TL FORE\	MA,Rib,Rur 3 IDENTIT /ER LAD)	mp,IMF),Ge ⁻ Ƴ ^{s∨} Ƴ 1429-13	enomics 8 [#]	Mating	g Type: Al HAF	RDHAT	Gen 「GN	etic Sta SIN I GRA KAN	atus: A I CLAIF SS RA ISAS J	MFU,C R GRA ANGE ANNI	AFU,E ASS M Y21 J E Y21	P DFU, ASTE I518 ^P SV	NHFU ∃R [#] ∨
Sire	e: USA1	8 129638 MU	MUSGR SGRAVE	AVE ME MUS BARBAF MCA	EDIATOR GRAVE B A LASS 2 TL BARB/	(₽V OULDER⁵ ?73 [#] \RA LASS	∾ § 931-719	Dan #	1: MYAN	5 MYAN Kan	GA A ISAS /	NNI Ann	E N5 [#] KAN IE J12 KAN	ISAS 2 [#] ISAS J	ABEF ANNI	RDEEN E E10	I F84 3 ^{sv}	,sv
		July 2	021 Trans	Tasman	Angus C	attle Eval	uation						Select	tion Ir	ndexe	s		
TACE	Dir	Dtrs	GL	BW	200 W	400 W	600 W	MCW	Milk	ļ	ABI		DOM		HGN	1	НС	GS
EBV	+2.0	+4.4	-1.5	+3.8	+54	+91	+114	+109	+18	\$	106		\$111		\$10	6	\$1	07
ACC	55%	48%	69%	72%	70%	70%	71%	68%	63%		75		54		76		7	72
Perc	54	35	91	39	23	36	49	31	41		10		01		10			-
SS	DtC	CWT	EMA	Rib	Rump	RBY	IMF	NFI-F	Doc	F	R	F	R					
+1.2	-3.4	+61	+2.8	-2.2	-2.1	+1.3	+1.3	-0.66	-			ß		1	1	Muscle	Temp.	Sheath
66% 91	37%	65%	63%	68%	64%	64%	63%	53%	-	6	5	5	5	5	6	C+	2	5
Purchase	er:	00	52		01	10				\$								
Lot 2	29				MY/	ANGA	A KLC	ONE	Y Q15	1 ^{sv}							MYA	40151 HBR
DOB: 22/	/10/2019	Traits O	bserved: 2	00WT,400	WT,Scan(E ^l	MA,Rib,Rur	mp,IMF),G	enomics	Mating T	ype: Natu	ral		Gen	etic St	atus: /	MF,CA	\F,DD	F,NHF
		N 411		BOO	ROOMOC) T030 ^{sv}			ספו	(7410				410	¥		
		IVIIL		MILL	AH MURF	AH PRUE	E H4sv			DSr	1410	103	VEF	JZ9- RMON	T DR	EAM E	<u>-</u> 287	٧c
Sire	e: EUDN	1405 GIL	MANDY	KE KLO	ONEY M	405 ^{PV}		Dan	n: MYAN [,]	143 MY	ANGA	DR	EAM	N143	3 #			
				GILM	ANDYKE	GARVOC	G0055 ^{sv}						RAF	FMI	DLAN	D Z20	4 ^{PV}	
		GIL	.MANDYK	E DORIS	K0578 ^{PV}					MYA	ANGA	MEF	RIBAH	E52#				
				FOR	RES DOR	IS D95 ^{sv}							MYA	NGA	Z12#			
		July 2	021 Trans	Tasman	Angus Ca	attle Eval	uation					-	Select	tion Ir	ndexe	s		
	Dir	Dtrs	GL	BW	200 W	400 W	600 W	MCW	Milk	4	ABI		DOM	_	HGN	1	НС	3S
EBV	-0.5	+1.9	-6.4	+5.5	+54	+91	+121	+121	+19	\$	111		\$108		\$119	ə	\$1	09
Perc	70	45% 59	21	70%	21	38	34	15	29		68		63		61		6	38
SS	DtC	CWT	FMA	Rib	Rump	RBY	IMF	NFI-F	Doc									
+2.5	-3.7	+61	+5.6	-1.0	-3.0	+1.5	+1.6	-0.17	-	F	R	F A	R		A	Muscle	Temp	. Sheath
61%	37%	64%	61%	67%	63%	64%	61%	52%	-					1	TT		<u> </u>	
25	68	67	53	76	96	13	63	13	-	6	6	5	6	5	5	C+	1	5
										\$								
Purchase	er:																	0157
Purchase	۱۳:																	10120
Purchase					MYAN	IGA F	RAINI	MAST	ER Q	156 ^{sv}	1						MYA	HBR
Purchase	917: 30 /10/2019	Traits O	bserved: 2	00WT,400	MYAN NT,Scan(E	IGA F MA,Rib,Rur	RAINI mp,IMF),Ge	MAST	ER Q Mating	156^{SV} Type: Al	/	Gen	etic Sta	atus: A	MFU,C	CAFU,C	MYA DFU,	HBR
Purchase	3 0 10/2019	Traits O	bserved: 2	00WT,400 O C (MYAN WT,Scan(El 2 PAXTON	NGA F MA,Rib,Rur N 730P [#]	RAINI mp,IMF),Go	MAST enomics	ER Q Mating	156 SV Type: Al		Gen	etic Sta BRA	atus: A	MFU,C EART	of S	MYA DFU, TERN	HBR NHFU 1 ^{SV}
Purchase	3 0 /10/2019	Traits O CC	bserved: 2	00WT,400 O C (HARLO (BOHI	MYAN WT,Scan(El C PAXTON)256 ^{PV} ABIGALE	IGA F MA,Rib,Rur N 730P [#] E 6014 [#]	RAINI mp,IMF),Go	MAST	ER Q Mating	156^{SV} Type: AI PC	BRAVI	Gen EHE	etic Sta BRA ART J PC	atus: A WEHE 069 ^{s∨} MISS	MFU,C EART 338 F	of S	MYA DFU, TERN TIME	HBR NHFU √ ^{SV} ∃ D82 ^t
Purchase	30 /10/2019 e: USA1	<i>Traits 0</i> CC 8578966	bserved: 2 LEMAN C SAV 6	00WT,400' O C (HARLO (BOHI 54X RAI	MYAN WT,Scan(E 2 PAXTON 0256 ^{PV} ABIGALE NMASTE	NGA F MA,Rib,Rui N 730P [#] E 6014 [#] ER 6849 ^F	RAINI mp,IMF),Go	MAST enomics Dan	ER Q Mating	156^{SV} Type: AI PC 234 MYA	BRAVI	Gen EHE	etic Sta BRA ART J PC	atus: Al WEHE 069 ^{s∨} MISS)LA L	MFU,C Eart 338 F .234 #	CAFU,E OF S	MYA D fu , Tern Time	HBR NHFU √ ^{SV} ∃ D82 ^t
Purchase	30 /10/2019 e: USA1	Traits 0 CC 8578966	bserved: 2 LEMAN C SAV 6	00WT,400' O C C HARLO (BOHI 54X RAI S A V	MYAN WT,Scan(E C PAXTON 0256 ^{PV} ABIGALE NMASTE 8180 TR/	NGA F MA,Rib,Rui N 730P [#] E 6014 [#] E 6849 ^F AVELER (RAINI mp,IMF),Ge ₽v 004 [#]	MAST enomics Dan	ERQ Mating	156 ^{SV} Type: AI PC 234 MYA	BRAVI	Gen EHE	etic Sta BRA ART J PC L COC DSK	atus: A VEHE 069 ^{sv} MISS DLA L HLE E	MFU,C EART 338 F .234 # BRUTE	CAFU,E OF S RIGHT	MYA DFU, TERN TIME	HBR ,NHFU √ ^{SV} Ξ D82 ¹ 1 B24 ^P
