

OB Free Acc: 580 OJD MN3 V

POLL DORSET STUD 1886 🦙 WHITE SUFFOLK STUD 540

Tomorrow's Rams Today!

Ram Sale Monday 12th October 2020 1pm on Property

1861 KANGAROO FLAT ROAD, GLENCOE SA.

128 Poll Dorset and 28 White Suffolk Rams

· Abiding by Covid19 regulations and interfaced with Auctions Plus. · All rams selected for sound conformation, moderate BWT, growth, muscle and worm resistance. • Young rams bred for commercial use. • Performance backed by 48 years of breeding.

3% rebate for outside agents. Lunch **Provided.**

CONTACT: DALE & RUTH PRICE 0428 394 300 ADAM PRICE 0428 230 100 EMAIL: majardah@bigpond.com

ELDERS **BEN GREGORY** 0418 498 587

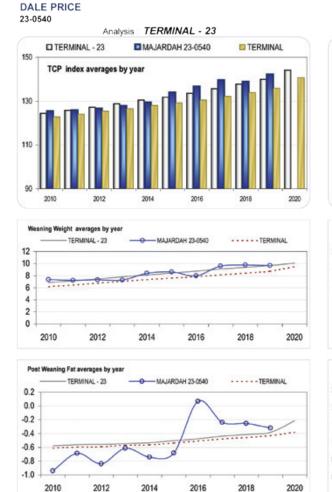
MILLER WHAN & JOHN PETER CREEK 0428 838 332

rmanetwork. Accredited Member

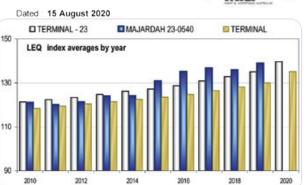
MAJARDAH POLL DORSET STUD 1886 WHITE SUFFOLK STUD 540

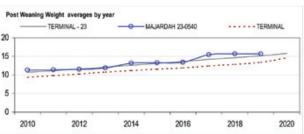
Majardah Poll Dorset and White Suffolk Studs produce terminal sires designed to produce lambs exhibiting the essential traits of lambing ease, growth, ideal fat cover, muscle and worm resistance. By focusing on these key economic drivers, while maintaining the superior eating qualities of prime lamb, our clients have enjoyed excellent results from their prime lamb enterprises.

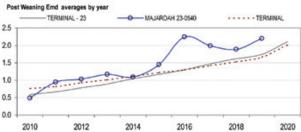
Continuing to strive for excellence you might have read in our August newsletter that we undertook a meat-eating quality trial with some of our cull lambs from the 2019 drop. Although we haven't received all the analysis yet, being part of trials like this ensure we continue to breed stock that are satisfying consumer demand. Using genomic testing is a critical part of ensuring lamb remains a quality product, and that, you cannot judge by eye. Staying ahead of the pack sees us progeny test, DNA test and collect highly accurate data to ensure we breed high performance rams with outstanding Australian Sheep Breeding Values. This ensures our commercial clients can select rams to meet their breeding targets with confidence.


MAJARDAH

In what has been a challenging year for many, our little pocket of paradise has been largely unaffected. With our Victorian clients in mind, who have been dealt a tough hand by Premier Andrews, we will venture into the Auctions Plus space for the first time. We hope those that need this avenue will be able to utilize it with ease. We will not have our full listing of rams individually videoed, none the less you can be assured that all rams will be structurally sound for any commercial operation.

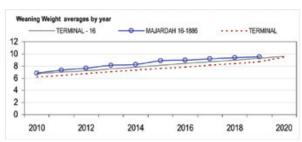

Any ram requiring a stud registration transfer will have a start up price of \$2000, please note that not all rams are registerable with the APDA so please do your homework first.

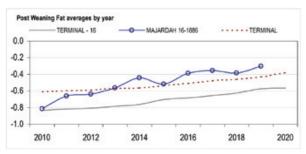

On behalf of Dale, Ruth and Jodie, I extend an invitation to our valued clients and interested producers to join us on Monday October 12th at 1pm for our annual sale.

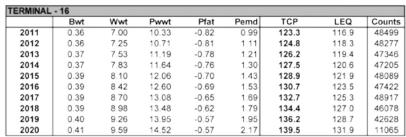

Adam Price

SHEEP GENETICS

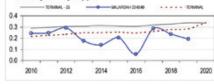


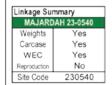



Page 1


	Bwt	Wwt	Pwwt	Pfat	Pemd	TCP	LEQ	Counts
2011	0.30	7.15	11.14	-0.56	0.67	125.8	122.5	48269
2012	0.30	7.47	11.60	-0.56	0.78	127.1	123.4	48400
2013	0.31	7.81	12.13	-0.55	0.89	128.8	124.7	46679
2014	0.31	8.14	12.64	-0.53	1.04	130.5	126.1	45023
2015	0.31	8.42	13.08	-0.51	1.17	131.8	127.2	47205
2016	0.31	8.74	13.60	-0.48	1.30	133.5	128.7	48305
2017	0.32	9.09	14.17	-0.44	1.47	135.6	130.9	54379
2018	0.33	9.38	14.64	-0.42	1.62	137.8	132.8	51659
2019	0.34	9.68	15.11	-0.38	1.75	139.9	135.1	49009
2020	0.33	10.06	15.82	-0.22	2.11	144.1	139.7	11796

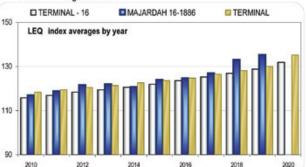
MAJARDAI	H 23-0540								
	Bwt	Wwt	Pwwt	Pfat	Pemd	TCP	LEQ	Counts	1
2011	0.25	7.23	11.38	-0.69	0.94	125.9	120.0	110	1
2012	0.29	7.30	11.54	-0.84	1.03	126.7	121.2	258	
2013	0.18	7.27	11.88	-0.61	1.17	127.9	124.0	131	[
2014	0.14	8.39	13.20	-0.74	1.09	129.4	124.1	176	
2015	0.21	8.61	13.23	-0.69	1.44	134.0	130.9	172	11
2016	0.06	8.01	13.37	0.07	2.24	136.7	135.1	154	
2017	0.29	9.59	15.45	-0.24	1.99	139.7	136.8	161	
2018	0.24	9.76	15.69	-0.25	1.89	138.9	135.9	179	
2019	0.19	9.67	15.68	-0.32	2.20	142.3	138.9	166	11
2020								0	Γ.

