

COBANA POLL DORSETS

Reg No 164418 Est 2005

Offering 40 Poll Dorset Rams

Online Sale Tuesday 27 October 2020 On AuctionsPlus at 12noon

Inspections available on Sunday 25 October from 9-12 at "Greenlake" 950 Monaro Highway Bombala

Brucellosis accredited No CW 06/38

Enquiries to Brad Yelds – Phone 0429 508 840 or (02) 6458 5201 Email: <u>yelds2@bigpond.com</u>

Selling Agent Landmark Bombala (02) 6458 3422

Sam Platts: 0409 032 019 Tony Brady: 0457 522 814 Welcome to our 10th Annual Poll Dorset Ram Sale.

We have had another busy year feeding sheep unlike most in the state! The decision to put most of our ewes and cows on agistment has worked extremely well. Our Ram lambs weren't fed this year and the extra space they have been allowed resulted in them being exceptionally well grown.

On Tuesday 27th October will be our 10th Ram Sale. This year we have decided to go with an online Auction with AuctionsPlus. There are 40, September 2019, drop rams on offer. We are extremely happy with the line-up and the helmsman system will again be used to sell the rams.

This year we are also offering free delivery (within 400 kms, ie Cowra, Wagga) for purchase of 3 or more rams. Smaller lots by negiotiation.

There is a 4% rebate for outside agents.

Breeding objectives of Cobana Poll Dorsets:

- Lambing ease (lower birth weight)
- Increase weaning weight
- Higher carcase yield

Rams will be available for inspection on Sunday 25 October 20 from 9.00am until 12.00 noon or by appointment prior to sale.

All rams have been Gudair vaccinated and Brucellosis accredited No CW 06/38. The rams are performance recorded using Lambplan. For anyone chasing more information this is available online at www.sheepgenetics.com. If you need assistance please email or call.

Brad, Lauren, Tilly, Issy & Kate Yelds

EXPLANATION OF HEADINGS AND AUSTRALIAN SHEEP BREEDING VALUES

Following the lot number of each ram across the page are the columns titled:

ID: Ear tag identification. Further information on each ram is available from www.sheepgenetics.org.au

website.

BT (Birth Type): Indicates the birth type of each individual ram. (1 – Single, 2 – Twin, 3 – Triplet)

SIRE:

SIRE	BWT	WWT	PWWT	PFAT	PEMD	LEQ
Felix 160494	0.48	11.6	19.5	0.1	3.9	161.2
Aberdeen 160263	0.54	10	14.4	-0.3	1.5	125.8
Aberdeen 160481	0.33	10.2	13.8	-1.3	1.6	127.5
Aberdeen 160693	0.31	10.2	14.6	-0.7	1.6	128.2

BWT: (Birth weight in kg) Estimates the genetic difference in weight at birth. Our lambs are all weighed at

birth. Too large a lamb may cause lambing problem, or too small, low survival rates.

WWT: (Weaning weight in kg) Estimates the genetic difference in live weight at 100 days.

PWWT: (Post weaning weight in kg) Estimates the genetic difference in growth at 200 days.

PFAT: (Post Weaning Fat depth in mm) Estimates the genetic difference in GR fat depth at 45 kg live weight.

All rams were scanned at post weaning.

PEMD: (Post Weaning Eye Muscle depth in mm) Estimates the genetic difference in eye muscle at the C site

at 45 kg. All rams were scanned at post weaning.

PWEC: (Post Weaning Worm Egg Count WEC) Shows the genetic difference in WEC of animals run under the

same management.

INDEXES: Indexes are designed to help meet different breeding objectives and programs. They are simply a

guide to assist in selection, however when doing so producers should consider their own breeding objective. This will involve considering your current ewe base, the environment they are run in and the target market for their progeny. Any queries about what is right for you please feel free to call me or

email.

LEQ - a new index incorporating L2020 lean meat yield and eating quality, no emphasis on

birth weight

GENERAL ADVICE COMMENTS IN CATALOGUE:

The figures provided are a good guide. Groups of animals breed more closely to their average ASBV or index value than individuals. The breeding value of a team of rams will almost be identical to their average ASBV.