DOB: 24/	30 (10/2019 e: USA1	<i>Traits 0</i> CC 8578966 S A	bserved: 2 LEMAN C S A V 6 V BLACK	00WT,400' O C (HARLO (BOHI 54X RAI S A V CAP MA	MYAN WT,Scan(E C PAXTOP 0256 ^{PV} ABIGALE NMASTE 8180 TR/ Y 4136 [#]	NGA F MA,Rib,Rui V 730P# E 6014# ER 6849F AVELER (RAINI mp,IMF),Ge	MAST enomics Dan	ERQ Mating	156 ^{SV} 9 Type: Al PC 234 MYA MYA	, BRAVI ANGA	Gen EHE WIL	etic Sta BR/ ART J PC L COC DSK COOL	atus: A VEHE 069 ^{sv} MISS DLA L HLE E A G13	MFU,C EART 338 F . 234 [#] BRUTE 2 [#]	CAFU,E OF S RIGHT	MYA DFU, TERN TIME NGTH	HBR ,NHFU ↓ ^{SV} ∃ D82 ¹ 1 B24 ^{P1}
Purchase	30 /10/2019 e: USA1	Traits 0 CC 8578966 S A	bserved: 2 LEMAN C SAV 6 V BLACK	00WT,400' O C (HARLO (BOH) 54X RAI S A V (CAP MA' S A V	MYAN WT,Scan(E C PAXTON 2256 ^{PV} ABIGALE NMASTE 8180 TR/ Y 4136 [#] MAY 239	NGA F MA,Rib,Rui N 730P [#] E 6014 [#] ER 6849 ^F AVELER (7 [#]	RAINI mp,IMF),Ge vv 004 [#]	MAST enomics Dan	TERQ Mating	156 ^{SV} 3 Type: AI PC 234 MYA MYA	BRAVI	Gen EHE	etic Sta BRA ART J PC L COC DSK COOL	AVEHE 069 ^{sv} MISS DLA L HLE E A G13 ANGA	MFU,C EART 338 F .234 [#] BRUTE 2 [#] WILC	CAFU, C OF S RIGHT E STRE	MYA DFU, TERN TIME NGTH	HBR NHFU √ ^{SV} Ξ D82 ^p 1 B24 ^p
DOB: 24/	97: 30 (10/2019 e: USA1	Traits 0 CC 8578966 S A July 2	bserved: 2 DEMAN C S A V 6 V BLACK	00WT,400 O C (HARLO (BOH) 54X RAI S A V (CAP MA S A V Tasman	MYAN WT,Scan(E C PAXTON 0256 ^{PV} ABIGALE NMASTE 8180 TR/ Y 4136 [#] MAY 239 Angus Ca 200 W	NGA F MA,Rib,Rui N 730P [#] E 6014 [#] E 6849 ^F AVELER C 7 [#] attle Eval	RAINI mp,IMF),Gr PV 004# uation	MAST enomics Dan	ERQ Mating	156 ^{SV} 9 Type: AI PC 234 MYA MYA		Gen EHE	etic Sta BR/ ART J PC LCOC DSK COOL MY/ Select	AVEHE 069 ^{sv} MISS DLA L HLE E A G13 ANGA tion Ir	MFU,C EART 338 F 234# BRUTE 2# WILC Idexe	CAFU,E OF S RIGHT E STRE COOLA	MYA DFU, TERN TIME NGTH	HBR NHFU √ ^{SV} Ξ D82 ^I 1 B24 ^{P1} #
Purchase	30 (10/2019 e: USA1	Traits O CC 8578966 S A July 2 Dtrs	bserved: 2 LEMAN C S A V 6 V BLACK D21 Trans	00WT,400' O C (CHARLO (BOH) 54X RAI S A V (CAP MA' S A V S Tasman BW	MYAN WT,Scan(E C PAXTON 0256 ^{PV} ABIGALE NMASTE 8180 TR/ Y 4136 [#] MAY 239 Angus C 200 W	NGA F MA,Rib,Rui V 730P# E 6014# E 6014# E 6849F AVELER C 17# attle Eval 400 W	RAINI mp,IMF),Gr 204# uation 600 W	MAST enomics Dan	ERQ Mating 1: MYAL2 Milk	156 ^{SV} 9 Type: AI PC 234 MYA MYA		Gen EHE, WIL(etic Sta BR/ ART J PC L COC DSK COOL MY/ Selec DOM	AVEHE 069 ^{sv} MISS DLA L HLE E A G13 ANGA	MFU,0 EART 338 F .234 BRUTE 2 [#] WILC Idexe HGN	CAFU,E OF S RIGHT E STRE COOLA	MYA DFU, TERN TIME NGTH (A23) HC	HBR NHFU √ ^{SV} Ξ D82 ^I 1 B24 ^{P1} # 3S
Purchase	e: USA1	Traits O CC 8578966 S A July 2 Dtrs +0.1	<i>bserved:</i> 2 LEMAN C S A V 6 V BLACK 021 Trans GL - 3.6 66%	00WT,400' O C (HARLO BOH 54X RAI 54X RAI 54X RAI S A V (CAP MA' S A V S A V 5Tasman BW +5.9 70%	MYAN WT,Scan(E C PAXTON 0256 ^{PV} ABIGALE NMASTE 8180 TR/ Y 4136 [#] MAY 239 Angus Ca 200 W +52 6994	NGA F MA,Rib,Rui N 730P [#] E 6014 [#] E 6014 [#] E 6849 ^F AVELER C N7 [#] attle Eval 400 W +86 68%	RAINI mp,IMF),Go 2004# 004# 000W +103 600W	MAST enomics Dan MCW +82	Mating Mating n: MYAL2 Milk +10 61%	156 ^{SV} 9 Type: AI PC 234 MY/ MY/	BRAVI ANGA ANGA BI	Gen EHE	etic Sta BR/ ART J PC I LCOC DSK COOL MY/ Select DOM \$100	Atus: A AVEHE 069 ^{sv} MISS DLA L HLE E A G13 ANGA tion Ir	MFU,C EART 338 F .234 BRUTE 2 [#] WILC ndexe HGN \$75	CAFU,E OF S RIGHT E STRE COOLA S N	MYA DFU, TERN TIME NGTH A23 HC	HBR ,NHFU ↓ ^{SV} Ξ D82 ¹ + B24 ^{P1} # ЭS
Lot 3 DOB: 24/ Sire TACE EBV ACC Perc	e: USA1	Traits O CC 8578966 S A July 2 Dtrs +0.1 42% 74	bserved: 2 DEMAN C S A V 6 V BLACK 021 Trans GL -3.6 66% 65	00WT,400 O C (CHARLO (BOH) 54X RAI S A V CAP MA S A V S Tasman BW +5.9 70% 85	MYAN WT,Scan(E C PAXTOP 0256 ^{PV} ABIGALE NMASTE 8180 TR/ Y 4136 [#] MAY 239 Angus Ca 200 W +52 68% 32	NGA F MA,Rib,Rui N 730P [#] E 6014 [#] E 6849 ^F AVELER C N7 [#] attle Eval 400 W +86 68% 55	RAINI mp,IMF),Gr PV 004# uation 600 W +103 69% 77	MAST enomics Dan MCW +82 66% 80	ER Q Mating 1: MYAL2 Milk +10 61% 95	156 ^{SV} Type: AI PC 234 MY/ MY/	BRAVI ANGA ANGA ABI 390	Gen EHE WILC	etic Sta BRA ART J PC LCOC DSK COOL MYA Select DOM \$100 81	AVEHE 069 ^{sv} MISS DLA L HLE E A G13 ANGA tion Ir	MFU,C EART 338 F 234 [#] BRUTE 2 [#] WILC adexe HGN \$75 94	CAFU,E OF S RIGHT E STRE COOLA	MY# DDFU, TERN TIME NGTH A23 HC	HBR ,NHFU ↓ ^{SV} = D82 1 B24 ^P # 3S 3S 36