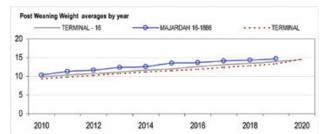


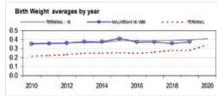


IAJARDA	H 16-1886							
	Bwt	Wwt	Pwwt	Pfat	Pemd	TCP	LEQ	Counts
2011	0.36	7.34	11.27	-0.66	1.43	126.1	118.9	653
2012	0.36	7.61	11.68	-0.64	1.50	128.2	121.7	534
2013	0.38	8.12	12.39	-0.56	1.66	129.2	122.0	675
2014	0.38	8.27	12.60	-0.44	1.95	130.3	120.8	804
2015	0.41	8.90	13.57	-0.52	1.97	132.4	123.9	740
2016	0.37	8.95	13.71	-0.39	1.97	132.4	124.7	947
2017	0.37	9.21	14.13	-0.36	2.22	134.9	126.9	1151
2018	0.36	9.36	14.37	-0.38	2.59	139.8	133.1	899
2019	0.38	9.51	14.71	-0.30	2.69	141.6	135.3	904
2020								0

Birth Weight averages by year




Reports are prepared using data supplied by breeders and/or accredited operators for the analysis. SheepGenetics cannot guarantee the accuracy of this data. ASBV's are designed to estimate genetic merit of animals from the data supplied. Reports are provided to assist breeders but no liability is accepted for the outcome resulting from the use of this information.



Dated : 15 August 2020

ing Emd averages by year Post W TERMINAL - 16 MAJARDAH 16-1886 ---- TERMINAL 3.0 2.5 2.0 1.5 1.0 a 0.5 0.0 2010 2012 2016 2018 2020 2014

Reports are prepared using data supplied by breeders and/or accredited operators for the analysis. SheepGenetics cannot guarantee the accuracy of this data. ASBV's are designed to estimate genetic merit of animals from the data supplied. Reports are provided to assist breeders but no liability is accepted for the outcome resulting from the use of this information.

MAJARD	AH 16-1886
Weights	Yes
Carcase	Yes
WEC	Yes
eproduction	No
ite Code	161886

0
5
6
2
ts
Lo
2
ak
×
×
0
L.
S
0
it
5
\sim
2
4
8
N
N
: 1-12
N
Lots 1-12
: 1-12
Lots 1-12
am Lots 1-128
am Lots 1-128
t Ram Lots 1-128
t Ram Lots 1-128
t Ram Lots 1-128
t Ram Lots 1-128

All rams selected for	sound conformation,	moaerate 5W1, growtn, muscle and worm resistance	(colonates	\$ / Buyer																			
	~	Ĕ		LEQ	147.24	143.56	147.96	152.63	148.97	140.40	145.73	140.47	153.80	151.96	135.94	136.88	129.74	132.16	139.07	130.23	142.06	143.91	147.63
		ted		TCP	147.66	146.92	151.85	157.47	150.33	147.28	152.67	147.14	150.56	157.39	141.54	144.78	141.06	142.09	148.48	141.53	149.38	150.40	151.78
		Trial Mated		LMY	3.99 14	4.09 14	5.27 15	4.72 15	4.17 19	5.00 14	4.07 15	3.80 14	3.36 15	4.54 15	4.76 14	4.75 14	4.77 14	4.68 14	5.03 14	5.08 14	5.37 14	4.59 15	3.49 15
													_										
				DRESS	2.49	2.44	3.26	3.00	2.20	2.20	2.72	1.86	2.67	2.57	1.46	2.09	1.70	2.30	2.57	1.88	2.65	2.75	2.88
_		Top 20%		SHRF5	4.27	4.15	6.81	2.79	2.54	6.22	2.18	2.60	1.51	1.79	6.43	5.77	6.59	7.37	6.41	8.31	7.38	5.16	1.74
_		Top		IMF	-0.26	-0.57	-0.66	-0.71	-0.20	-0.88	-0.68	-0.72	-0.05	-0.72	-0.85	-0.85	-0.90	-0.95	-0.90	-1.10	-0.96	-0.58	-0.67
_				PFEC	-39	-45	-49	-46	-19	-43	-17	-26	-57	-40	-55	-27	9	-18	-15	-22	-50	-10	-50
_		8		PEMD	2.81	2.57	3.39	3.73	2.80	2.23	3.47	2.13	3.24	2.58	1.17	2.01	2.00	2.32	1.98	2.00	3.07	2.78	4.04
		Top 10%																					
				T PFAT	9-0.03	-0.23	-0.78	7 -0.44	-0.48	1 -0.96	9 -0.28	2 -0.88	3 0.64	t -0.64	-1.41	-1.04	7 -1.16	1 -0.77	-1.07	-1.27	-1.05	3 -0.47	7 0.12
				PWWT	17.43	16.65	16.89	15.87	16.53	17.81	15.59	15.12	17.38	17.94	17.79	16.72	15.77	16.34	18.25	16.96	16.80	17.98	13.87
	9	Top 1%		WWT	11.30	10.93	10.85	10.39	11.15	11.88	9.90	10.04	11.40	11.75	12.06	10.93	11.00	10.65	11.70	11.22	11.23	11.47	8.56
	29-15	10		BWT	0.40	0.44	0.29	0.36	0.52	0.55	0.18	0.48	0.45	0.57	0.69	0.54	0.61	0.52	0.43	0.52	0.40	0.48	0.33
	Lots 1				9625	17	667	146	123	117	75	75	980	980	128	01	117	117	14	55	667	117	146
	Ram			SIRE	Linton 160625	Ab 160617	Felix 170667	Bruan 170146	Linton 160123	Felix 161117	BD 179575	BD 179575	Wool 173980	Wool 173980	MR 155028	MR 189601	Felix 161117	Felix 161117	MR 178814	MR 177555	Felix 170667	Felix 161117	Bruan 170146
	uffolk																						
	White Suffolk Ram Lots 129-156			DOB	30/05/2019	29/05/2019	31/05/2019	15/06/2019	4/07/2019	9/07/2019	27/05/2019	29/05/2019	27/05/2019	27/05/2019	31/05/2019	26/06/2019	7/06/2019	13/06/2019	25/06/2019	5/07/2019	30/05/2019	25/06/2019	29/05/2019
	ø			RT	-1 -1	2 2	1	1	-		1 2	1 2	1	1 2	1	1 2	2	2 1	2 2		- L	2 2	1 2
	1-128			BT	Ч	2	Ч	ч	Ч	2	2	7	ч	-	Ч	1	2	2	2	Ч	Ч	2	Ч
	Lots			Br.	PD	ΡD	DD	DD	ΡD	DD	ΡD	DD	DD	Δd	ΡD	DD	DD	DD	ΡD	DD	ΡD	DD	PD
	et Ram			TAG ID	77	31	88	220	651	740	2	30	1	7	97	1084	162	197	507	699	69	516	16
	Poll Dorset Ram Lots 1-128			Lot	1	2	ę	4	5	9	7	ø	6	10	11	12	13	14	15	16	17	18	19