The comments provided are a guide. The main figure's you should be interested in is BWT, (as dead lambs don't grow) and PWT as it is the key economic driver. Below are the figures I would recommend:-

BWT:

less than 0.2 for young or small frame sheep

Less than 0.3 for merinos Less than 0.5 for xb's

WWT:

Not a critical measure unless:

You sell lambs as stores under 20 weeks

You sell suckers (PWWT more important)

PWWT:

The key economic driver - all rams with high PWWT will have a good \$ index. Some research results

suggest the difference in sire PWWT of 10 to 6 has resulted in 70% turnoff at 16 weeks compared to

57% at 18kg carcase weights

PFAT:

The secret to finishing lambs that hit the grid. Important to know which market you are targeting or

else ignore.

Recommendations:

Merino Dam

Export: -0.2 to -0.8

Trade: 0.0 to -0.6

XB Ewe Suckers:

0.0 to -0.4

Trade: -0.2 to -0.8

Export: -0.6 to -1.2

Remember no animal will be too fat while growing. It is only as they mature that fat is laid down. Select more lean animals as finishing time stretches from 6 to 12 months. Also XB ewes pass on more fatness in genes than merino so it is important not to select very lean sires for Merino's.

PEMD:

The value is related to carcase yield, the higher the better (there is currently research underway to see

if excessive muscle leads to eating quality issues).

COBANA POLL DORSETS

LEQ	132	138	128	157	141	154	152	153	144	140	136	129	128	131	148	150	154	152	140	132	130	134	125	133
LMY	5.4	5.0	3.7	4.6	0.9	4.0	4.0	3.8	3.9	4.9	4.5	3.7	4.4	3.5	4.0	4.6	3.7	4.4	4.4	3.5	3.8	4.0	4.1	3.9
DRESS	2.2	2.1	1.9	3.2	2.5	2.9	2.7	2.9	2.7	2.4	2.1	2.1	1.7	2.0	2.7	2.7	3.1	3.0	2.2	2.0	2.0	1.9	1.9	1.9
SHRF5	8.6	6.1	6.3	2.3	8.0	2.0	2.0	1.4	3.6	5.7	5.7	0.9	6.5	4.5	3.6	3.8	1.1	2.2	4.6	5.2	5.8	4.7	6.7	4.6
IMF	-1.1	-0.8	9.0-	9.0-	-1.0	-0.4	-0.4	-0.4	-0.5	-0.9	-0.8	-0.7	-0.9	-0.6	-0.5	-0.5	-0.4	-0.5	-0.7	-0.6	-0.6	-0.7	-0.9	-0.7
PFEC	-26	۴-	9	-42	-33	-43	-42	-42	-21	-34	-34	8	-16	\vdash	-32	-44	-42	-40	-35	-20	-2	-16	-1	-16
PEMD	1.8	1.7	2.0	4.0	2.4	3.6	3.2	3.6	3.0	2.8	2.2	1.8	1.4	2.0	2.8	2.9	4.0	4.1	2.7	2.2	2.1	2.1	1.6	2.2
PFAT	-1.2	-1.3	-0.5	-0.3	-1.0	0.1	-0.3	0.0	0.1	-0.9	-0.9	-0.4	-1.2	-0.3	-0.3	-0.4	0.2	-0.4	-0.8	-0.5	9.0-	-1.0	-0.9	-1.0
PWWT	17.5	17.5	14.4	18.0	18.3	17.8	17.8	17.1	17.0	15.5	15.3	15.0	14.8	14.3	18.4	17.9	16.7	15.9	14.8	14.7	14.4	14.4	14.3	13.3
WWT	11.9	12.0	10.2	11.1	12.9	10.9	11.1	10.4	10.8	10.6	10.4	10.2	10.4	9.7	11.8	11.2	10.1	10.1	10.2	10.4	10.0	8.6	9.6	9.5
BWT	0.52	0.65	0.40	0.54	0.48	0.42	0.49	0.49	0.51	0.50	0.45	0.49	0.36	0.39	0.51	0.46	0.47	0.45	0.38	0.38	0.38	0.41	0.32	0.34
BT	2	Н	⊣	7	2	\vdash	n	7	Н	7	7	7	7	П	7	7	2	Н	7	7	7	2	7	2
SIRE	1607882016160481	1607882016160693	1607882016160693	1636772016160494	1607882016160481	1636772016160494	1636772016160494	1636772016160494	1607882016160263	1607882016160481	1607882016160481	1607882016160693	1607882016160481	1607882016160263	1636772016160494	1636772016160494	1636772016160494	1636772016160494	1607882016160481	1607882016160481	1607882016160693	1607882016160693	1607882016160481	1607882016160693
WEIGHT	126	121	118.5	116.5	112	112	109.5	110	114.5	114	112.5	110.5	110	112	104.5	109	107.5	104.5	107	104.5	107.5	108.5	109	110
ANIMALID	1644182019190102	1644182019190081	1644182019190145	1644182019190069	1644182019190193	1644182019190015	1644182019190140	1644182019190041	1644182019190079	1644182019190028	1644182019190029	1644182019190016	1644182019190120	1644182019190095	1644182019190185	1644182019190182	1644182019190042	1644182019190166	1644182019190076	1644182019190020	1644182019190049	1644182019190034	1644182019190106	1644182019190033
LOT NO	1	2	æ	4	5	9	7	∞	6	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24