Lot : DOB: 24/ Sire IACE EBV ACC Perc SS	e: USA1	Traits O CC 8578966 S A July 2 Dtrs +0.1 42% 74 CWT	bserved: 2 LEMAN C S A V 6 V BLACK 021 Trans GL -3.6 66% 65 EMA	00WT,400' O C (CHARLO (BOH) 54X RAI S A V (CAP MA' S A V) (CAP MA' S A V (CAP MA' S A V) (CAP MA' S	MYAN WT,Scan(E C PAXTON 0256 ^{PV} ABIGALE NMASTE 8180 TR/ Y 4136 [#] MAY 239 Angus Ca 200 W +52 68% 32 Rump	NGA F MA,Rib,Rui N 730P# E 6014# E 6849F AVELER (17# attle Eval 400 W +86 68% 55 RBY	RAINI mp,IMF),Ge 204# uation 600 W +103 69% 77 IMF	MAST enomics Dan MCW +82 66% 80 NFI-F	ER Q Mating 1: MYAL2 Milk +10 61% 95 Doc	156 ^{SV} 9 Type: AI PC 234 MY/ MY/	BRAVI ANGA ANGA 91	Gen EHE, WILC	etic Sta BRA ART J PC LCOC DSK COOL MYA Select DOM \$100 81	AVEHE 069 ^{sv} MISS DLA L HLE E A G13 ANGA tion Ir	MFU,C EART 338 F 234# BRUTE 2 [#] WILC adexe HGN \$75 94	CAFU,E OF S RIGHT E STRE COOLA	MYA DDFU, TERN TIME NGTH A23' HC \$\$	HBR NHFU N ^{SV} E D82 H B24 ^{P'} # SS 36 8
ACC Perc SS +3.3	Dir -9.0 49% 97 D t C -4.2	Traits O CC 8578966 S A July 2 Dtrs +0.1 42% 74 CWT +61	bserved: 2 LEMAN C S A V 6 V BLACK 021 Trans GL -3.6 66% 65 EMA +6.0	00WT,400' O C (HARLO BOH 54X RAI S A V (CAP MA' S A V (CAP MA' S A V 5Tasman BW +5.9 70% 85 Rib +0.0	MYAN WT,Scan(E C PAXTON D256 ^{PV} ABIGALE NMASTE 8180 TR/ 4136 [#] MAY 239 Angus Ca 200 W +52 68% 32 Rump +0.5	NGA F MA,Rib,Rui N 730P# E 6014# E 6849F AVELER (17# attle Eval 400 W +86 68% 55 RBY +1.7	RAINI mp,IMF),Ge 2004# 2004	MAST enomics Dan MCW +82 66% 80 NFI-F +0.09	ER Q Mating 1: MYAL2 Milk +10 61% 95 Doc -	156 ^{SV} 9 Type: AI PC 234 MY/ MY/ \$	BRAVI ANGA ANGA 91	Gen EHE WIL WIL	etic Sta BRA ART J PC LCOOL DSK COOL MY/A Select DOM \$100 81	AVEHE 069 ^{sv} MISS DLA L HLE E A G13 ANGA tion Ir	MFU,C EART 338 F 234# BRUTE 22# WILC MODEXE HGN \$75 94	CAFU, E OF S RIGHT E STRE COOL/ PS	MYA DDFU, TERN TIME NGTH A A23 HC \$ \$ 8 8 Temp.	HBR NHFU N ^{SV} ∃ D82 1 B24 ^{p1} # 3S 3S 36 88
Purchase Lot 3 DOB: 24/ Sire ACC Perc SS +3.3 60%	BT:	Traits O CC 8578966 S A July 2 Dtrs +0.1 42% 74 CWT +61 64%	bserved: 2 DEMAN C S A V 6 V BLACK 021 Trans GL -3.6 66% 65 EMA +6.0 60%	00WT,400' O C (HARLO BOH 54X RAI S A V (CAP MA' S A V (CAP MA' S A V ;Tasman BW +5.9 70% 85 Rib +0.0 66%	MYAN WT,Scan(E C PAXTOP)256 ^{PV} ABIGALE NMASTE '8180 TR/ Y 4136 [#] 'MAY 239 Angus Ca 200 W +52 68% 32 Rump +0.5 61%	NGA F MA,Rib,Rui N 730P [#] E 6014 [#] E 6849 ^F AVELER (AVELER (7 [#] attle Eval 400 W +86 68% 55 RBY +1.7 62%	RAINI mp,IMF),Gr v 004 [#] uation 600 W +103 69% 77 IMF +0.3 60%	MAST enomics Dan MCW +82 66% 80 NFI-F +0.09 49%	Mating Mating n: MYAL2 Milk +10 61% 95 Doc - -	156 ^{SV} Type: AI PC 234 MY/ MY/ S	ANGA	Gen EHE, WILC	etic Sta BRA ART J PC LCOOL DSK COOL MYA Select DOM \$100 81	AVEHE 069 ^{sv} MISS DLA L HLE E A G13 ANGA tion Ir	MFU,C EART 338 F 234# BRUTE 2 ^{2#} WILC ndexe HGN \$75 94	CAFU, L OF S RIGHT E STRE COOL/ S S N I I I Muscle	MYA DDFU, TERN TIME NGTH A23 HC \$ \$ \$ 8 Temp.	HBR NHFU √ ^{s∨} = D82 ¹ + B24 ^p # 3S 36 i8 Sheatt
ACC Perc SS +3.3 60% 7	Cir:	Traits O CC 8578966 S A July 2 Dtrs +0.1 42% 74 CWT +61 64% 67	bserved: 2 LEMAN C S A V 6 V BLACk 021 Trans GL -3.6 66% 65 EMA +6.0 60% 46	00WT,400' O C (HARLO (BOH) 54X RAI S A V (CAP MA' S A V (CAP MA'	MYAN WT,Scan(E C PAXTOD D256 ^{PV} ABIGALE NMASTE 8180 TR/ Y 4136 [#] MAY 239 Angus Ca 200 W +52 68% 32 Rump +0.5 61% 25	NGA F MA,Rib,Rut N 730P [#] E 6014 [#] E 6849 ^F AVELER (7 [#] attle Eval 400 W +86 68% 55 RBY +1.7 62% 10	RAINI mp,IMF),Ge v 004 [#] uation 600 W +103 69% 77 IMF +0.3 60% 97	MAST enomics Dan MCW +82 66% 80 NFI-F +0.09 49% 40	ER Q Mating Mating Milk +10 61% 95 Doc - - -	156 ^{SV} 9 Type: AI PC 234 MY/ MY/ \$	ANGA ANGA 91 75	Gen EHE WILC	etic Sta BR/ ART J PC LCOC DSK COOL MY/ Selec DOM \$100 81	Atus: Al AVEHE 069 ^{sv} MISS DLA L HLE E A G13 ANGA tion Ir	MFU,C EART 338 F 234# BRUTE 2 [#] WILC ndexe HGN \$75 94	CAFU, L OF S RIGHT E STRE COOLA S Muscle C+	MYA DDFU, TERN TIME NGTH A A23 HC \$ \$ 8 8 7 Temp. 1	HBR NHFU √ ^{s∨} = D82 ¹ + B24 ^p # 3S 36 i8 Sheatt 5