ir																							Page 4
\$ / Buyer																							т
LEQ	144.12	153.43	148.99	130.75	137.61	139.39	134.49	150.16	151.53	146.84	136.94	141.74	150.48	127.02	136.87	126.63	150.97	145.41	145.30	146.63	147.77	138.87	A
тср	149.75	150.23	153.41	138.42	141.61	151.14	144.94	156.39	152.97	153.04	145.26	145.52	158.43	138.19	143.78	134.12	158.97	150.62	147.81	151.62	151.23	148.90	R D
LMΥ	3.55	2.74	3.69	3.83	3.88	4.91	4.43	4.50	3.82	4.74	4.90	4.31	4.78	4.02	3.96	2.30	4.69	3.82	3.46	4.24	3.58	5.22	4
DRESS	2.91	2.40	2.49	2.55	2.46	2.57	2.36	3.02	2.89	2.41	2.53	2.17	3.33	2.32	2.54	2.30	3.18	3.08	2.61	2.54	2.31	2.55	ΜΑJ
SHRF5	1.89	-2.02	0.25	5.91	4.83	5.22	6.56	3.46	1.85	3.07	7.10	4.89	3.90	6.34	4.79	3.00	2.55	2.77	2.13	1.24	0.14	6.48	Σ
IMF	-0.67	-0.03	-0.43	-1.04	-0.66	-0.90	-0.97	-0.81	-0.15	-0.68	-1.02	-0.42	-0.96	-1.14	-0.82	-0.63	-0.93	-0.69	-0.24	-0.90	-0.41	-1.10	~;
PFEC	-33	-51	-14	-57	-48	11	-16	-44	-13	-25	-46	-20	-45	-29	-37	4	-39	-41	-12	-68	-22	-35	Today!
PEMD	4.14	2.89	3.38	3.06	2.63	2.54	2.78	3.81	4.27	3.08	3.01	2.62	4.44	3.15	3.33	3.10	4.37	4.26	3.28	3.28	3.11	2.00	
PFAT	0.36	0.29	-0.35	0.05	-0.22	-0.75	-0.38	-0.29	0.19	-0.76	-0.74	-0.50	0.02	-0.06	0.20	0.68	-0.24	0.29	0.0	-0.53	-0.52	-1.18	Rams
PWWT	13.52	14.69	13.85	14.81	15.29	18.17	16.77	16.35	14.33	15.75	15.96	16.80	16.37	14.56	15.00	11.98	15.28	14.04	15.36	13.90	13.26	18.33	's Re
WWT	8.34	9.40	8.67	9.41	9.62	12.00	10.89	10.28	9.60	10.06	10.27	11.17	10.25	9.51	9.65	7.01	9.60	9.07	9.74	9.07	8.21	11.70	
BWT	0.28	0.28	0.24	0.36	0.28	0.61	0.61	0.43	0.37	0.33	0.37	0.50	0.45	0.50	0.48	0.34	0.35	0.28	0.51	0.27	0.20	0.50	orr
SIRE	Bruan 170146	Wool 173980	BD 179575	MR 178714	MR 189444	MR 189601	Felix 161117	Bruan 170146	Linton 160123	Bruan 170146	Felix 170667	Linton 160123	Bruan 170146	MR 178714	Felix 161117	MR 178706	Bruan 170146	Bruan 170146	Linton 160123	Bruan 170146	BD 179575	MR 178814	Tomorrow
DOB	1/06/2019	29/05/2019	30/05/2019	20/06/2019	6/07/2019	20/07/2019	9/07/2019	5/06/2019	15/06/2019	14/06/2019	30/05/2019	23/06/2019	25/06/2019	18/06/2019	20/06/2019	21/06/2019	25/06/2019	22/06/2019	3/07/2019	31/05/2019	30/05/2019	25/06/2019	
RT	2	2	1	1	2	1	2	-	1	1	1	1	2	3	2	2	1	Ч	2	1	2	1	
BT	2	2	2	4	2	7	2		7	1	7	4	2	ŝ	2	2	1	Ч	2	Ч	2	7	
Br.	DD	PD	PD	PD	PD	DD	PD	PD	DD	PD	PD	PD	PD	PD	PD	DD	PD	PD	PD	PD	DD	PD	
TAG ID	112	26	72	305	674	865	746	127	223	209	71	392	512	272	306	348	501	386	636	83	73	497	
Lot	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40	41	