COBANA POLL DORSETS

LEQ	129	130	140	131	135	135	128	124	127	124	149	144	129	125	125	124
ΓΜΥ	4.2	4.5	3.7	3.8	3.6	3.7	3.0	3.5	3.3	3.1	3.8	3.0	3.3	3.0	3.5	3.8
DRESS	2.4	1.7	2.4	1.7	2.2	2.3	2.0	1.5	1.7	1.5	2.8	5.6	1.9	1.3	1.6	1.5
SHRF5	6.3	9.9	3.8	4.8	4.8	4.6	4.3	0.9	5.1	5.3	2.5	2.0	5.2	2.7	5.5	6.3
IMF	-0.9	-0.8	-0.5	9.0-	-0.5	-0.6	-0.5	9.0-	9.0-	9.0-	-0.4	-0.3	-0.5	-0.4	9.0-	-0.8
PFEC	12	-14	-13	-2	-1	φ	9	12	-5	-20	-40	-31	-1	-5	12	-16
PEMD	2.1	1.4	3.0	1.5	2.8	2.8	2.1	1.0	1.9	1.5	3.8	3.5	1.7	1.1	1.2	2.2
PFAT	-0.4	-1.2	-0.2	-1.1	-0.3	-0.2	0.0	6.0-	-0.4	-0.5	0.2	0.1	-0.6	-0.5	-0.8	-0.8
PWWT	15.9	15.1	14.7	14.7	14.7	14.7	14.0	14.4	13.5	12.7	15.9	14.8	14.7	14.1	14.1	11.7
WWT	10.4	10.6	10.2	10.0	10.2	8.6	9.5	9.4	9.1	8.7	6.6	9.2	8.6	10.1	9.7	8.7
BWT	0.43	0.34	0.44	0.49	0.37	0.38	0.32	0.37	0.31	0.30	0.36	0.27	0.25	0.32	0.39	0.24
ВТ	7	7	Т	7	7	ĸ	7	7	2	7	2	Н	7	7	1	7
SIRE	1607882016160263	1607882016160481	1607882016160693	1607882016160693	1607882016160693	1607882016160263	1607882016160263	1607882016160693	1607882016160263	1607882016160481	1636772016160494	1636772016160494	1607882016160693	1607882016160693	1607882016160263	1607882016160481
WEIGHT	102	101.5	100	102.5	101	101.5	107.5	104	103.5	101.5	96.5	92.5	86	97	6	66
ANIMALID	1644182019190127	1644182019190001	1644182019190179	1644182019190133	1644182019190115	1644182019190111	1644182019190048	1644182019190086	1644182019190146	1644182019190187	1644182019190158	1644182019190189	1644182019190036	1644182019190047	1644182019190152	1644182019190083
LOT NO	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40

Blue Top 10% Red Top 20%