Myanga ANGUS

Sale Lots

MYANGA PROCLAIM Q115^{sv}

Lot 31 DOB: 3/10/2019

Traits Observed: 200WT,400WT,Scan(EMA,Rib,Rump,IMF),Genomics

JINDRA 3RD DIMENSIONPV

JINDRA ACCLAIM^{SV}

JINDRA BLACKBIRD LASSY 1111#

Sire: USA18866428 SPRING CREEK ACCLAIM 7049^{sv}

SUMMITCREST COMPLETE 1P55#

SJH COMPLETE OF 353F 0100#

J/R SUSANNA OF 5050 353F#

July 2021 TransTasman Angus Cattle Evaluation

TACE	Dir	Dtrs	GL	BW	200 W	400 W	600 W	MCW	Milk
EBV	+4.3	+0.4	-4.3	+4.6	+53	+92	+117	+96	+19
ACC	47%	41%	65%	69%	68%	68%	69%	66%	61%
Perc	36	72	53	59	27	34	43	55	34
SS	DtC	CWT	EMA	Rib	Rump	RBY	IMF	NFI-F	Doc
+1.2	-3.7	+66	+6.3	-0.8	-1.3	+1.7	+0.9	-0.04	-
61%	35%	64%	60%	66%	62%	62%	60%	51%	-
81	68	45	41	71	73	10	87	24	-

Purchaser:

MYANGA GENERATION Q176^{sv}

DOB: 3/11/2019

Lot 32

Traits Observed: 200WT,400WT,Scan(EMA,Rib,Rump,IMF),Genomics CONNEALY CONSENSUS 7229SV