Poll Dorset Ram Lots 1-128 & White Suffolk Ram Lots 129-156

Page 5

\$ / Buyer																							H Page 6
LEQ	145.07	143.70	134.89	144.03	137.44	130.88	140.70	148.46	129.32	128.10	127.76	135.00	128.42	140.60	141.63	148.96	128.66	127.83	129.10	131.74	133.50	134.78	⊲
TCP	148.41	148.05	147.14	152.14	148.63	142.14	145.81	154.30	136.02	139.23	138.83	140.34	139.65	145.82	142.54 141.63	153.16	134.81	138.28	138.74	137.85	142.18	142.90	C C
LMΥ	3.24	4.29	4.57	5.01	5.14	4.10	4.50	5.00	3.97	4.15	4.37	3.93	4.49	3.93	2.71	3.32	3.72	3.71	4.07	2.64	4.33	4.20	
DRESS	3.00	2.36	2.95	2.69	2.60	2.48	2.30	2.27	2.04	2.30	2.31	1.91	2.38	2.02	2.45	2.84	2.15	2.17	2.37	2.28	2.30	2.33	
SHRF5	1.20	3.21	5.50	5.33	7.85	6.39	4.94	2.76	7.51	6.96	7.04	4.96	8.15	4.25	1.93	-0.27	6.47	5.51	6.14	3.56	6.51	5.61	Σ
IMF	-0.62	-0.51	-1.13	-0.81	-1.10	-1.04	-0.75	-0.58	-0.85	-1.03	-1.28	-0.63	-1.27	-0.34	-0.16	-0.55	-0.91	-1.11	-0.96	-0.62	-0.83	-0.87	
PFEC	-53	-22	-13	-19	-22	-15	-47	-14	-43	-14	-48	-29	-46	6.88	-21	-34	-58	-33	-21	-20	-16	-29	Todau
PEMD	4.07	2.21	3.65	2.60	2.06	2.69	1.83	2.54	1.84	2.08	2.88	2.39	2.65	2.40	3.07	4.38	2.00	2.59	2.69	2.82	2.54	2.70	
PFAT	0.64	-0.89	-0.20	-0.76	-0.91	-0.32	-0.83	-1.19	-0.37	-0.40	-0.36	-0.62	-0.33	-0.42	0.53	0.27	-0.34	-0.15	-0.47	0.39	-0.64	-0.44	Rams
PWWT	13.89	15.81	15.89	18.45	19.79	16.42	16.40	16.59	17.37	15.87	15.49	15.28	16.38	17.50	14.66	12.56	15.21	14.62	14.53	14.13	16.04	15.19	
WWT	7.93	9.84	10.37	11.77	12.57	10.47	10.66	10.59	11.44	10.62	9.87	10.25	10.43	11.57	9.14	7.49	9.92	9.41	9.10	8.73	10.51	9.74	000
BWT	0.25	0.33	0.50	0.54	0.67	0.52	0.49	0.45	0.52	0.51	0.31	0.33	0.46	0.42	0.37	0.28	0.34	0.54	0.20	0.31	0.49	0.21	Tomorrow's
SIRE	Bruan 170146	MR 178814	MR 166155	Felix 161117	Felix 161117	MR 178706	MR 178814	MR 189601	MR 178714	MR 188868	MR 178714	MR 177555	MR 155458	MR 177555	Linton 160123	Bruan 170146	MR 178714	MR 178706	MR 189111	Farrer 150134	Felix 161117	Felix170909	Tom
DOB	31/05/2019	23/06/2019	27/07/2019	10/07/2019	23/06/2019	22/06/2019	6/06/2019	26/06/2019	21/06/2019	29/06/2019	24/06/2019	7/07/2019	28/08/2019	3/09/2019	19/06/2019	29/05/2019	20/06/2019	26/06/2019	1/07/2019	8/07/2019	24/06/2019	5/07/2019	
RT	2	2	1	1	2	1	1	Ч	1	7	1	1	7	1	2	2	2	2	1	2	1	1	
. BT	0 2	0 2	1	0 2	0 2	1	0 2	1	1	1	1	1	1	1	2	0 2	0 2	0 2	1	0 2	1	0	
Br.	PD	PD	Δd	Δd	PD	PD	ΡD	PD	ΡD	PD	PD	PD	ΡD	PD	Dd	PD	PD	PD	PD	PD	PD	PD	
TAG ID	95	446	906	767	400	377	144	541	319	574	453	696	1017	1042	288	43	316	519	601	711	471	670	
Lot	61	62	63	64	65	99	67	68	69	70	71	72	73	74	75	76	77	78	79	80	81	82	