VAR GENERATION 2100PV

SANDPOINT BLACKBIRD 8809#

Sire: EUDM418 GILMANDYKE GENERATION M418PV

MILLAH MURRAH DOC F159PV GILMANDYKE ELOXA J0146^{sv}

NARRANGULLEN ELOXA Z13#

July 2021 TransTasman Angus Cattle Evaluation

TACE	Dir	Dtrs	GL	BW	200 W	400 W	600 W	MCW	Milk
EBV	+3.6	+3.5	-7.4	+1.9	+40	+71	+86	+61	+13
ACC	51%	46%	64%	68%	68%	67%	68%	66%	61%
Perc	42	44	11	8	89	92	95	96	81
SS	DtC	CWT	EMA	Rib	Rump	RBY	IMF	NFI-F	Doc
+1.4	-2.0	+59	+7.9	-0.8	-1.0	+1.6	+1.5	+0.20	-
61%	37%	63%	60%	65%	62%	62%	60%	51%	-
	00	70	20	71	65	11	67	54	
61%	37%	63%	20	05% 71	65	62%	67	51%	-

Purchaser:..

Lot 33

DOB: 17/04/2020

MYANGA PROCLAIM R26^{sv}

Traits Observed: 200WT,Scan(EMA,Rib,Rump,IMF),Genomics

JINDRA 3RD DIMENSIONPV

JINDRA ACCLAIM^{SV}

JINDRA BLACKBIRD LASSY 1111#

Sire: USA18866428 SPRING CREEK ACCLAIM 7049sv SUMMITCREST COMPLETE 1P55#

SJH COMPLETE OF 353F 0100#

J/R SUSANNA OF 5050 353F#

	July 2021 TransTasman Angus Cattle Evaluation										
TACE	Dir	Dtrs	GL	BW	200 W	400 W	600 W	MCW	Milk		
EBV	-3.6	+6.5	-0.6	+4.6	+62	+112	+148	+133	+16		
ACC	47%	41%	63%	69%	69%	68%	69%	66%	61%		
Perc	85	18	95	59	4	3	3	6	59		
SS	DtC	CWT	EMA	Rib	Rump	RBY	IMF	NFI-F	Doc		
+1.8	-2.3	+90	+5.5	-1.2	-3.1	+1.5	+1.1	-0.32	-		
61%	34%	64%	60%	65%	61%	62%	60%	51%	-		
55	87	2	55	81	96	13	81	6	-		

Purchaser:....

Mating Type: Natural

Mating Type: AI

Mating Type: AI

Dam: MYAL93 MYANGA KELLY L93[#]

ABI

\$116

59

PAPA EQUATOR 2928#

RAFF DAZZLER D353^{sv}

Dam: MYAL224 MYANGA WILCOOLA L224#

\$.....

RAFF DAZZLER D353^{SV}

MYANGA PRINCESS A29#

\$.....

Dam: DRMK216 MYANGA PRINCESS K216#

AF

KANSAS FARM BOSS Y72sv MYANGA WILCOOLA C400#

MYANGA WILCOOLA W1#

Selection Indexes

ABI	DOM	HGN	HGS
\$99	\$108	\$94	\$102
83	63	85	81

Genetic Status: AMFU,CAFU,DDF,NHFU

HOFF BLACKBIRD 594 5217#

MYANGA TRACES Y18sv

MYANGA PRINCESS X8#

PAPA EQUATOR 2928#

Selection Indexes						
31	DOM	HGN	HGS			

\$126	\$119	\$131	\$126
39	29	45	26

F	R	F	R	P	1	Muscle	Temp.	Sheath
6	6	5	6	5	6	С	1	4

Genetic Status: AMFU,CAFU,DDFU,NHFU

MYAR26

HBR

MYAQ176

HBR

MYA0115

HGS

\$118

46

Temp, Sheath

3

1

Genetic Status: AMFU,CAFU,DDFU,NHFU

BANNABY INFINITY H27PV

MYANGA KELLY D25#

TE MANIA INFINITY 04 379 AB#

VERMONT QUEENIE Z342PV

ONSLOW STOCKMAN S419#

HGN

\$113

68

Muscle

C+

ARDROSSAN V33#

Selection Indexes

DOM

\$117

34

APR

HOFF BLACKBIRD 594 5217#

MYAR38

HGS

\$130

MYANGA GEORGE R38^{sv}

Traits Observed: 200WT,Scan(EMA,Rib,Rump,IMF),Genomics Mating Type: Natural

Dam: MYAN6 MYANGA ANNIE N6[#]

ABI

\$132

APR Genetic Status: AMFU,CAFU,DDFU,NHFU

HAZELDEAN GECKO G440^{sv}

MYANGA JAPARA J10#

HGN

\$140

Selection Indexes

DOM

\$118

TC TOTAL 410#

DSK T410 JUSTIFY J29^{sv}

MYANGA JAPARA L50#

VERMONT DREAM E287PV

Sire: EUDM405 GILMANDYKE KLOONEY M405^{PV}

MILLAH MURRAH KLOONEY K42PV

Lot 34

DOB: 29/04/2020

GILMANDYKE GARVOC G0055^{sv}

BOOROOMOOKA THEO T030^{SV}

MILLAH MURRAH PRUE H4^{sv}

GILMANDYKE DORIS K0578PV FORRES DORIS D95^{sv}

July 2021 TransTeeman Angue Cattle Evaluation

		oury 2		siasinan	Aligus O		uation		
TACE	Dir	Dtrs	GL	BW	200 W	400 W	600 W	MCW	Milk
EBV	-1.0	-3.6	-6.3	+7.9	+63	+112	+150	+127	+21
ACC	49%	43%	65%	69%	67%	66%	67%	64%	58%
Perc	73	92	22	99	3	3	3	10	17
SS	DtC	CWT	EMA	Rib	Rump	RBY	IMF	NFI-F	Doc
+2.4	-3.6	+78	+5.5	-0.3	-0.6	+0.4	+1.7	-0.10	-
60%	35%	62%	59%	65%	61%	61%	59%	50%	-
28	69	11	55	55	54	55	59	19	-

Sale Lots

MYANGA GENERATION R35^{sv}

Mating Type: Natural

MYAR35 HBR

HGS

\$132

15

2

Sheath

5

MYAR9

HBR

Genetic Status: AMFU,CAFU,DDFU,NHFU

TE MANIA BERKLEY B1PV

TE MANIA LOWAN Z74PV

MYANGA PRINCESS B29#

HGN

\$135

40

5 C+

Muscle Temp.

Selection Indexes

5

ARDROSSAN EQUATOR A276PV

DOB: 24/04/2020

Lot 37

Traits Observed: 200WT,Scan(EMA,Rib,Rump,IMF),Genomics CONNEALY CONSENSUS 7229sv

VAR GENERATION 2100PV SANDPOINT BLACKBIRD 8809#

Sire: EUDM418 GILMANDYKE GENERATION M418^{PV}

MILLAH MURRAH DOC F159PV

GILMANDYKE ELOXA J0146^{sv}

NARRANGULLEN ELOXA Z13#

July 2021 TransTasman Angus Cattle Evaluation

TACE	Dir	Dtrs	GL	BW	200 W	400 W	600 W	MCW	Milk
EBV	+1.9	+2.7	-8.3	+5.0	+54	+104	+133	+118	+14
ACC	53%	49%	68%	69%	69%	68%	69%	67%	62%
Perc	55	52	6	69	20	9	13	18	73
SS	DtC	CWT	EMA	Rib	Rump	RBY	IMF	NFI-F	Doc
+2.5	-3.5	+76	+8.8	-1.5	-3.5	+3.2	+0.3	+0.11	-
62%	41%	64%	61%	67%	63%	64%	61%	53%	-
25	71	15	12	87	98	1	97	42	-

Purchaser:....

MYANGA KLOONEY R9^{sv}

DOB: 4/04/2020

Lot 38

Traits Observed: 200WT,Scan(EMA,Rib,Rump,IMF),Genomics Mating Type

BOOROOMOOKA THEO T030^{SV}

MILLAH MURRAH KLOONEY K42PV

MILLAH MURRAH PRUE H4^{SV}

Sire: EUDM405 GILMANDYKE KLOONEY M405PV

J

GILMANDYKE GARVOC G0055^{SV}

GILMANDYKE DORIS K0578PV

FORRES DORIS D95^{SV}

uly	2021	TransTasman	Angus	Cattle	Evaluation

		-							
TACE	Dir	Dtrs	GL	BW	200 W	400 W	600 W	MCW	Milk
EBV	+2.3	+0.3	-6.3	+6.2	+56	+101	+133	+151	+17
ACC	50%	44%	67%	70%	69%	68%	69%	66%	60%
Perc	52	72	22	89	15	13	13	2	53
SS	DtC	CWT	EMA	Rib	Rump	RBY	IMF	NFI-F	Doc
+1.3	-2.7	+66	+0.9	-2.8	-3.1	+1.0	+1.6	-0.37	-
61%	37%	64%	61%	66%	63%	63%	61%	52%	-
77	83	44	99	99	96	28	63	4	-

Purchaser:....

Lot 39

DOB: 4/04/2020

MYANGA GENERATION R8[#]

Traits Observed: 200WT,Scan(EMA,Rib,Rump,IMF) CONNEALY CONSENSUS 7229SV

VAR GENERATION 2100PV

SANDPOINT BLACKBIRD 8809#

Sire: EUDM418 GILMANDYKE GENERATION M418PV

MILLAH MURRAH DOC F159PV GILMANDYKE ELOXA J0146^{sv}

NARRANGULLEN ELOXA Z13#

July 2021 TransTasman Angus Cattle Evaluation

TACE	Dir	Dtrs	GL	BW	200 W	400 W	600 W	MCW	Milk	
EBV	+3.1	+3.3	-7.6	+4.2	+53	+101	+132	+115	+17	
ACC	48%	45%	60%	58%	61%	59%	58%	57%	53%	
Perc	45	46	10	49	25	13	15	22	45	
SS	DtC	CWT	EMA	Rib	Rump	RBY	IMF	NFI-F	Doc	
+1.8	-3.5	+80	+8.6	-0.7	-1.2	+1.5	+1.2	+0.27	-	
54%	38%	55%	56%	57%	58%	55%	54%	47%	-	
55	71	7	14	68	70	13	78	63	-	

Purchaser:....

MYANGA LOUISE E149#

Selection Indexes

1100
\$108
70

\$.....

MYAR8 HBR

Mating Type: Natural Genetic Status: AMFU,CAFU,DDFU,NHFU

BASIN FRANCHISE P142#

EF COMPLEMENT 8088PV

EF EVERELDA ENTENSE 6117#

Dam: MYAM4 MYANGA MILLY M4#

TE MANIA EMPEROR E343PV

MYANGA HOLLY H36^{sv} MYANGA HOLLY Y23#

Selection Indexes							
ABI	DOM	HGN	HGS				
\$133	\$124	\$138	\$132				
26	16	36	15				

F	R		R	1	1	Muscle	Temp.	Sheath
7	6	6	6	5	6	С	1	5

\$.....

www.myanga.com.au

IIBR
Genetic Status: AMFU,CAFU,DDFU,NHFU
TC TOTAL 410 [#]
) JUSTIFY J29 ^{sv}

7

TE MANIA EMPEROR E343PV

MYANGA PRINCESS D109#

DOM

\$129

8

7

Dam: DRMJ130 MYANGA MISS EMPEROR J130#

ABI

\$132

27

7 6

s.