Poll Do	Poll Dorset Ram Lots 1-128	lots						Ton 1%	1	F	Ton 10%		Ē	Ton 20%		Tria	Trial Mated		moderate BWT, growth, muscle and worm
													2					1	resistance.
Lot	TAG ID	Br.	BT	RT	DOB	SIRE	BWT	WWT	PWWT	PFAT	PEMD	PFEC	IMF	SHRF5	DRESS	LMΥ	TCP	LEQ	\$ / Buyer
83	514	DD	2	2	25/06/2019	MR 178706	0.48	9.13	14.74	0.55	3.15	-23	-1.02	5.19	2.62	3.24	137.74	127.41	
84	187	PD	2	2	11/06/2019	Bruan 170146	0.14	7.95	12.82	0.10	3.93	-61	-0.50	1.08	2.84	3.47	151.18	149.88	
85	797	DD	-	1	12/07/2019	Bruan 170146	0.33	8.39	13.33	0.15	4.18	-31	-0.35	-0.30	2.92	3.21	155.02	152.80	
86	215	PD	1	1	15/06/2019	BD 179575	0.29	8.04	12.77	-0.38	2.47	-31	-0.54	1.88	1.97	3.07	142.19	138.06	
87	156	DD	2	2	7/06/2019	MR 178706	0.44	8.99	14.25	0.27	3.31	-31	-1.11	5.61	2.48	3.74	138.71	128.10	
88	278	PD	2	2	18/06/2019	Felix 161117	0.48	10.35	16.32	-0.63	2.52	-17	-0.75	5.90	2.38	4.40	143.05	135.30	
89	211	PD	2	2	14/06/2019	MR 178706	0.47	10.46	16.49	-0.75	2.40	-31	-1.31	7.20	2.33	4.77	141.94	129.12	
6	287	DD	2	2	19/06/2019	Linton 160123	0.60	10.23	15.78	-0.15	1.93	-28	-0.23	3.02	1.93	3.08	140.61	140.61 139.60	
91	455	DD	2	2	24/06/2019	Bruan 170146	0.38	9.89	15.72	-0.15	3.78	-34	-0.88	2.89	2.97	4.31	155.42	147.47	
92	671	Dd	Ч	Ч	5/07/2019	Linton 160123	0.40	10.48	15.63	0.04	2.90	-26	-0.03	2.24	2.42	3.35	147.11	148.25	
93	1066	DD	1	1	13/09/2019	MR 177555	0.47	10.90	15.88	-0.85	1.94	-30	-0.82	6.63	1.84	4.21	138.49	131.08	
94	620	DD	2	2	3/07/2019	Linton 160123	0.50	9.99	15.88	-0.07	2.73	-25	-0.36	2.89	2.42	3.35	145.57	142.85	
95	901	D	1	-	27/07/2019	MR 177555	0.30	9.49	14.85	-0.67	2.45	-48	-0.44	3.81	1.87	3.62	142.17	140.50	
96	1073	DD	-	4	15/09/2019	MR 177555	0.38	10.74	16.63	-0.34	2.90	-30	-0.67	5.06	2.33	4.13	146.10	140.23	
97	537	DD	2	2	26/06/2019	Farrer 150134	0.40	10.65	16.88	0.45	3.09	-30	-0.96	5.59	2.73	3.57	142.29	133.09	
98	544	DD		-	27/06/2019	MR 178706	0.58	9.79	15.36	-0.42	2.82	-16	-1.36	7.24	2.34	4.56	140.63	125.83	
66	295	Δd	2	2	19/06/2019	MR 178706	0.45	8.69	13.49	0.38	3.41	-33	-1.18	5.99	2.33	3.50	136.05	124.66	
100	290	D	7	-	19/06/2019	MR 178706	0.48	9.79	14.99	0.00	3.09	-20	-1.11	5.82	2.36	3.88	139.98	128.34	
101	145	PD	2	2	6/06/2019	MR 178706	0.43	9.50	15.18	-0.17	2.56	-43	-1.01	5.45	2.31	3.90	139.25	130.68	

Poll Dorset Ram Lots 1-128 & White Suffolk Ram Lots 129-156

Page 7

/ Buyer																							Page 8
LEQ \$/B	131.91	135.53	143.77	144.89	134.19	133.78	137.66	127.42	136.50	128.19	156.31	137.60	135.62	143.75	137.01	137.32	130.98	137.21	138.84	130.45	130.05	128.55	AH
TCP	138.32	142.41	147.64	148.95	146.02	144.92	143.03	137.13	141.37	136.53	161.60	142.25	142.49	144.77	139.84	139.17	137.26	142.59	140.50	142.65	140.72	137.78	R D
ΓМΥ	3.91	4.16	3.70	4.92	4.59	4.80	3.84	3.81	3.46	3.24	4.04	4.05	3.92	3.61	3.75	2.87	3.35	3.99	3.36	4.33	4.38	3.82	A
DRESS	1.88	2.27	2.56	2.40	2.40	2.54	1.96	2.31	2.35	2.28	3.56	2.24	2.53	2.32	2.19	2.00	2.36	2.39	2.28	2.46	2.38	2.21	ΡŊ
SHRF5	5.85	5.81	2.93	5.34	6.66	7.69	5.03	5.35	3.90	4.86	0.04	4.61	5.59	2.90	4.91	2.90	5.52	5.14	3.92	6.34	6.88	5.71	Σ
IMF	-0.69	-0.75	-0.45	-0.64	-1.00	-0.98	-0.57	-1.01	-0.68	-0.82	-0.45	-0.66	-0.72	-0.20	-0.59	-0.31	-0.79	-0.66	-0.47	-1.20	-1.13	-0.72	
PFEC	-25	-29	-24	-43	'n	ő	-23	-28	-42	-20	ø	-39	-22	-23	-52	-29	-39	-35	-52	-23	-33	4	Today!
PEMD	2.02	2.90	2.92	2.47	2.63	2.60	2.19	3.01	3.20	2.96	5.22	1.59	2.63	2.85	1.88	2.19	2.27	3.09	2.92	2.60	2.44	2.83	
PFAT	-0.65	-0.28	-0.11	-1.30	-0.52	-0.50	-0.63	-0.10	0.10	0.26	0.39	-0.90	-0.08	-0.27	-0.61	-0.25	-0.14	-0.24	0.14	-0.41	-0.35	-0.22	Rams
PWWT	15.44	15.66	15.74	16.54	17.37	17.61	16.57	12.96	13.06	13.13	14.16	16.15	16.79	14.86	15.12	13.91	15.68	14.33	14.65	16.38	16.87	14.15	
WWT	10.15	10.52	10.57	10.68	11.11	11.57	11.10	8.50	8.27	8.69	8.76	10.00	10.59	9.82	9.42	8.99	9.89	9.61	9.85	10.38	10.99	9.56	,ma
BWT	0.42	0.38	0.62	0.23	0.60	0.57	0.48	0.28	0.19	0.33	0.28	0.29	0.40	0.38	0.33	0.41	0.31	0.43	0.33	0.51	0.48	0.37	orre
SIRE	MR 177555	MR 177555	MR 178705	Felix 170667	Felix 161117	Felix 161117	MR 177555	MR 178706	Felix170909	MR 188868	Bruan 170146	MR 178814	Felix 161117	Linton 160123	MR 178814	MR 178705	Farrer 150134	MR 178705	MR 189444	MR 178706	MR 178706	MR 189111	Tomorrow's
DOB	13/07/2019	3/07/2019	17/06/2019	30/05/2019	9/07/2019	23/06/2019	10/07/2019	24/06/2019	25/07/2019	28/07/2019	21/06/2019	7/06/2019	12/07/2019	28/08/2019	24/06/2019	29/05/2019	8/07/2019	26/06/2019	15/07/2019	12/06/2019	3/07/2019	1/07/2019	
RT	1	Ч	2	2	2	2		7	-	Ч	2	2	2	2	2	2	-	-	2	-	Ļ	2	
. BT	1	Ч) 2	2	2	2		1		1	2) 2	2	2	2	0 2	1	1	2	1	1	2	
Br.	ΡD	PD	PD	Δd	PD	PD	РО	PD	PD	Dd	PD	Dd	PD	Dd	PD	Δd	PD	PD	PD	PD	DD	PD	
TAG ID	818	632	247	62	745	1085	765	451	994	917	330	160	801	1018	458	33	209	526	822	193	618	608	
Lot	102	103	104	105	106	107	108	109	110	111	112	113	114	115	116	117	118	119	120	121	122	123	

All rams solortod far	sound conformation,	moaerate 5W1, growtn, muscle and worm vosistanco		\$ / Buyer																		
1		€		LEQ	150.19	145.74	135.01	130.07	137.75		148.61	155.62	140.33	147.24	137.85	142.80	141.26	160.42	146.08	139.93	140.89	144.43
		Trial Mated		TCP	152.04	151.31	144.54	136.71	149.17		153.50 148.61	150.46	145.66	148.08 147.24	141.63	148.59	145.48	156.60	148.59	145.17	143.60	148.73 144.43
		Trial I		LMΥ	3.60	3.53	3.35	3.48	4.91		4.56	2.32	3.37	3.36	3.37	3.89	3.93	2.78	3.51	3.86	4.14	4.28
				DRESS	2.81	3.17	2.94	2.49	2.83		2.89	2.30	2.34	2.47	2.56	3.30	2.40	2.67	2.86	2.84	2.10	2.80
		%		SHRF5 C	1.64	1.99	3.23	5.78	5.60		4.84	-2.03	3.21	1.83	4.20	3.91	3.46	-2.41	2.82	4.68	4.24	4.33
		Top 20%		IMF SI	-0.44	-0.55	-0.95	-0.91	-1.20		-0.79	0.15 -	-0.70	-0.35	-0.53	-0.61	-0.51	0.04	-0.43	-0.71	-0.44	-0.62
				PFEC I	-48 -(-18 -(-24 -(-52 -(-34		-55	-50 0	-40	-44 -(-34 -(-20 -(-26 -(-50 0	-36 -(-39 -(-34 -(-40 -(
		*	_	PEMD P	3.71 -	4.60	4.16	2.79	3.76		2.63	2.71	2.59	2.19	2.68	3.00	2.37 -	3.18 -	2.59	2.77	1.62 -	2.58
		Top 10%	_	PFAT PE	0.19 3.	0.44 4,		0.05 2.	-0.53 3.		-0.50 2.	0.40 2.	-0.16 2.	-0.35 2.	0.04 2.	-0.02 3.	-0.41 2.	0.29 3.	-0.06 2.	-0.26 2.	-0.82 1.	-0.39 2.
							23 0.80															_
				T PWWT	14.89	13.33	14.23	14.85	15.27		3 20.49	16.01	5 16.95	5 16.88	0 16.32	17.26	16.19	16.64	9 17.73	2 16.94	2 17.38	2 17.64
	56	Top 1%		WWT	9.72	8.18	8.69	9.35	9.82		12.58	9.94	10.36	10.06	10.40	10.14	10.10	9.82	10.59	10.12	11.02	11.12
	129-1			BWT	0.37	0.23	0.30	0.41	0.43		0.06	0.25	0.26	0.17	0.03	0.16	0:30	0.27	0.20	-0.08	0.28	0.36
	White Suffolk Ram Lots 129-156			SIRE	Bruan 170146	Bruan 170146	MR 178706	MR 178714	MR 189667		MR 189192	Wool 173980	Farrer 150134	MR 178814	MR 189192	Pol 150838	Pol 150838	Wool 173980	Pol 150838	MR 189192	Pol 150838	Pol 150838
				DOB	24/06/2019	6/06/2019	23/06/2019	13/06/2019	2/09/2019	56	20/07/2019	30/05/2019	3/07/2019	29/08/2019	26/06/2019	5/06/2019	24/06/2019	29/05/2019	18/06/2019	27/06/2019	21/06/2019	22/06/2019
	28 &			RT	2	2	7	2	Ч	129-1	2	-	Ч	Ч	2	2	2	2	Ч	2	۲	2
	1-1			BT	2	2	1	2	٦	ots	2	2	2	1	2	2	2	2	1	2	7	2
	Lots			Br.	PD	PD	PD	PD	PD	am I	WS	WS	WS	WS	WS	WS	WS	WS	WS	WS	WS	WS
	Poll Dorset Ram Lots 1-128			TAG ID	472	139	436	201	1040	White Suffolk Ram Lots 129-156	868	70	631	1026	532	129	483	36	279	550	336	373
	Poll Do			Lot	124	125	126	127	128	White S	129	130	131	132	133	134	135	136	137	138	139	140