VERMONT DREAM E287PV

NG

MYAR22

MYAR45

HBR

HBR

MYANGA KLOONEY R22[#] Traits Observed: None

Mating Type: Natural

Genetic Status: AMFU.CAFU.NHFU YOUNG DALE KNOCKOUT 134U# YOUNG DALE XCALIBER 32XPV

BROOKMORE TIBBIE 222T#

Dam: MYAP19 MYANGA TIBBIE P19#

HAZELDEAN B360PV

MYANGA WILCOOLA F118# ARDROSSAN WILCOOLA V15#

Selection Indexes

Lot 41

TACE 🙉

EBV

ACC

Dir

Dtrs

Lot 40

DOB: 11/04/2020

MYANGA GEORGE IV R45^{sv}

DOB: 21/05/2020

Traits Observed: 200WT,Scan(EMA,Rib,Rump,IMF),DOC,Genomics BOOROOMOOKA THEO T030^{SV}

MILLAH MURRAH KLOONEY K42PV

MILLAH MURRAH PRUE H4^{SV}

BOOROOMOOKA THEO T030^{sv}

MILLAH MURRAH PRUE H4^{sv}

FORRES DORIS D95^{sv}

200 W

July 2021 TransTasman Angus Cattle Evaluation

GILMANDYKE GARVOC G0055^{sv}

400 W

600 W

MCW

Milk

MILLAH MURRAH KLOONEY K42PV

GILMANDYKE DORIS K0578PV

ВW

Sire: EUDM405 GILMANDYKE KLOONEY M405PV

GL

Sire: EUDM405 GILMANDYKE KLOONEY M405PV

GILMANDYKE GARVOC G0055^{sv}

GILMANDYKE DORIS K0578PV

FORRES DORIS D95^{sv}

uly	2021	Trans	Tasman	Angus	Cattle	Evaluation

	July 2021 TransTasman Angus Cattle Evaluation									
TACE	Dir	Dtrs	GL	BW	200 W	400 W	600 W	MCW	Milk	
EBV	-5.9	-3.1	-4.0	+8.0	+56	+100	+132	+127	+14	
ACC	50%	44%	65%	69%	68%	67%	67%	64%	58%	
Perc	92	90	58	99	14	14	15	10	76	
SS	DtC	CWT	EMA	Rib	Rump	RBY	IMF	NFI-F	Doc	
+2.5	-3.6	+74	+7.2	-0.8	-1.7	+0.8	+1.8	+0.29	+15	
60%	35%	62%	59%	65%	61%	62%	59%	50%	33%	
25	69	18	28	71	81	36	55	66	23	

Purchaser:.....

MYANGA GEORGE THE 3RD R41^{sv}

www.myanga.com.au

Mating Type: Natural

Genetic Status: AMF,CAF,DDF,NHF TE MANIA INFINITY 04 379 AB#

MYAR41

HBR

BANNABY INFINITY H27PV

VERMONT QUEENIE Z342PV

Dam: MYAL42 MYANGA WILCOOLA L42#

KANSAS FARM BOSS Y72^{sv}

MYANGA WILCOOLA B57#

ЧΓ	13	SAIN	VVII	_000

Selection Indexes							
ABI	DOM	HGN	HGS				
\$97	\$94	\$103	\$93				
85	90	78	91				

F	R		R	7	1	Muscle	Temp.	Sheath
6	6	5	6	5	6	C+	1	4

\$.....

July 2021 TransTasman Angus Cattle Evaluation

TACE	Dir	Dtrs	GL	BW	200 W	400 W	600 W	MCW	Milk
EBV	-6.0	-4.5	-3.9	+8.5	+51	+92	+117	+107	+15
ACC	51%	45%	66%	70%	69%	69%	69%	66%	61%
Perc	92	94	60	99	35	33	43	34	65
SS	DtC	CWT	EMA	Rib	Rump	RBY	IMF	NFI-F	Doc
+3.3	-5.8	+65	+0.0	-0.7	-0.7	-0.6	+1.9	+0.12	-
62%	38%	64%	61%	67%	63%	63%	61%	52%	-
7	30	50	99	68	57	88	50	43	-
Purchase	Purchaser:								

DOB: 7/05/2020

MILLAH MURRAH PRUE H4^{sv}

Sire: EUDM405 GILMANDYKE KLOONEY M405PV GILMANDYKE GARVOC G0055^{sv}

GILMANDYKE DORIS K0578PV FORRES DORIS D95^{sv}

-				
		-	-	
-	F	R	R	1
-				-

Mating Type: Natural Genetic Status: AMFU,CAFU,DDFU,NHFU

TC TOTAL 410#

DSK T410 JUSTIFY J29sv VERMONT DREAM E287PV

Dam: MYAN35 MYANGA DREAM N35# BANNABY INFINITY H27PV

MYANGA WILCOOLA L42# MYANGA WILCOOLA B57#

Selection Indexes

\$.....

ARDROSSAN WILCOOLA X198#

Sale Lots

MYANGA KLOONEY R36^{sv}

Lot 43 DOB: 28/04/2020

Traits Observed: 200WT,Scan(EMA,Rib,Rump,IMF),Genomics BOOROOMOOKA THEO T030^{sv} MILLAH MURRAH KLOONEY K42PV

MILLAH MURRAH PRUE H4^{sv}

Mating Type: Natural

Dam: NKLK42 KANSAS BARBARA K42[#]

MYAR36 HBR

Genetic Status: AMFU,CAFU,DDFU,NHFU TUWHARETOA REGENT D145PV DUNOON GOODTHING G167PV

TC ABERDEEN 759sv

KANSAS BARBARA Z26^{sv}

DUNOON PRINCESS B187PV

Sire: EUDM405 GILMANDYKE KLOONEY M405^{PV}

GILMANDYKE GARVOC G0055^{sv}

GILMANDYKE DORIS K0578PV

FORRES DORIS D95^{sv}

July 2021 TransTasman Angus Cattle Evaluation

TACE	Dir	Dtrs	GL	BW	200 W	400 W	600 W	MCW	Milk
EBV	-0.9	+5.1	-5.8	+6.9	+57	+98	+128	+113	+20
ACC	53%	48%	68%	70%	69%	69%	70%	67%	62%
Perc	73	29	29	95	12	19	20	24	22
SS	DtC	CWT	EMA	Rib	Rump	RBY	IMF	NFI-F	Doc
+1.8	-4.9	+79	+3.1	-0.2	-2.1	-0.1	+2.5	-0.19	-
63%	39%	65%	62%	67%	64%	64%	62%	53%	-
55	46	9	89	52	87	75	29	12	-

Purchaser:

Selection Indexes HGN DOM ABI HGS \$121 \$111 \$135 \$115 49 54 40 54

KANSAS BARBARA F188^{SV}

F	R		R	1		Muscle	Temp.	Sheath
7	6	7	6	5	6	С	2	5

Full Catalogue Design by Sam Hamilton, Angus Australia "Enchancing & Promoting the value of Angus"

ph: (02) 6773 4613 email: sam@angusaustralia.com.au

www.angusaustralia.com.au

Recommendations for the introduction and management of your new bull:

1. UPON ARRIVAL:

- a) Ensure your new bulls socialises with a group of animals, (anything except other bulls) in the yards, when they arrive.
- b) Run the new bulls with a small group of empty females, (he has come from a different herd and may not have had exposure to some of the normal pathogens present in your herd see further information below).
 - i. This MUST be done with the empty females, for a period of 2 to 4 weeks. Ideally the bull can then be rested for 6-8 weeks prior to joining.
 - ii. Ideally give the cows prostaglandin every 2 weeks so they continue to cycle.
- c) Ideally bulls should be insured for their first year as standard.