Poll Dorset Ram Lots 1-128 & White Suffolk Ram Lots 129-156

yer																
\$ / Buyer													_			
LEQ	132.30	132.18	139.92	139.57	141.30	141.47	139.76	136.69	141.08	145.23	138.67	144.57	134.62	135.88	133.01	134.95
TCP	141.38	139.96	143.56	143.57	143.98	147.11	142.61	142.02	144.67	150.15	142.30	146.05	139.45	138.39	138.59	140.25
LMΥ	4.10	4.01	3.83	3.13	4.08	4.16	3.18	3.79	4.00	4.88	3.59	3.80	2.85	2.33	3.37	2.98
DRESS	2.06	1.93	2.59	2.46	2.13	2.24	2.79	2.52	2.31	2.89	2.25	2.29	2.68	2.48	1.80	2.54
SHRF5 D	5.21	5.28	2.84	2.63	2.89	2.87	3.74	3.98	4.30	4.39	4.05	3.41	3.42	2.15	3.55	4.28
IMF Sł	-0.86	-0.84	-0.45 2	-0.40 2	-0.48 2	-0.46 2	-0.41 3	-0.46 3	-0.53 4	-0.67 4	-0.46 4	-0.45 3	-0.48	-0.49 2	-0.67 3	-0.68 4
						-	_									
D PFEC	-16	-29	-24	-14	-37	0	-31	Ŝ	-36	-37	-27	-50	-16	-42	-32	-37
PEMD	2.07	1.82	2.36	2.34	1.07	1.73	2.84	2.32	1.81	2.96	1.83	1.82	2.83	2.78	2.06	2.95
PFAT	-0.67	-0.74	-0.37	-0.08	-1.14	-1.15	0.49	-0.38	-0.64	-0.74	-0.31	-0.72	0.53	0.36	-0.46	0.36
PWWT	16.36	16.33	15.63	16.34	16.78	16.18	16.17	15.83	17.24	16.72	16.85	17.73	14.84	13.71	14.52	15.67
WWT	10.62	10.61	9.73	9.52	10.48	10.00	9.97	9.82	10.95	10.38	10.66	10.80	8.93	7.73	9.72	9.64
BWT	0.42	0.44	0.17	0.13	0.38	0.23	0.15	0.04	0.30	0.05	0.32	0.25	0.13	0.17	0.43	0.07
SIRE	MR 178714	MR 178714	Pol 150838	Pol 150838	MR 178814	MR 178814	Pol 150838	Farrer 150134	Farrer 150134	MR 189192						
DOB	27/07/2019	27/07/2019	23/06/2019	23/06/2019	7/09/2019	2/08/2019	23/06/2019	17/06/2019	14/06/2019	22/06/2019	24/06/2019	24/06/2019	16/06/2019	11/07/2019	13/07/2019	5/08/2019
RT	2	2	1	2	-	-	-	1	2	2	2	2	Ч	2	Ч	2
BT	2	2	-	2	н	-			5	2	2	2		2		5
Br.	WS	WS	WS	WS	WS	WS	WS	WS	WS	WS	WS	WS	WS	WS	WS	WS
TAG ID	912	913	422	425	1055	946	447	248	206	376	481	486	240	783	810	952
Lot	141	142	143	144	145	146	147	148	149	150	151	152	153	154	155	156

Tomorrow's Rams Today! MAJARDAH Page 10

Performance backed by 48 years of breeding...

Accreditation No 580 Stud prefix MAJARDAH

Certificate for Accredited Ovine Brucellosis-free Flock

Given in respect of the registered WHITE SUFFOLK stud flock No 540 of ADC & R Price of GLENCOE

This fields was remained and totals on **9-January 2020**, and was found for this science of the hearthing, and no was merculated our interaction-fit for first-science transmission appeard in horizon the constant and the Chief Venetimary Offlow for the conditioned of noise burdening data science and the Chief Venetimary Offlow for the conditioned on the horizontal data science and the constant and the Chief Venetimary Offlow for the conditioned of an interburdening data science and the constant and the Chief Venetimary Offlow for the conditioned of the Disk settlement of the science and the science and the science of the

Testing for reasonalitation is due by 34 December 2021

Dr Mary Ca Chief Vater per 65

Accreditation No 580 Stud prefix MAJARDAH

Certificate for Accredited Ovine Brucellosis-free Flock

Given in respect of the registered POLL DORSET stud flock No 1886 of ADC & R Price of GLENCOE

This flock was examined and toned on **9 January 2020**, and was found free from ovice Mutuflinis, and in new an accordinal ovice browdlenis that flock, subject to the conditions agreed to between the owner and the Chiel Veteriory Officer for the califormation of ovice

This confliction is the property of Primary Isolantine North Assembla, and remains waited for 24 months had any be withdrawn, double these be any breach of the agreement, or returned should the confliction be in longer required. Torking for reaconditation is due by **31 December 2021**.

De Mary Carr Chief Voterinary Off per

Page 11.....

Tomorrow's Rams Today!

MAJARDAH

POLL DORSET STUD 1886 SWHITE SUFFOLK STUD 540

Loin Samples... Pursuing excellence with R & D

the state

MILLER WHAN & John Peter Creek 0428 838 332

ELDERS BEN GREGORY 0418 498 587

Performance backed by 48 years of breeding...

Sheep genetics

LAMBPLAN terminal indexes

A ram buyer's guide

Indexes help producers select animals for use within a breeding program when there are a range of traits of economic or functional importance, so that genetic gain in one trait is not made in isolation from other traits.

Using indexes in your ram purchasing decisions allows you to make balanced genetic progress towards more profitable sheep. A ram with a higher index will produce progeny that are more profitable in that production system.

Choosing the right index

The following flowchart helps producers determine the best index for their terminal production system:

How to use the chosen index to assist in purchasing decisions:

Before the sale:

1. Rank animals in the sale on the value of your chosen index.

2. Consider the individual ASBVs which are important to you to create a short list of rams to look at on sale day.

At the sale:

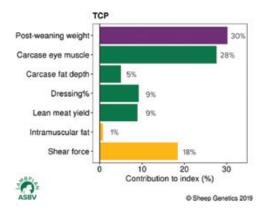
3. Look through your short list of rams to find the ones that meet your structural and type requirements.

To assist in benchmarking sale rams relative to the current year drop of animals in the Sheep Genetics database, use the percentile band tables, which are found on the Sheep Genetics website: www. sheepgenetics.org.au/Getting-started/ASBVs-and-Indexes. The animals in the top 10th percentile rank the highest on the index, and those in the 90th percentile rank the lowest.

A brief overview of each of the indexes is included below. If you would like further information on how these selection indexes are generated, please refer to the *Terminal Indexes – ram breeder guide* at <u>sheepgenetics</u>, org.au/terminal-breeder.

Terminal Carcase Production (TCP)

The TCP index is for a prime lamb production system where terminal sires are joined to ewes of a Merino/ maternal breed or cross. The TCP index focuses on increasing weight and muscle while reducing carcase fat. These are changes which contribute to higher lean meat yield. TCP also has emphasis on modest improvements in eating quality.


Typical trait changes for the TCP index include:

- · increasing post weaning weight
- increasing carcase eye muscle depth
- · decreasing carcase fat depth
- · increasing dressing percentage
- increasing lean meat yield
- · slightly improving eating quality.

Sheep with better eating quality will have higher ASBVs for intramuscular fat (more marbling) and lower ASBVs for shear force (better tenderness).

Figure 1 illustrates which traits are in the index and how much they contribute to the overall balance of the index. The longer the bar, the greater the impact on the index, and the greater impact on the profitability of the production system.

Figure 1: The traits in the TCP index and how they contribute to the overall balance of the index

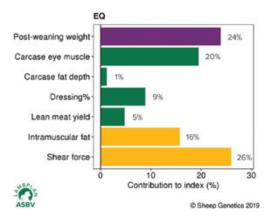
TERMINAL Percentiles for 2019 Drop Year												
Band %	Bwt	Wwt	PWwt	Pfat	Pemd	Pfec	LMY	IMF	Dress	ShrF5	ТСР	LEQ
1%	-0.44	12.3	19.1	0.9	4	-62	5.3	0.3	3.3	-2.8	157.7	156.5
5%	-0.37	11.5	17.8	0.4	3.3	-53	4.6	0	3	-0.9	152.3	148.8
10%	0.02	11	17.1	0.2	2.9	-49	4.3	-0.2	2.7	-0.1	148.9	144.1
20%	0.19	10.4	16.1	0	2.5	-42	3.9	-0.3	2.5	0.9	144.6	138.7
50%	0.35	9.2	14	-0.5	1.7	-27	3.1	-0.5	1.9	2.9	136.1	129.3

Page 13

Tomorrow's Rams Today!

MAJARDAH

Eating Quality (EQ)


The EQ index is for a prime lamb operation where terminal sires are joined to ewes of a Merino/maternal breed or cross, and where producers are interested in improving the eating quality of their lambs to a greater degree than is possible with the TCP index. Because of the added emphasis on eating quality, there is less emphasis on growth and carcase traits, although they will still improve.

Typical trait changes for the EQ index include:

- increasing post weaning weight
- increasing eye muscle depth
- maintaining/small reduction in carcase fat
- increasing dressing percentage
- increasing lean meat yield
- large improvement in eating quality.

Sheep with better eating quality will have higher ASBVs for intramuscular fat (more marbling) and lower ASBVs for shear force (better tenderness).

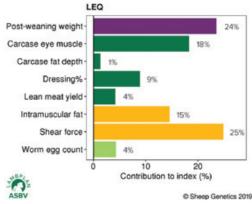
Figure 2 illustrates which traits are in the index and how much they contribute to the overall balance of the index. The longer the bar, the greater the impact on the index, and the greater impact on the profitability of the production system.

Figure 2: The traits in the EQ index and how they contribute to the overall balance of the index

Lamb Eating Quality (LEQ)

The LEQ index is for a prime lamb operation where terminal sires are joined to ewes of a Merino/maternal breed or cross in high rainfall and/or high input management systems where internal parasites may cause significant economic losses.

Producers who select this index are interested in improving the eating quality of their lambs to a greater degree than is possible with the TCP index. Growth and carcase traits will still improve, and inclusion of worm egg count will aid in control of internal parasites.


Typical trait changes for the LEQ index include:

- increasing post weaning weight
- increasing eye muscle depth
- maintaining/small reduction in carcase fat
- increasing dressing percentage
- · increasing lean meat yield
- · large improvement in eating quality
- increasing resistance to worms.

Sheep with better eating quality will have higher ASBVs for intramuscular fat (more marbling) and lower ASBVs for shear force (better tenderness).

Figure 3 illustrates which traits are in the index and how much they contribute to the overall balance of the index. The longer the bar, the greater the impact on the index, and the greater impact on the profitability of the production system.

Figure 3: The traits in the LEQ index and how they contribute to the overall balance of the index

Sheep Genetics Lambplan Acronyms

	•	
ВТ	Birth Type	Born a single, twin or triplet
RT	Rear Type	Reared as single, twin or triplet
DOB	Date of Birth	Date of birth
BWT	Birth weight	Lower birth weight values will producer lighter lambs
WWT	Weaning weight	A higher WWT value ram will produce faster growing progeny
PWWT	Post weaning weight	A higher PWWT value ram will produce faster growing progeny
PFAT	Post weaning fat	The more negative the value for PFAT, the leaner the progeny will be
PEMD	Post weaning eye muscle depth	Rams with positive values for PEMD will have more muscle especially in the high value loin area and hind quarter
PWEC	Post weaning worm egg count	A lower (more negative) value for PWEC indicates the progeny will have lower worm egg counts and be more resistant to developing a worm burden
IMF	Intra muscular fat	Higher value is better
SHRF5	Shearforce	Amount of force required to cut through the meat, lower value is more tender
LMY	Lean meat yield	Higher the value, higher % of saleable meat on carcase
DRESS	Dress Percentage	Rams with more positive dressing percentage (DRESS) ASBVs produce lambs that have a higher dressing percentage at slaughter.

..... Page 14

PO Box 180, Glencoe SA 5291 Limestone Coast Region, SA

k & Pet Food | Water Equipment | Livestock Handling For all your rural merchandise needs