2. PRE-JOINING:

- a) We recommend a breeding soundness examination (BSE), including structural assessment, testicular palpation, service ability testing and semen testing (essential in single sire matings). This is mandatory for second joining and older bulls each year. It will improve the fertility performance of the herd, by removing infertile bulls from the joining group. If bulls are not service tested it is essential that you observe the bulls serve in the first week on joining.
 - i. These bulls will be given a risk rating and mating potential which will influence joining bull teams.
- b) **Keep vaccinations up to date;** Vibrovax, Leptospirosis 7-in-1, Pestigard and an annual drench, 4-6 weeks prior to joining.
- **3. JOINING** new bulls have the highest risk of breakdown in the herd, this risk can be reduced by:
 - a) **PROTECT** a new bull by not over-joining, 30 females per virgin bull maximum.
 - b) Recommended to multi-sire join.
 - i. Ideally mixing bulls of different age groups, experience levels and risk ratings.
 - c) It is recommended, IF single sire joining with a new bull, to rotate him with a proven bull for at least one cycle. Also, it is good practice to rotate proven bulls for the last cycle with all new bulls.

"Most new bull fertility issues develop or are acquired during the joining period, rather than being pre-existing problems, this means that bull observation during the joining period is essential!

ONCE THE JOINING PROGRAM IS SET UP, MONITORING IS ESSENTIAL TO IDENTIFY ISSUES AS THEY DEVELOP.

Your new bulls need to be run in mobs that are easily monitored, keep them close to promote observation, check them 2 to 3 times a week for the first three weeks and then weekly thereafter. This involves looking for,

- The bull serving, (this has not been successful until the bull thrusts). If bulls are continually
 mounting without serving it is often a sign the bull has developed a penile infection and
 needs to be rested and replaced immediately. Sound bulls should serve every 1 to 2
 mounts.
- 2. Lameness.
- 3. Evidence of penile or preputial swelling or inflammation.
- 4. Signs of ill health, lethargy, etc.
- 5. Estimate the number of females cycling, (for every 20 females, one cycles each day at the commencement of joining). After three weeks of joining, there should only be one cow cycling every three days in 20 females.

4. POST-JOINING:

- a. Annual breeding soundness evaluation is a non-negotiable procedure.
- b. Good management of bulls is a year-round procedure.
 - i. Keep bulls in working body condition they should be in body condition score 3/5 at the start of mating, which will involve removing weight following the joining period.
 - ii. Manage bulls in groups of joining teams to establish stable social hierarchies and minimise bull fighting.
- ✓ Bulls need to be removed from the cows at the same time, to help create their bull mobs. This will limit the number of potential injuries by reducing the number of bull interactions.
- Bull paddock management is very important to minimise injury between joinings. The bulls need enough room to reduce fighting, restricted feed and water will increase interaction.
 Paddocks will require co-grazing with sheep, or crash-grazing by other mobs to manage feed quality and quantity on offer for the bulls.
- ✓ The target between joining is to restrict weight gain in older bulls to prevent breakdowns. Ideally young bulls have access to a higher level of nutrition as they continue to grow.
- Early pregnancy testing is essential for good female management and detection of surprises. The earlier the pregnancy testing is undertaken, the more likely the cause of the problem will be identified. This will not only give you early notice of the problem but also help in formulating a plan to help reduce the chance of the problem occurring again in the future.

PENILE INFECTIONS IN BULLS – "Balanoposthitis":

Penile infections are a common disease in young bulls during their first joining season in any new herd. Mitigating the risk of this disease as outlined above is essential to reduce the number of breakdowns and optimise bull cost per calf.

These infections are caused by a range of bacterial, viral, and other organisms ("pathogens"). The genital form of infectious bovine rhinotracheitis (IBR; herpes virus) is commonly implicated. The issue is that any given property has its own population of reproductive tract pathogens and if the new bulls make their first contact with these pathogens at the time of high workload (such as joining) they are at a high risk of developing a penile injury.

These injuries typically involve a reddened inflamed penis, developing to ulceration and pustules. Some bulls will stop serving due to pain (will continue to mount, but not serve), but other high libido bulls will continue to serve and create significant inflammation commonly leading to preputial tears, abscesses and prolapses. These are often perceived to be a "broken penis", which they are not and **IF treated promptly may regain normal function!**

Treatment involves prompt removal of the affected bull from the joining mob, sexual rest (typically for the remainder of the joining) and treatment with antibiotics and anti-inflammatories. Preputial prolapses require surgical replacement.

If undetected these injuries commonly cause a significant decrease in pregnancy rate and commonly result in permanent infertility in the bull. **Observation and intervention are essential!**

Prevention of this condition is best achieved as outlined above, by deliberate pre-exposure of new bulls to a small number of females (low workload) well before the joining so that they are exposed and can develop immunity to the herds' pathogens prior to the high workload of the joining period.

Positive fertility outcomes are a significant driver of profitability in beef breeding enterprises, but this requires informed and active management!

Dr. Shane Thomson BVetBio. BVSc. MAnSc. for HOLBROOK VETERINARY CENTRE.

Directions to Myanga

Myanga is 20km north of Goulburn.

From Goulburn travel north along the Goulburn Taralga road for approx 20km, crossing the Tarlo river.

Turn right into Chapmans Lane.

Follow the lane around (approx 2kms) to Moondance on your left.

www.myanga.com.au